

Numerical simulations of acoustically generated gravitational waves

PRL 112, 041301 (2014) [arXiv:1304.2433] arXiv:1504.03291

David J. Weir [1],

with Mark Hindmarsh [2,3], Stephan J. Huber [3] and Kari Rummukainen [2]

INT-15-2c Week 3, 20 August 2015

- 2. Helsinki Institute of Physics and University of Helsinki, Finland
- 3. University of Sussex, United Kingdom

^{1.} University of Stavanger, Norway

Invitation

- • We are hosting the second eLISA Cosmology Working Group workshop inStavanger, 22-25 September
- \bullet Topics include first order phase transitions and GWs, so if you want to get involved this is an excellent opportunity to join in
- •. . . maybe see some of you there?
- We're also hosting SEWM 2016, so even if GWs aren't your thing, perhaps \bullet we'll see you in Norway soon. . . ?

Motivation and context

- \bullet GWs are ^a unique and promising test of high energy physics (advanced LIGO and VIRGOrestarting; KAGRA; eLISA scheduled for 2034)
- • Sources of GWs in the early universe include inflation, defects and bubble collisions at first order PTs
- • Standard Model EW PT is ^a crossover, but first order common in extensions (singlet, 2HDM, etc.)

Andersen, Laine *et al.*, Kozaczuk *et al.*, Kamada and Yamada, Carena *et al.*, Bodeker ¨ *et al.*. . .

- \bullet ^A first-order phase transition around the EWfor scale *could* give the right conditions for baryogenesis
- \bullet What physics can we extract from the GW power spectrum at EW scales?

First order phase transitions

Very familiar:

Water melting

Water boiling

Envelope approximation

Kosowsky, Turner and Watkins; Kamionkowski, Kamionkowsky and Turner

- •Thin-walled bubbles, no fluid
- \bullet Bubbles expand with velocity v_w
- \bullet • Stress-energy tensor $\propto R^3$ on wall
- •• Overlapping bubbles \rightarrow GWs
- \bullet Keep track of solid angle
- \bullet Collided portions of bubbles sourcegravitational waves
- • Resulting power spectrum is simple
	- •One scale (R_*)
	- •Two power laws (k^3, k^{-1})
	- •Amplitude
	- ⇒

The envelope approximation makes predictionsEspinosa, Konstandin, No and Servant; Huber and Konstandin

4-5 numbers parametrise the transition:

- • α , vacuum energy fraction
- \bullet $v_{\rm w}$, bubble wall speed
- κ , conversion efficiency to fluid KE \bullet
- \bullet Transition rate:
	- • H_\ast , Hubble rate at transition
	- β , bubble nucleation rate •

From Konstandin and Huber

Energy in GWs ($\Omega_{\rm GW}=$ $\rho_{\rm GW}/\rho_{\rm Tot})$:

$$
\Omega_{\rm GW}^{\rm envelope} \approx \frac{0.11 v_{\rm w}^3}{0.42 + v_{\rm w}^2} \left(\frac{H_*}{\beta}\right)^2 \frac{\kappa^2 \alpha^2}{(\alpha + 1)^2}
$$

The envelope approximation makes predictions. . . but are they tooconservative?

From Konstandin and Huber

The shock waves set up by the expanding Higgs field are neglected: need to model the light fields as ^a relativisic plasma. Does this change things?

- \bullet • Scalar ϕ + ideal fluid u^μ
	- Split stress-energy tensor $T^{\mu\nu}$ into field and fluid bits Ignatius, Kajantie, Kurki-Suonio and Laine

$$
\partial_{\mu}T^{\mu\nu} = \partial_{\mu}(T^{\mu\nu}_{\text{field}} + T^{\mu\nu}_{\text{fluid}}) = 0
$$

- •• Parameter η sets the scale of friction due to plasma $\partial_\mu T^{\mu\nu}_{\sf field}$ $=\eta u^\mu \partial_\mu \phi \partial^\nu \phi \qquad \partial_\mu T^{\mu\nu}_{\text{fluid}}$ $=-\eta u^\mu\partial_\mu\phi\partial^\nu$ $^\nu\phi$
- \bullet • Effective potential $V(\phi,T)$ can be kept simple

$$
V(\phi,T)=\tfrac{1}{2}\gamma(T^2-T_0^2)\phi^2-\tfrac{1}{3}AT\phi^3+\tfrac{1}{4}\lambda\phi^4
$$

- $\bullet \quad \gamma, \, T_0, \, A, \, \lambda$ chosen to match scenario of interest
- •Equations of motion (+ continuity equation)

$$
\partial_{\mu}\partial^{\mu}\phi + \frac{\partial V(\phi,T)}{\partial \phi} = -\eta u^{\mu}\partial_{\mu}\phi
$$

$$
\partial_{\mu}\left\{ \left[\epsilon + p\right]u^{\mu}u^{\nu} - g^{\mu\nu}\left[p - V(\phi,T)\right] \right\} = \left(\eta u^{\mu}\partial_{\mu}\phi + \frac{\partial V(\phi,T)}{\partial \phi}\right)\partial^{\nu}\phi
$$

The ^η **parameter**

• \bullet The value of η sets the velocity of bubble wall v_{w} Kurki-Suonio and Laine

- • Distinguish between:
	- •• Detonations ($v_{\rm w} > c_{\rm s}$, rarefaction wave behind wall)
	- \bullet • Jouguet case $(v_w ≈ c_s$, subsonic compared to fluid in front; supersonic compared to fluid behind)
	- • \bullet Deflagrations ($v_{\rm w} < c_{\rm s}$, shock front leads wall)

Velocity profile development - detonation [optional movie]

Velocity profile development - deflagration [optional movie]

Here, $\eta=0.2$ (deflagration)

 \bullet Weak field approximation

$$
g_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu}
$$

 \bullet after some algebra, and assuming ^a harmonic coordinate system, we get

$$
\ddot{h}_{ij} - \nabla^2 h_{ij} = 16\pi G T_{ij}^{\text{TT}}
$$

 \bullet Consider only terms at lowest order in theperturbation h_{ij}

$$
T_{ij}^{\mathbf{f}} = W^2(\epsilon + p)V_iV_j \qquad T_{ij}^{\phi} = \partial_i \phi \partial_j \phi
$$

these are our two sources (fluid and field).

 \bullet As we have seen, metric perturbations evolve as

$$
\ddot{h}_{ij} - \nabla^2 h_{ij} = 16\pi G T_{ij}^{\text{TT}}
$$

with transverse-traceless (TT) projection in momentum space,

$$
T_{ij}^{\mathrm{TT}}(\mathbf{k}) = \Lambda_{ij,lm}(\hat{\mathbf{k}})T_{lm}(\mathbf{k})
$$

costly! Lots of FFTs. . .

 \bullet Fortunately, can use Garcia-Bellido and Figueroa; Easther, Giblin and Lim

$$
\ddot{u}_{ij} - \nabla^2 u_{ij} = 16\pi T_{ij}^{\text{Traceless}}
$$

and project $h_{ij}(k) = \Lambda_{ij,lm}(k) u_{ij}(k)$ later

• Power $\rho_{\textsf{GW}}=T_{00}^{\textsf{grav}}$ per logarithmic \bullet T_{00}^{grav} per logarithmic interval,

$$
\frac{d\rho_{\text{GW}}}{d\ln k} = \frac{1}{32\pi G V} \frac{k^3}{(2\pi)^3} \int d\Omega \ \Lambda_{ij,lm}(\hat{\mathbf{k}}) \dot{u}_{ij}(t,\mathbf{k}) \dot{u}_{lm}^*(t,\mathbf{k})
$$

Dynamic range issues

- • Most realtime lattice simulations in the early universe have ^a single[nontrivial] length scale
- Here, many length scales important \bullet

 \bullet Simulations in arXiv:1504.03291 are with 2400^3 lattice, $\delta x = 2/T_{\rm c}$ \rightarrow approx 200k CPU hours each (\sim 3M total)

Simulation slice example [optional movie]

Simulations at 1024^3 , deflagration, fluid kinetic energy density, \sim 250 bubbles

How the sources behave over time

- • ${{U}_{\mathrm{f}}}$ is the rms fluid velocity; ${{U}_{\phi}}$ the analogous field quantity
- •• Constructed from T^{f}_{ii} and T^{ϕ}_{ii} , they indicate how strong each source is

$$
(\bar{\epsilon} + \bar{p})\overline{U}_{f}^{2} = \frac{1}{V} \int d^{3}x \, W^{2}(\epsilon + p) \qquad (\bar{\epsilon} + \bar{p})\overline{U}_{\phi}^{2} = \frac{1}{V} \int d^{3}x \, (\partial_{i}\phi)^{2} \overline{(T_{ii}^{\phi})^{2}}
$$

Define the fluid integral scale

$$
\xi_{\rm f} = \frac{1}{\langle V^2 \rangle} \int \frac{d^3k}{(2\pi)^3} |k|^{-1} P_V(k)
$$

and the analogous quantity ξ_GW for the gravitational wave power spectrum.

This length scale is what sets the peak of the fluid power spectrum.

Acoustic waves source linear growth of gravitational waves

 \bullet • Sourced by T^{f}_{ij} only (T^{ϕ}_{ij} source is small constant shift)

•• Source generically scales as $\rho_{\rm GW}\propto t[G\xi_{\rm f}(\bar\epsilon+\bar p)^2]$ 2U 4 f]
]

- \bullet Does the acoustic source matter?
	- \bullet Sound is damped by (bulk and) shear viscosity Arnold, Dogan and Moore; Arnold, Moore and Yaffe

$$
\left(\frac{4}{3}\eta_{s} + \zeta\right)\nabla^{2}V_{\parallel}^{i} + \ldots \Rightarrow \tau_{\eta}(R) \sim \frac{R^{2}\epsilon}{\eta_{s}}
$$

 \bullet • Compared to $\tau_{H_*}\sim H_*^{-1}$ ∗ $\frac{1}{2}$, on length scales

$$
R^2 \gg \frac{1}{H_*} \frac{\eta_s}{\epsilon} \sim 10^{-11} \frac{v_{\rm w}}{H_*} \left(\frac{T_{\rm c}}{100 \,\text{GeV}}\right)
$$

the Hubble damping is faster than shear viscosity damping.

- • Does the acoustic source enhance GWs?
	- \bullet Yes, we have

$$
\Omega_{\rm GW} \approx \left(\frac{\kappa \alpha}{\alpha + 1}\right)^2 (H_* \tau_{H_*}) (H_* \xi_{\rm f}) \Rightarrow \frac{\Omega_{\rm GW}}{\Omega_{GW}^{\rm envelope}} \gtrsim 60 \frac{\beta}{H_*}.
$$

Velocity power spectra and power laws

- \bullet • Weak transition: $\alpha_{T_{\rm N}} = 0.01, v$ w $_{\rm w} = 0.44$
- Power law behaviour above peak is k^{-1} , approximately •
- "Ringing" due to simultaneous bubble nucleation, not physically important •
- \bullet Power is in the longitudinal modes – acoustic waves, not turbulence
- \bullet • If we know ${\rm d}V^2$ $/\mathrm{d} \ln k$, can work out $\dot{\rho}_\mathrm{GW}/\mathrm{d} \ln k\dots$?

•• Sourced by $T^{\rm f}_{ij}$ only

- •● Approximate k^{-3} power spectrum
- Finite size of box means that we choose not to probe behaviour below \bullet peak k

GW power spectra – field and fluid sources

- \bullet By late times, fluid source dominates at all length scales
- \bullet $500/T_c$, $1000/T_c$, $1500/T_c$ ('before', 'during', 'after' collision)
- •Fluid source shown by dashed lines, total power solid lines

Transverse versus longitudinal modes – turbulence?

- \bullet Most power is in the longitudinal modes – acoustic waves, not turbulence
- \bullet ● System is quite linear. Reynolds number is ~ 100 .

Going from the profile to fluid power to GW power

Going from ^a fluid power spectrum to the GW power spectrum is easy:

where the dashed curve is obtained by performing ^a numerical convolution of the fluid power spectrum.

- \bullet **Today**
	- •New source of GWs: sound waves from colliding bubble droplets
	- \bullet **•** Rate of GW energy production is **generically** $\rho_{\rm GW}$ $\frac{1}{N} \propto t [G \xi_f (\bar{\epsilon} + \bar{p})^2 \overline{U}_f^4]$
	- • $O(10^2)$ enhancement over envelope approximation at EW scale \rightarrow good news for models that do not produce strongly first-order PTs
Power laws different from envelope approximation
	- •Power laws different from envelope approximation
	- Still four parameters power spectrum remains simple to parametrise•
	- •Need larger simulations – 18M CPU hours awarded by PRACE
- • Soon
	- \bullet Instabilities Megevand, Membiela and Sanchez
	- •**Turbulence**
	- Strong transitions $(\alpha_{T_N} \sim 1)$ •
	- •'Inverse acoustic cascade' Kalaydzhyan, Shuryak
	- •Runaway transitions
- \bullet Building ^a science case for eLISA
- •Implications for DECIGO, BBO