

Numerical simulations of acoustically generated gravitational waves

PRL 112, 041301 (2014) [arXiv:1304.2433] arXiv:1504.03291

David J. Weir [1],

with Mark Hindmarsh [2,3], Stephan J. Huber [3] and Kari Rummukainen [2]

INT-15-2c Week 3, 20 August 2015

3. University of Sussex, United Kingdom

^{1.} University of Stavanger, Norway

^{2.} Helsinki Institute of Physics and University of Helsinki, Finland

Invitation

- We are hosting the second eLISA Cosmology Working Group workshop in Stavanger, 22-25 September
- Topics include first order phase transitions and GWs, so if you want to get involved this is an excellent opportunity to join in
- ... maybe see some of you there?
- We're also hosting SEWM 2016, so even if GWs aren't your thing, perhaps we'll see you in Norway soon...?

Motivation and context

- GWs are a unique and promising test of high energy physics (advanced LIGO and VIRGO restarting; KAGRA; eLISA scheduled for 2034)
- Sources of GWs in the early universe include inflation, defects and bubble collisions at first order PTs
- Standard Model EW PT is a crossover, but first order common in extensions (singlet, 2HDM, etc.)

Andersen, Laine *et al.*, Kozaczuk *et al.*, Kamada and Yamada, Carena *et al.*, Bödeker *et al.*...

- A first-order phase transition around the EW scale *could* give the right conditions for baryogenesis
- What physics can we extract from the GW power spectrum at EW scales?

First order phase transitions

Very familiar:

Water melting

Water boiling

Envelope approximation

Kosowsky, Turner and Watkins; Kamionkowski, Kamionkowsky and Turner

- Thin-walled bubbles, no fluid
- Bubbles expand with velocity $v_{\rm w}$
- Stress-energy tensor $\propto R^3$ on wall
- Overlapping bubbles \rightarrow GWs
- Keep track of solid angle
- Collided portions of bubbles source gravitational waves
- Resulting power spectrum is simple
 - One scale (R_*)
 - Two power laws (k^3, k^{-1})
 - Amplitude
 - \Rightarrow 4 numbers define spectral form

The envelope approximation makes predictions Espinosa, Konstandin, No and Servant; Huber and Konstandin

4-5 numbers parametrise the transition:

- α , vacuum energy fraction
- $v_{\rm w}$, bubble wall speed
- κ , conversion efficiency to fluid KE
- Transition rate:
 - H_* , Hubble rate at transition
 - β , bubble nucleation rate

From Konstandin and Huber

Energy in GWs ($\Omega_{\rm GW} = \rho_{\rm GW} / \rho_{\rm Tot}$):

$$\Omega_{\rm GW}^{\rm envelope} \approx \frac{0.11 v_{\rm w}^3}{0.42 + v_{\rm w}^2} \left(\frac{H_*}{\beta}\right)^2 \frac{\kappa^2 \alpha^2}{(\alpha + 1)^2}$$

The envelope approximation makes predictions...but are they too conservative?

From Konstandin and Huber

The shock waves set up by the expanding Higgs field are neglected: need to model the light fields as a relativisic plasma. Does this change things?

- Scalar ϕ + ideal fluid u^{μ}
 - Split stress-energy tensor $T^{\mu\nu}$ into field and fluid bits Ignatius, Kajantie, Kurki-Suonio and Laine

$$\partial_{\mu}T^{\mu\nu} = \partial_{\mu}(T^{\mu\nu}_{\text{field}} + T^{\mu\nu}_{\text{fluid}}) = 0$$

- Parameter η sets the scale of friction due to plasma $\partial_{\mu}T^{\mu\nu}_{\text{field}} = \eta u^{\mu}\partial_{\mu}\phi\partial^{\nu}\phi \qquad \partial_{\mu}T^{\mu\nu}_{\text{fluid}} = -\eta u^{\mu}\partial_{\mu}\phi\partial^{\nu}\phi$
- Effective potential $V(\phi, T)$ can be kept simple

$$V(\phi, T) = \frac{1}{2}\gamma(T^2 - T_0^2)\phi^2 - \frac{1}{3}AT\phi^3 + \frac{1}{4}\lambda\phi^4$$

- γ , T_0 , A, λ chosen to match scenario of interest
- Equations of motion (+ continuity equation)

$$\partial_{\mu}\partial^{\mu}\phi + \frac{\partial V(\phi,T)}{\partial\phi} = -\eta u^{\mu}\partial_{\mu}\phi$$
$$\partial_{\mu}\left\{ \left[\epsilon + p\right] u^{\mu}u^{\nu} - g^{\mu\nu}\left[p - V(\phi,T)\right] \right\} = \left(\eta u^{\mu}\partial_{\mu}\phi + \frac{\partial V(\phi,T)}{\partial\phi}\right)\partial^{\nu}\phi$$

The η parameter

• The value of η sets the velocity of bubble wall $v_{\rm w}$ Kurki-Suonio and Laine

- Distinguish between:
 - Detonations ($v_{\rm w} > c_{\rm s}$, rarefaction wave behind wall)
 - Jouguet case ($v_{\rm w} \approx c_{\rm s}$, subsonic compared to fluid in front; supersonic compared to fluid behind)
 - Deflagrations ($v_{\rm w} < c_{\rm s}$, shock front leads wall)

Velocity profile development - detonation [optional movie]

Here, $\eta = 0.1$ (detonation)

Velocity profile development - deflagration [optional movie]

Here, $\eta = 0.2$ (deflagration)

• Weak field approximation

$$g_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu}$$

• after some algebra, and assuming a harmonic coordinate system, we get

$$\ddot{h}_{ij} - \nabla^2 h_{ij} = 16\pi G T_{ij}^{\mathrm{TT}}$$

• Consider only terms at lowest order in the perturbation h_{ij}

$$T_{ij}^{\rm f} = W^2(\epsilon + p)V_iV_j \qquad T_{ij}^{\phi} = \partial_i\phi\partial_j\phi$$

- these are our two sources (fluid and field).

• As we have seen, metric perturbations evolve as

$$\ddot{h}_{ij} - \nabla^2 h_{ij} = 16\pi G T_{ij}^{\rm TT}$$

with transverse-traceless (TT) projection in momentum space,

$$T_{ij}^{\mathrm{TT}}(\mathbf{k}) = \Lambda_{ij,lm}(\hat{\mathbf{k}})T_{lm}(\mathbf{k})$$

- costly! Lots of FFTs...

• Fortunately, can use Garcia-Bellido and Figueroa; Easther, Giblin and Lim

$$\ddot{u}_{ij} - \nabla^2 u_{ij} = 16\pi T_{ij}^{\text{Traceless}}$$

and project $h_{ij}(k) = \Lambda_{ij,lm}(k)u_{ij}(k)$ later

• Power $\rho_{\rm GW} = T_{00}^{\rm grav}$ per logarithmic interval,

$$\frac{d\rho_{\mathsf{GW}}}{d\ln k} = \frac{1}{32\pi GV} \frac{k^3}{(2\pi)^3} \int d\Omega \ \Lambda_{ij,lm}(\hat{\mathbf{k}}) \dot{u}_{ij}(t,\mathbf{k}) \dot{u}_{lm}^*(t,\mathbf{k})$$

Dynamic range issues

- Most realtime lattice simulations in the early universe have a single [nontrivial] length scale
- Here, many length scales important

• Simulations in arXiv:1504.03291 are with 2400^3 lattice, $\delta x = 2/T_c$ \rightarrow approx 200k CPU hours each (\sim 3M total)

Simulation slice example [optional movie]

Simulations at 1024^3 , deflagration, fluid kinetic energy density, \sim 250 bubbles

How the sources behave over time

- $\overline{U}_{\rm f}$ is the rms fluid velocity; \overline{U}_{ϕ} the analogous field quantity
- Constructed from T_{ii}^{f} and T_{ii}^{ϕ} , they indicate how strong each source is

$$(\bar{\epsilon} + \bar{p})\overline{U}_{\mathrm{f}}^{2} = \frac{1}{V} \int d^{3}x \underbrace{W^{2}(\epsilon + p)}_{(T_{ii}^{\mathrm{f}})^{2}} \qquad (\bar{\epsilon} + \bar{p})\overline{U}_{\phi}^{2} = \frac{1}{V} \int d^{3}x \underbrace{(\partial_{i}\phi)^{2}}_{(T_{ii}^{\phi})^{2}}$$

Define the fluid integral scale

$$\xi_{\rm f} = \frac{1}{\langle V^2 \rangle} \int \frac{d^3k}{(2\pi)^3} |k|^{-1} P_V(k)$$

and the analogous quantity ξ_{GW} for the gravitational wave power spectrum.

This length scale is what sets the peak of the fluid power spectrum.

Acoustic waves source linear growth of gravitational waves

• Sourced by T_{ij}^{f} only (T_{ij}^{ϕ} source is small constant shift)

• Source generically scales as $\rho_{\rm GW} \propto t [G\xi_{\rm f}(\bar{\epsilon}+\bar{p})^2 \overline{U}_f^4]$

- Does the acoustic source matter?
 - Sound is damped by (bulk and) shear viscosity Arnold, Dogan and Moore; Arnold, Moore and Yaffe

$$\left(\frac{4}{3}\eta_{\rm s}+\zeta\right)\nabla^2 V^i_{\parallel}+\ldots \Rightarrow \tau_\eta(R)\sim \frac{R^2\epsilon}{\eta_{\rm s}}$$

• Compared to $\tau_{H_*} \sim H_*^{-1}$, on length scales

$$R^2 \gg \frac{1}{H_*} \frac{\eta_{\rm s}}{\epsilon} \sim 10^{-11} \frac{v_{\rm w}}{H_*} \left(\frac{T_{\rm c}}{100 \,{\rm GeV}}\right)$$

the Hubble damping is faster than shear viscosity damping.

- Does the acoustic source enhance GWs?
 - Yes, we have

$$\Omega_{\rm GW} \approx \left(\frac{\kappa\alpha}{\alpha+1}\right)^2 (H_*\tau_{H_*})(H_*\xi_{\rm f}) \Rightarrow \frac{\Omega_{\rm GW}}{\Omega_{GW}^{\rm envelope}} \gtrsim 60 \frac{\beta}{H_*}$$

Velocity power spectra and power laws

- Weak transition: $\alpha_{T_N} = 0.01$, $v_w = 0.44$
- Power law behaviour above peak is k^{-1} , approximately
- "Ringing" due to simultaneous bubble nucleation, not physically important
- Power is in the longitudinal modes acoustic waves, not turbulence
- If we know $dV^2/d\ln k$, can work out $\dot{\rho}_{\rm GW}/d\ln k$...?

• Sourced by T_{ij}^{f} only

- Approximate k^{-3} power spectrum
- Finite size of box means that we choose not to probe behaviour below peak \boldsymbol{k}

GW power spectra – field and fluid sources

- By late times, fluid source dominates at all length scales
- $500/T_c$, $1000/T_c$, $1500/T_c$ ('before', 'during', 'after' collision)
- Fluid source shown by dashed lines, total power solid lines

Transverse versus longitudinal modes – turbulence?

- Most power is in the longitudinal modes acoustic waves, not turbulence
- System is quite linear. Reynolds number is ~ 100 .

Going from the profile to fluid power to GW power

Going from a fluid power spectrum to the GW power spectrum is easy:

where the dashed curve is obtained by performing a numerical convolution of the fluid power spectrum.

- Today
 - New source of GWs: sound waves from colliding bubble droplets
 - Rate of GW energy production is **generically** $\rho_{\rm GW} \propto t [G\xi_{\rm f}(\bar{\epsilon}+\bar{p})^2 \overline{U}_f^4]$
 - $O(10^2)$ enhancement over envelope approximation at EW scale \rightarrow good news for models that do not produce strongly first-order PTs
 - Power laws different from envelope approximation
 - Still four parameters power spectrum remains simple to parametrise
 - Need larger simulations 18M CPU hours awarded by PRACE
- Soon
 - Instabilities Megevand, Membiela and Sanchez
 - Turbulence
 - Strong transitions ($\alpha_{T_{\rm N}} \sim 1$)
 - 'Inverse acoustic cascade' Kalaydzhyan, Shuryak
 - Runaway transitions
- Building a science case for eLISA
- Implications for DECIGO, BBO