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NMOTIVATION

Hydrodynamics is a very universal effective field theory used
to describe heavy-ion collisions and condensed matter
systems

Inclusion of anomalies of discrete symmetries

Applications to quark-gluon plasma, non-equilibrium
modelling of chiral phenomena

Classical manifestations anomalies
Anomalies in turbulence

Relation between partition functions and entropy current
constraints



COINCIDENCES

Analogies between turbulence and quantum field theory

Turbulence QFT
Strong coupling high-Re Navier-Stokes QCD at low energies
Exactly soluble Burgers Model Schwinger Model
Numerics  Integration of Navier-Stokes Lattice gauge simulations
Large N Kraichnan DIA 't Hooft planar limit
Heuristics Vortex-stretching Flux tubes
Non-equilibrium Energy cascade Out-of-equilibrium QGP
Anomalies Dissipation anomaly Chiral anomalies

Sociology Navier-Stokes regularity Yang-Mills mass gap



VORTEX-STRECHING

In the long-wavelength, non-relativistic limit the fluid equations are:

Ju+@-vVyu=—-Vp+vAu, V. .u=0.

Experiments suggest that energy dissipation
e = v|Vul?
does not vanish in the limit of vanishing viscosity, for a variety, of

turbulent flows. This fact was a basic assumption in the 1941 theory of
turbulence due to A. Kolmogorov.

Onsager noticed that if we divide the above
equation by viscosity and take the zero-viscosity
limit the velocity becomes non-differentiable.

We can also rewrite the RHS of the energy
dissipation as proportional to enstrophy. Thus
turbulence is a mechanism of enstrophy

source University of Miinster,

generation, which is know as vortex-streching. Institut for Physics



CFFECTIVE EQUATIONS

Consider a locally space-averaged velocity

U (x) = f d4r G, (r)u(x +r)

where Gy(r) = £ ¢G(r/¢) is an averaging kernel that is non-
negative, smooth and rapidly decaying.

We can averege out the Navier-Stokes equations
ooug +V - [wpwy +17¢]=-Vp,+vAuw, V. .u=0

where we introduced subscale stress-tensor

=R u, —u ®uy
This is analogous to the Wilson-Kadanoff RG approach. The viscous

term can be show to be irrelevant in terms of RG analysis. This results
in a simplification in the inertial range of scales

hug +V - lwyuy +1¢]=—-Vp,, V. .uy=0



DISSIPATIVE ANOMALY

The effective equations are equivalent to the ones obtained by coarse-
graining procedure of incompressible Euler equations. However, the
equations are not well-defined for the singular velocity fields and only
meaningful in a sense of distributions.

As realized by Onsager, the Euler equations in this generalized sense
do not guarantee the conservation of energy. It can be shown that the
generalized energy balance equation has the form

s (Lup) iv 12—|—>}——D()
t<§|u|)-|- |:(§|u| plua| = u,

where D(u) is a non-vanishing distribution (Duchon, Robert)

1
Dw = lim - [ ar (VG) @ - [Sumlsu®l]. sutrix) = utx+1) - ucw

This is called a dissipative anomaly. Polyakov pointed out that the
non-conservation of the symmetries of Euler equation is analogous to
the anomalous non-conservation of symmetries in QFT.



KIHOKHLOV SAW-TOOTH

Let us consider the so-called Burgers equation. It is a 1d model, in
which we can se the dissipative anomaly.

Ot + 10, u = Vf)’:%u.

This equation has a simple solution known as Khokhlov saw-tooth.

w(x,t) = t[z — Ltanh(3%)].

Plot of the velocity profile at L=7 and time t=°
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NUCLEUS-NUCLEUS COLLISION

Relativistic ions create Chiral vortical effect
a strong magnetic field: JH = Ew”
Z
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PARITY-ODD HYDRO

Relativistic fluid with one conserved charge described by conservation
laws

8,T* =0
B, J" =0

plus equations that express T""and J" in terms of local temperature I,
chemical potential 4, and fluid velocity A

T = (e + P)utu” + Pg"” + 7+
JH = nut + ¥

The definition of velocity is ambiguous beyond leading order. We fix it
by imposing (Landau frame)

iz
Uy, T = ()



VORTICITY

1

O (su“ = %V“> = —0, (T) vH — T(‘? U5

The left hand side is then interpreted as the divergence of the entropy
current 0,J5. When the current is chiral, or when the fundamental
theory does not preserve parity, it is possible to construct one
additional Lorentz structure that may appear in the current /.

1
o= 56“”0‘515,/8@1%
The new term is consistent with Lorentz symmetry, but its divergence
1S NOW: 10
Jlt o Ll o, (T) wh

One has to revisit the entropy current argument

Jr = L DU

S



HYDRODYNAMICS WITH ANOMALIES

8, T = F"\j
0,7 = Cop i BPE,

There are only two new terms consistent with symmetry that can be
added to the entropy current
JI' = sut’ — %V“ + Dw" + DgB*

Requiring that contributions with undetermined signs cancel on both

side we find &= u/T

1 1
D(ﬂ) C i gCanomﬂ3§ Dp (ﬂ) =5 §Canomﬂ2

We have new transport coefficients (vortical and magnetic conductivities)
up to an integration constant
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GRAVITATIONAL ANOMALIES

In the previous calculation we had two integration constants
which we cannot constrain by hydrodynamic reasoning.
However, we can calculate them using linear response theory in
weakly coupled field theory. It turns out these constants emerge
as a consequence of gravitational anomalies

T

fM = lim eigk |w:0

]
e hm Zewk <JMJ°7 > |w:0

In the case of vortical conduct1v1ty we get T2 correction

1 T2
6w = o 3T (7 +37°)
f=1




IKINETIC THEORY

Kinetic theory treats the evolution of the one-particle distribution
function, which can be associated with the number of on-shell particles
per unit phase space
ey

= d3pd3x
If collisions between particles can be neglected and there is no Berry
phase effects, the evolution of f(P.7:t) follows from Liouville’s theorem

Given this interpretation the particle number density should be
proportional to

/ d°pf (P, Z;t)

Summing instead with a weight of particle energy, one expects a result
proportional to the product of number density and energy, or energy
density, which is a part of the energy-momentum tensor.



HYDRO < KINETIC THEORY

We can derive hydrodynamic quantities from kinetic theory e.g.

4
TH = / (gwl)?gp“p”é(p“pu —m?)20(p°) f (p, x)

If we take the distribution function in equilibrium we recover energy-
momentum tensor of a perfect fluid. One can derive the correspondence
between kinetic theory out of equilibrium and viscous hydrodynamics by
considering small departures from equilibrium where

T

This procedure allows one to study dissipative effects (first order in the
derivatives of fields). Performing the integral one gets perfect fluid
contribution plus shear tensor

0, 0) = fou (T2 ) L+ 876", %)

v 14 d4p 1Y 174 |V
T =T + / (Qﬁ)gp“p feadf = Ty + 7




ANOMAMALOUS PART

Solving the Weyl equation we obtain

1p.x T —z’p.x]

e

Populating these states leads to anomalous correction to hydrodynamics
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GIBBS CURRENT

The above anomalous quantities can be generated from

o dE,

ganom % FJo ox Yg Xa=2U
T e ag_anom T s 8g_anom
Janom = oL ) JS,a,nom o T

Qanom 772 ganom E TJ_S,anom + Ujanom

1 _ L
where 9.=-3n [1 e (Ep_q“)} and we used Hodge duals for simplicity.

We have to evaluate one thermal integral to get

: 102 g
Yanom = —2m 21(27)2 > gl L) A
Species Species

Crucial observation : the anomalous contribution 1s completely proportional to
the U(1) anomaly coetficient " v, .¢* and the Lorentz anomaly coetficient

species
E Xa=2

species



ANOMALY POLYNOMIALS

The anomaly coefficients of a system are summarised by a polynomial in gauge
field strength and space-time curvature:

o F2 2 P, (m)
Panom(Fa 9%) = 2'(27_‘_)2 Z Xd:Qq e 4' Z Xdzz
i SPECLES SpECLES 124
Using this we can write a rule to get from the anomaly polynomial to the

anomaly induced Gibbs current

G 0 P o DOy T
Motivated by this result and Berry phase calculation we can generalise
the Gibbs current to higher dimensions introducing concept of chiral
spectral current, repeat the analysis and match to hydrodynamics

ggnom =i Z’/O dEqu'u 9q
F

n—1
Using adiabaticity 7, = Xd2:2" (qB zQpr> 4 ( - 1)
7 T S



EXAMPLES

The structure of Gibbs functionals 1n higher dimensions

. Cardy entropy
f la + first
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QCD PHASE STRUCTUKRE
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source Shanghai Jiao Tong
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Astronomy and Cosmology
(INPAC)

Usually, “the phase diagram of QCD” is drawn in the plane spanned
by the temperature T and the baryon chemical potential p. But various

additional directions, i.e., higher-dimensional versions of the phase

diagram, are of interest as well, for example chiral chemical potential.



INFORMATION GEOMETRY

The field of information geometry was developed in order to study the
phase space of statistical systems using geometry. A given statistical
ensemble is represented as a point on a Riemannian manifold. This
manifold is endowed with a metric which is precisely the Fisher-Rao
information metric. The system is characterised by a set of
thermodynamic parameters § which include inverse temperature and
generalized chemical potentials for the conserved quantities. One can
write down a Gibbs measure for this system

p(x]B) = exp ( S BiH;(z) - 1nz<5>) ,

(/

where H;(x) includes hamiltonian and conserverd currents.

We define the Fisher information matrix

()=~ (T b ey,

It is a metric and can be proven to be unique.




RICCI SCALAR

This manifold is endowed with a metric which is precisely the Fisher-
Rao information metric. In such a geometrization a scalar curvature
plays a central role and contains the information about phase
transitions.

Example: 1d Ising model in magnetic field

1
G = Naiaj{Nﬂ + In[(coshh + n)Y + (coshh — n)M],

where n = +/sinh2h +e—46.

The thermodynamic curvature reads: R =1+ n~' cosh h

The presence of this divergence may be understood by taking a
Legendre transform of the Fisher—-Rao metric, which is given by the
Hessian matrix of the entropy. One observes that the nondegeneracy
condition for this metric is precisely the concavity condition for the
entropy, and thus its breakdown, where the curvature diverges, does
indeed signal a phase transition point.



CHIRALNVORTICAL €FFECT

To make a direct connection between fluids with anomalies and
information geometry in 1 + 1 and 3 + 1 dimension it is convenient to

take fluid configurations on Rx S' and R x S°.
[t provides a natural cut-off and permits to calculate the partition

effective action exactly
212 RS ]

e [p(1 —R20,)(1 — R2Qy)
—6 Sw 27TR291 27TR2Q2
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We have two parts in the effective action. One is universal and fixed in
terms of data due to anomalies, the other is proportional to pressure,
which is specific to microscopic details. It can be fixed in holography but
we are interested in the universal part that dominates for large radius.




CRITICAL POINTS

Manifold M Critical point

MBS T. — ((2\/36_2)% ) 1/2 !

M e = ((2€25>Cm)1/2 T

M2 no critical point

M B T (5_2)1/2 - T ((SJF;;/j)éA)l/Q,u
B2 T. — ((\/ﬁ:—ﬂf)@ ) 1/2 .

MP21,822 . (chz)l/QT

MP #8802 no critical point

We obtain a set of critical points fixed in terms of anomaly coetficients.
Perhaps on could check on the lattice.



source arXiv:0804.1736
Initial Glasma sQGP Hadron Gas
Singularity
l @
z=1 :

Perfect Fluid
Quark Gluon Plasma — Hadronization

t~1 - 10 fm/c

Topological Excitations
Glasma — Density Fluctuations, Thermalization
~0.1-1fm/c

Event Horizon
Initial Singularity — Quantum Fluctuations
b T~0 - 0.1 fm/c

Initial Nuclei as CGC — Coherent, High-density Gluons



INFORMATION GEOMETRY OF GLASMA

The next step is to construct the information geometry for Color Glass
Condensate and Glasma. Proposal of Peschanski

D% = { (R R 1) — log (R} R)}

Y=Y 2 2
Zgllasm?a o2 eyl QQ/Ql
where R, = 1/Qgs(Y;) and Qg denotes saturation momentum.

Relative entropy can be used to define Fisher metric

Diapll) =% = [ du(2)n(z) log %

Dir(pllg) =~ Gy 663"

ey 0log g dlogq
che = [ dule) al) "t =t




SUMMAMARY AND GOALS

Partition functions are very useful in the analysis of
anomalies. Many questions are left unanswered

Close anologs between QFT and turbulence
Role of parity anomalies

Phase transitions from information geometry
Information geometry ot CGC and glasma

Role of magnetic field



