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Motivation

2

Use entanglement entropy to study time evolution of strongly coupled 
systems

Why use entanglement entropy?

Might show new features in the thermalization process which is not 
captured by other observables 

Relatively easy to compute via the gauge gravity duality 

Most therm. studies have quantum quenches ala Cardy and Calabrese 
in mind

 Our goal

Study the evolution of entanglement entropy in holographic models 
that are used to study heavy ion collisions



Outline
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Start with quenches and collapsing shell models 

Entanglement entropy in an anisotropic system 

 

Entanglement entropy in shock wave collisions 



Quenches
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Take QFT and prepare it in its vacuum state

Excite system by injecting energy into the system

E.g. time dependent coupling

Use  entanglement entropy to study the dynamics of the 
system

H = H0 + �(t)

Z
dx O(x)

t

lHtL

t

lHtL



Entanglement entropy
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Properties

Nonlocal quantity

Serves as an order parameter in condensed matter systems

Prop. to the degrees of freedom:

Prop. to the area of the entangling surface

Definition 

Split a system into two parts, a subsystem of interest A and the rest B
Observables in A are determined by the reduced density matrix

Von Neumann entropy of subsystem A

SEE(⇢) = �TrA(⇢A log ⇢A)

⇢A = TrB⇢

A
B

S(l) =
c

3

log

l

✏



Quench of 2 dim CFT's
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Prepare system in pure state           

at t=0 quench from 

System  evolves unitarily according to 

Cardy, Calabrese (2005)

Linear increase with time

Saturation at l/2

Can be understood in terms of quasiparticle pairs created by the 
quench

| 0i
�0 ! �

H(�)

In the case where ℓ/ϵ and t/ϵ are large this simplifies to

cn(π/2ϵ)4n∆n

(

eπℓ/2ϵ + eπt/ϵ

eπℓ/2ϵ · eπt/ϵ

)2n∆n

. (2.8)

Differentiating wrt n to get the entropy,

SA(t) ∼

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

πct

6ϵ
(t < ℓ/2) ,

πc ℓ

12ϵ
(t > ℓ/2) ,

(2.9)

that is SA(t) increases linearly until it saturates at t = ℓ/2. The sharp cusp in this asymptotic
result is rounded over a region |t − ℓ/2| ∼ ϵ.

However we see that ϵ enters in an essential way. The reason is that, in a continuum field
theory (as compared with a quantum spin model) a state like |ψ0⟩ has infinitely large mean
energy (as well as divergent energy fluctuations). In order to make sense of the result it is
necessary to filter out the high-energy components of the state. Within the path integral
approach, this is most easily enforced with a cut-off function e−ϵE. To compare with results
from a lattice spin model we should presumably take ϵ to be of the order of the lattice
spacing. The linear behavior in t for t < ℓ/2, the break at t = ℓ/2, and the saturation at
a value ∝ ℓ all agree with our exact results for the transverse Ising spin chain, in Sec. III,
although there are other differences in detail.

III. DYNAMICS OF ENTANGLEMENT ENTROPY IN THE QUANTUM ISING

CHAIN

As a complement to the general CFT calculation just presented, in this section we de-
scribe how analogous results can be found in an analytically tractable model. We consider
the Ising spin chain in a transverse magnetic field, which has a quantum phase transition
between a ferromagnetic and a (quantum) paramagnetic phase.

The model is defined by the hamiltonian

HI(h) = −
1

2

∑

j

[σx
j σ

x
j+1 + hσz

j ] , (3.1)

where σx,z
j are the Pauli matrix acting on the spin at the site j of an infinite chain. The

quantum critical point is located at h = 1 [16]. We consider the time evolution from an
initial state |ψ0⟩ that is an eigenstate of HI for a field h0 ̸= h. This experimentally means
quenching at t = 0 the magnetic field from h0 to h. We consider only the case h, h0 ≥ 1.
The generalizations to the case h, h0 < 1 and to more general spin chains, such as the XY
model [16] are straightforward and we will not consider them here.

The determination of the time-dependent state |ψ(t)⟩ = e−iHI (h)t|ψ0⟩ (and consequently
of the entanglement entropy) proceeds with the Jordan-Wigner transformation in terms of

6



Quench of the Ising model
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Quantum Ising chain in transverse magnetic field

H
I

(h) = �1

2

X

j

⇥
�x

j

�x

j+1 + h�z

j

⇤

Cardy, Calabrese (2005)
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FIG. 3. Entanglement entropy for the quench from h0 = ∞ to h = 1, for various ℓ. The dashed
lines are the leading asymptotic results for large ℓ, cf. Eq. (3.19). The inset shows the derivative
with respect to the time of S100(t).

one for t < t∗ = ℓ/2 + O(ℓ0), and a nonlinear one for t > t∗. The crossover between the
two regimes happens at t∗ ≃ ℓ/2, in agreement with the CFT prediction. Note (inset of
Fig. 3) that the derivative with respect to the time of S100(t) is practically constant for
t < 50, apart from an expected short-time non-universal behavior (that should disappear in
the limit ℓ → ∞). For t < t∗, all the Sℓ(t) fall on the same master curve, independently of
ℓ. However, the entropy does not saturate to the asymptotic value exactly at t∗, as in CFT.
In fact for large t, Sℓ(t) is a slowly increasing function, even in the limit of large ℓ.

The dashed lines in Fig. 3 are the leading asymptotic results for large ℓ as given by
Eq. (3.19). The actual asymptotic value (obtained by numerical diagonalization) is always
slightly larger than (3.19), showing that the first correction (most probably of the order
O(log ℓ)) is positive.

2. Quench from h0 > 1 to h = 1.

To understand if the disagreement between CFT and the exact result for t > t∗ can
be attributed simply to the particular initial condition (h0 = ∞) or to deeper reasons, we
consider now the case of a generic initial condition (i.e. finite h0), always evolving according
to the critical hamiltonian.

The numerical results for various h0 (at fixed ℓ = 60) are displayed in Fig. 4. Even in this

11

Quench system  at t=0 from 
infinite h to h =1 (from 
uncorrelated state to critical point)

Linear scaling of EE



The gravity story
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Correlators

Equal time two point function for operators of large conformal weight  

S
EE

=
A

ext

4G
N

Holographic entanglement entropy

In QFT with a holographic dual the entanglement entropy can be
computed from extremal surfaces in the gravity theory.

Ryu-Takayanagi proposal: SA = OA(t)
4GN

y

xi

z

@AdSd

AdSd
t = const.

geodesic
of length L(R , t)

extr. surface
of area OA(t)

AR

S. Ryu, T. Takayanagi, hep-th/0603001

Christian Ecker Numerical Holography

Entanglement entropy

The EE is conjectured to be given by the area of extremal surfaces  

hO(t, ~x)O(t, ~x0)i ⇠ e

��L



Far from equilibrium dynamics

AdS-bh

r = 1rhr = 0 rs

AdS

Thermalization from geometric probes:
Top down thermalization: High energetic modes approach equilibrium value first

Danielsson, Keski-Vakkuri, Kruczenski (1999); 
Lin, Shuryak (2008)The falling shell setup

3

“critical extremal surfaces” which lie behind the horizon
and separate extremal surfaces that reach the boundary
from those which fall into the black hole singularity. In
the large size limit, one finds that the time evolution of
entanglement entropy is controlled by these critical ex-
tremal surfaces. In this paper we give a detailed deriva-
tion of these results and provide generalizations to other
non-local observables such as equal-time correlation func-
tions and Wilson loops.

Also, with Márk Mezei [22], we generalized the free-
streaming model of [1] to higher dimensions. It turns out
that such a model also exhibits post-local-equilibration
linear growth of entanglement entropy, but that intrigu-
ingly, the rate of growth of entanglement entropy result-
ing from free-streaming particles moving at the speed of
light is less than what we find here for strongly coupled
holographic systems.

In [21], we argued that the evolution of entanglement
entropy can be captured by the picture of an entangle-
ment wave propagating inward from the boundary of
the entangled region, which we called an “entanglement
tsunami” (see also [20]). There we also suggested a pos-
sible upper bound on the rate of entanglement growth
in relativistic systems. The results of [21] and the cur-
rent paper also have potential applications for various
issues associated with black hole physics. The fact that
the growth of entanglement is controlled by some criti-
cal extremal surfaces inside the horizon of a collapsing
black hole also suggests new avenues for probing physics
beyond horizons in holography. Similar processes as we
consider here were also considered in [23] to obtain in-
sights into the “scrambling time” of a black hole. We
will elaborate more on these issues in the discussion sec-
tion.

To conclude this introduction, we note that earlier
work on quenches in higher dimensional holographic sys-
tems include [3, 4, 24, 25] (see also [12–14, 17, 26–28]).
In particular, for d = 3, a linear growth toward satu-
ration was mentioned in [24], although it appears that
the linear regime mentioned in [24] is di↵erent from that
of [21] and the current paper. Ref. [24] was also the first
to observe discontinuous saturation in various examples.
In [3, 4] non-analyticity near saturation was emphasized.
In a di↵erent gravity setup, linear growth of entangle-
ment entropy was also observed [25], whose connection
to that in [21] will be discussed in detail in the main text.
In [13] it was pointed out that the presence of a nonzero
chemical potential in the final equilibrium state tends to
slow the growth of entanglement.

II. GENERAL SETUP

In this paper we consider the evolution of various non-
local observables, including entanglement entropy, equal-
time correlation functions, and Wilson loops, after a
sharp quench of a strongly coupled gapless system with
a gravity dual. More explicitly, at t = 0 in the boundary

system we turn on a spatially uniform density of exter-
nal sources for an interval �t, creating a spatially ho-
mogeneous and isotropic excited state with nonzero en-
ergy density, which subsequently equilibrates. The pre-
cise manner (e.g. what kind of sources are turned on and
how) through which the excited state is generated and
its microscopic details will not concern us. We are inter-
ested in the macroscopic behavior of the system at large
distances and in extracting “universal” behavior in the
evolution of these observables that are insensitive to the
specific nature of final equilibrium states.

On the gravity side such a quench process is described
by a thin shell of matter starting from the boundary and
collapsing to form a black hole, which can in turn be
described by a Vaidya metric, see Fig. 1. The matter
fields making up the shell and their configuration are
determined by the sourcing process in the boundary the-
ory and are again not important for our purposes. See
e.g. [29–35] for more explicit discussions. In the classical
gravity regime we are working with, which translates to
the large N and strongly coupled limit of the boundary
theory, all of our observables are only sensitive to the
metric of the collapsing geometry.

In this section we give a detailed description of our
setup and review the vacuum and equilibrium properties
of the class of systems under consideration.

�
AdS

black hole
ho

riz
on

(v < 0)

(v > 0)

null shell (v
=

0)

b
ou

n
d
ary

(z
=

0)

t = 0

FIG. 1. Vaidya geometry: One patches pure AdS with a black
hole along an in-falling collapsing null shell located at v = 0.
We take the width of the shell to be zero which corresponds to
the �t = 0 limit of the boundary quench process. The spatial
directions along the boundary are suppressed in the figure.

A. Vaidya metric

We consider a metric of the form

ds2 =
L2

z2

��f(v, z)dv2 � 2dvdz + d~x2
�

. (2.1)

In the limit the sourcing interval �t goes to zero, the
width of the collapsing shell goes to zero and f(v, z) can

ds

2 =
1

z

2

⇥
�(1�m(v)zd)dv2 � 2dvdz + d~x

2
⇤



EE in the Vaidya space time
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Abajo-Arrastia, Apricio, Lopez 
(2010)
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Figure 8: L̃(l, t) as a function of t for l=2, .., 18, for a=1/3 (left) and a=2 (right) from bottom
to top.

in 2-dimensional CFT’s with velocity v2 = 1 [1]. The Vaidya model allows to check this

property in an equilibration process with initial long range entanglement.

It is also interesting to analyze the time evolution of the function s(t). Equation (4.18)

allows its precise numerical evaluation for any time. In Fig.9a we have plotted s(t) for

several perturbations with different time extent. Its evolution is dominated by a linear

growth with twice the slope characterizing the extensive regime (4.15) of the entanglement

entropy. The linear behavior and the approach to it are well described by

s(t) =
πc

3β

(

2t+ α e
γ−t
α

)

− s0 , (5.2)

where s0, α and γ are constants.
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Figure 9: (left) ∆L∞(t) in (4.18) for a=1/3, 1, 2, 4, and on the inset its time derivative. As in
previous figures, β=2π. (right) The dimensionless quotients αβ−1 and γβ−1 as a function of aβ−1.

The dependence of α and γ on the time extent of the perturbation has been plotted

in Fig.9b. When a!0.2β, both α and γ are independent of a, implying the same property

for the time needed to achieve the linear growth of s(t). Requiring the term in brackets on

the rhs of (5.2) to behave linearly within 1% error leads to a threshold time t̄=γ+4α. For

short perturbations we obtain

t̄ ≃ 0.85β , (5.3)

– 17 –

EE in 2-dim field theory from holography

Linear growth

saturation happens at 

t ⇠ l

2
+ a

constant shift from 
mass profile 



Stages of the time evolution
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Liu and Suh  (2013)
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1. Quadratic part: 

2.  Linear part

�SEE = ✏At2

�SEE = Aseqn vE t

Both parts 1 & 2 seem universal

The coefficient vE  characterizes how 
fast A is getting entangled  

Conjecture: Collapse to Schwarzschild black hole maximizes vE

Linear scaling comes from critical surfaces behind the EH

vE =
(⌘ � 1)

⌘�1
2

⌘⌘/2
⌘ =

2(d� 1)

d



Slower collapse
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Release shell from rest at a certain position 
in the bulk

Equations of motion follow from Einstein 
equations for different equations of state: 
p=c E

In the dual field theory this is a state that 
starts out thermal at short length scales

singularity

r =
 0

r = 0

boundary

last ray

ho
riz

on

shell

0 2 4 6 8
1

2

3

4

5

t

rs

shell trajectories for different EoS

Keranen, Nishimura, SS, 
Taanila, Vuorinen (2014)



EE in the collapsing shell setup
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EE for different equations of state p = c E

1. Quadratic part: depends on the acceleration (depends on c) 
of the shell:

2.  Linear part same as before:

0 2 4 6 8

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0.0

t

Sren 2

1

Sren = AseqvEt

Keranen, Nishimura, SS, 
Taanila, Vuorinen (2014)

SEE = AF (z0) a t
2

Linear scaling only depends on equilibrium state and originates from geometry 
behind the horizon
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Linear scaling seems quite generic in falling shell models. Also 
appears in geometries with Lifshitz scaling and hyper scaling 
violation 

Next we move on to geometries that are more relevant for heavy ion 
collisions 

 



The anisotropic geometry
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Anisotropic asymptotically AdS5 spacetime
Chessler, Yaffe (2009); Heller, Mateos, 
van der Schee, Trancanelli (2012)

ds

2 = �A(r, v)dv2 + 2drdv + ⌃2(r, v)
⇣
e

�2B(r,v)
dx

2
k + e

B(r,v)
d~x

2
?

⌘

Introduces anisotropy between long. and transverse directions 

Energy momentum tensor 

hTµ⌫i = N2
c

2⇡2
diag

�
E , Pk(t), P?(t), P?(t)

�

Create far from equilibrium state by choosing anisotropy function on the 
initial time slice

B(r, v0) =
�

r4
exp


�
⇣
1

r
� 1

r0

⌘2
/!2

�



The geometry
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System evolves towards static Schwarzschild black brane solution

Approach to equilibrium  shows exponential damped oscillations 



The geometry: late times
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Figure 4. A plot of e|Re �1|t�p/peq as well as the lowest quasinormal mode (also multiplied by a factor
of e|Re�1|t). The fit to the lowest quasinormal mode agrees with the numerics at the 1 part in 104 level
or better after time t = 10.

where the first few quasinormal mode frequencies, at zero wavevector, are given by [13]:

�
1

⇡T
= 2.746676 + 3.119452 i ,

�
2

⇡T
= 4.763570 + 5.169521 i ,

�
3

⇡T
= 6.769565 + 7.187931 i .

(4.9)

As a check on the accuracy of the numerics, in fig. 4 we plot e|Re�1|t �p/p
eq

, as well as a fit

to the lowest quasinormal mode. As is evident from the figure, the rescaled amplitude of

e|Re�1|t �p/p
eq

is constant at late times. Indeed, our fit to the lowest quasinormal mode agrees

with the numerics at the level of a part in 104, or better, after time t = 10.

In terms of physics, perhaps the most significant result one sees from fig. 3 (and from

the results of ref. [24]) is that the characteristic relaxation time is comparable or shorter than

1/T , even when the system is initially quite far from equilibrium with �p/p
eq

of O(10). The

gravitational infall time in the AdS-Schwarzschild geometry is also order 1/T . This naturally

suggests that, even far from equilibrium, one should regard the gravitational infall time as

characterizing the relaxation time of non-hydrodynamic degrees of freedom.

4.2 Colliding planar shocks

4.2.1 Motivation

Collisions of infinitely extended planar shock waves in N = 4 SYM may be viewed as instruc-

tive caricatures of collisions of large, highly Lorentz-contracted nuclei. In the dual description

of strongly coupled (and large N
c

) SYM, this becomes a problem of colliding gravitational

shock waves in asymptotically AdS
5

spacetime. In this section, we discuss the setup, prepa-

ration of initial data, and results for such planar shock collisions.

– 37 –

Quasinormal modes

At sufficiently late times: linearised regime

Approach to equilibrium accurately described by lowest QNM

QNM from spin two symmetry channel of grav. fluctuations

Response of the system

�p(t) ⇠ Re
�
c1e

�i!1t
�

!1

⇡T
= ±3.119452� 2.746676 i

Chessler, Yaffe (2013)



Correlators in the anisotropic geometry
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Calculate geodesic length in anisotropic background

Separate them in the longitudinal or transverse direction

x?

x||

ds

2
? = �Adv

2 � 2

z

2
dzdv + ⌃2

e

B
dx

2
?

To obtain geodesic length we have to solve the 
geodesic equation in the two subspaces

L? =

Z �m

��m

d�

r
�A(v0)2 � 2

z

2
z

0
v

0 + ⌃2
e

B(x0
?)

2

Lk =

Z �m

��m

d�

r
�A(v0)2 � 2

z

2
z

0
v

0 + ⌃2
e

�2B(x0
?)

2

The length is given by 

l

ds

2
k = �Adv

2 � 2

z

2
dzdv + ⌃2

e

�2B
dx

2
k

�



Numerical implementation
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Relaxation method
Start with initial guess
Iteratively relax to the true solution
Start with pure AdS solution

x±(z) = ±
r

l

2

4
� z

2
v(z) = v0 � z

Geodesics bend back in time: limits time domain 
Use non affine parametrization that covers both branches

z(�) =
l

2

�
1� �

2
�

x(�) =
l

2

�
�

p
2� �

2
�

v(�) = v0 � z(�)



Geodesics
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Profile of the geodesics

At late times geodesics approach the apparent horizon without crossing it

At early times and far from equilibrium geodesics can cross the horizon 

Figure II. The green (black) line indicates the z-position of the apparent (event) horizon; the
dark blue curve is the Poincaré patch AdS geodesic we use to initialize the simulation; red curves
are geodesics with different boundary separation probing the thermal regime (none of them crosses
the apparent horizon); the cyan curve in the left part of each plot is a geodesic which probes the
non-thermal regime and reaches beyond event and apparent horizon. Isometric view (left) and view
in x-direction (right).

Figure III. Renormalized length of geodesics for different separations in longitudinal and transverse
directions.

4.3 Holographic entanglement entropy

The extremal surface equations — which we mapped to geodesic equations in an auxiliary
spacetime — are solved again by a relaxation method. We observe the same qualitative
features as for geodesics in Fig. II above: at early times extremal surfaces can extend
beyond the apparent horizon, while at sufficiently late times they approach it from the
outside without crossing. However, there are also notable differences to geodesics, which
we discuss now.

– 11 –



Geodesic length
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To make approach to thermal equilibrium most transparent we normalise the geodesic 
length

Lren =
L� Lth

Lth

Figure II. The green (black) line indicates the z-position of the apparent (event) horizon; the
dark blue curve is the Poincaré patch AdS geodesic we use to initialize the simulation; red curves
are geodesics with different boundary separation probing the thermal regime (none of them crosses
the apparent horizon); the cyan curve in the left part of each plot is a geodesic which probes the
non-thermal regime and reaches beyond event and apparent horizon. Isometric view (left) and view
in x-direction (right).

-0.025

-0.02

-0.015

-0.01

-0.005

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.3  0.4  0.5  0.6  0.7  0.8  0.9  1  1.1  1.2

Lr
e
n

tT

Longitudinal Separation

lT=0.32
lT=0.48
lT=0.64
lT=0.80
lT=0.96

-0.025

-0.02

-0.015

-0.01

-0.005

 0

 0.005

 0.01

 0.015

 0.3  0.4  0.5  0.6  0.7  0.8  0.9  1  1.1  1.2

Lr
e
n

tT

Transverse Separation

lT=0.32
lT=0.48
lT=0.64
lT=0.80
lT=0.96

Figure III. Renormalized length of geodesics for different separations in longitudinal and transverse
directions.

4.3 Holographic entanglement entropy

The extremal surface equations — which we mapped to geodesic equations in an auxiliary
spacetime — are solved again by a relaxation method. We observe the same qualitative
features as for geodesics in Fig. II above: at early times extremal surfaces can extend
beyond the apparent horizon, while at sufficiently late times they approach it from the
outside without crossing. However, there are also notable differences to geodesics, which
we discuss now.

– 11 –

Transverse and longitudinal directions oscillate out of phase

Thermalization time increases as separation increases



Holographic entanglement entropy
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Extremize the 3-surface functional

x?

x||

A =

Z
d3�

r
det

⇣@Xµ

@�a

@X⌫

@�b
gµ⌫

⌘

In the case of  a strip entangling region with finite extend in the transverse or 
longitudinal direction the problem reduces to finding geodesics in an auxiliary 
spacetime

ds

2 = gµ⌫dx
µ
dx

⌫ = h↵�dx
↵
dx

� + �

2
1dx

2
2 + �

2
2dx

2
3

The area  functional becomes

A =

Z
dx3

Z
dx2

Z
d�

r
�

2
1�

2
2h↵�

@x

↵

@�

@x

�

@�

.

Finding extremal surfaces reduces to finding geodesics in the conformal metric

ds̃ = h̃↵�dx
↵
dx

� = �

2
1�

2
2h↵�dx

↵
dx

�



Holographic entanglement entropy
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In the case at hand the conformal metrics are

Initial guess from conformal metrics

ds

2 =
1

z

6

�
�dv

2 � 2dzdv + dx

2
�

x± = ⌥ l

2
± Lz

4

4
2F1

⇥
1
2 ,

2
3 ,

5
3 ;L

2
z

6
⇤

0.0 0.2 0.4 0.6 0.8 1.0

-0.4

-0.2

0.0

0.2

0.4

z

x

ds̃

2
? = ⌃4

e

�B
�
�Adv

2 + 2drdv + ⌃2
e

B
dx

2
?
�

ds̃

2
k = ⌃4

e

2B
�
�Adv

2 + 2drdv + ⌃2
e

�2B
dx

2
k
�
.



Holographic entanglement entropy

24

Results

Figure IV. Comparison of longitudinal and transverse geodesic lengths for the same boundary
separation.
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Figure V. Longitudinal and transverse HEE for different separations.

As can be seen from Fig. IX in appendix B.2 conformal geodesics reach much further
into the bulk compared to the pure AdS case. Therefore the boundary separations we
can study for the HEE are smaller compared to the 2-point functions. This is also the
reason why for the same boundary separation the HEE reaches equilibrium later as the
2-point functions. For the same boundary separation and at the same boundary time
conformal geodesics reach deeper into the bulk and further back in time and therefore are
more sensitive to out of equilibrium effects which are most pronounced at early times. In
addition the shape of the curves differ from the 2-point functions with the oscillations less
pronounced. We exhibit these features now in some plots.

Figure V plots HEE for different separations in logitudinal and transverse directions.
Comparison with Fig. III shows that the oscillations are less pronounced for HEE.

Figure VI plots HEE for a fixed separation in longitudinal and transverse directions.
Again the behaviour of the curves is out of phase, in the sense that maxima of one curve cor-
respond to minima of the other. Comparison with Fig. IV shows again that the oscillations
are less pronounced for HEE.

– 12 –

Similar behaviour as for the geodesics

At early times extremal surfaces can extend beyond apparent horizon

Extend much further into the bulk as geodesics



Late time behaviour

25

Results

0.5 1.0 1.5 2.0 2.5 3.0

- 0.2

- 0.1

0.0

0.1

t T

e-
tT

Im
w
1
S r
en

0.5 1.0 1.5 2.0 2.5

- 0.010

- 0.005

0.000

0.005

t T

e-
tT

Im
w
1
S r
en

Figure VII. Left: Renormalized geodesic length for longitudinal (red) and transverse (blue) sep-
aration for lT = 0.32 multiplied by the imaginary part of the lowest QNM. Right: Renormalized
HEE for the same parameters as on the left.
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Figure VIII. Left: Renormalized length of geodesics as a function of their boundary separation in
transverse directions for different fixed boundary times t = 0.5, 1, 1.5 (endpoints from left to right).
The curves terminate when the geodesics leave the computational domain. The black dashed line
shows the thermal limit. Right: HEE (blue) and geodesic length (red) in the thermal (solid) and
zero temperature (dashed) limit.

horizon one obtains a QNM dispersion relation putting a constraint on HEE. With our
numerical solution we can demonstrate that the late time behaviour of HEE indeed follows
the QNM ringdown even without imposing infalling boundary conditions. In Fig. VII (right)
we show the HEE multiplied with e

�Im[!1t]
Sren for the infinite strip with finite separation

in longitudinal and transverse direction. As for the correlation function, at late times, the
HEE shows quasinormal ringing with constant amplitude and frequency. These oscillations
show that HEE must not approach its thermal value from below but rather shows oscillatory
behaviour around its thermal value.

To conclude this section we finally study the departure of the length of the geodesics

– 14 –

Geodesic length and EE follows quasinormal ringing at late times

At early times extremal surfaces can extend beyond apparent horizon

Extend much further into the bulk as geodesics
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HIC is modelled by two  colliding sheets of energy with infinite extend in 
transverse direction and a Gaussian distribution in the long direction

Hydrodynamics applies although system is still anisotropic 

Thermalization at strong coupling
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FIG. 1: Energy density E/µ4 as a function of time v and
longitudinal coordinate z.

disjoint support. Although this is not exactly true for our
Gaussian profiles, the residual error in Einstein’s equa-
tions is negligible when the separation of the incoming
shocks is more than a few times the shock width.

To find the initial data relevant for our metric ansatz
(1), we solve (numerically) for the di↵eomorphism trans-
forming the single shock metric (8) from Fe↵erman-
Graham to Eddington-Finkelstein coordinates. In par-
ticular, we compute the anisotropy function B± for each
shock and sum the result, B = B

+

+ B�. We choose the
initial time v

0

so the incoming shocks are well separated
and the B± negligibly overlap above the apparent hori-
zon. The functions a

4

and f
2

may be found analytically,

a
4

= � 4

3

[h(v
0

+z)+h(v
0

�z)] , f
2

= h(v
0

+z)�h(v
0

�z).
(10)

A complication with this initial data is that the metric
functions A and F become very large deep in the bulk,
degrading convergence of their spectral representations.
To ameliorate the problem, we slightly modify the initial
data, subtracting from a

4

a small positive constant �.
This introduces a small background energy density in
the dual quantum theory. Increasing � causes the regions
with rapid variations in the metric to be pushed inside
the apparent horizon, out of the computational domain.

We chose a width w = 0.75/µ for our shocks. The
initial separation of the shocks is �z = 6.2/µ. We chose
� = 0.014 µ4, corresponding to a background energy den-
sity 50 times smaller than the peak energy density of the
shocks. We evolve the system for a total time equal to
the inverse of the temperature associated with the back-
ground energy density, T

bkgd

= 0.11 µ.

Results and discussion.— Figure 1 shows the energy
density E as a function of time v and longitudinal position
z. On the left, one sees two incoming shocks propagating
toward each other at the speed of light. After the colli-
sion, centered on v = 0, energy is deposited throughout
the region between the two receding energy density max-
ima. The energy density after the collision does not re-
semble the superposition of two unmodified shocks, sepa-
rating at the speed of light, plus small corrections. In par-
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FIG. 2: Energy flux S/µ4 as a function of time v and longi-
tudinal coordinate z.
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FIG. 3: Longitudinal and transverse pressure as a function
of time v, at z = 0 and z = 3/µ. Also shown for compari-
son are the pressures predicted by the viscous hydrodynamic
constitutive relations.

ticular, the two receding maxima are moving outwards at
less than the speed of light. To elaborate on this point,
Figure 2 shows a contour plot of the energy flux S for
positive v and z. The dashed curve shows the location
of the maximum of the energy flux. The inverse slope
of this curve, equal to the outward speed of the maxi-
mum, is V = 0.86 at late times. The solid line shows the
point beyond which S/µ4 < 10�4, and has slope 1. Ev-
idently, the leading disturbance from the collision moves
outwards at the speed of light, but the maxima in E and
S move significantly slower.

Figure 3 plots the transverse and longitudinal pressures
at z = 0 and z = 3/µ, as a function of time. At z = 0,
the pressures increase dramatically during the collision,
resulting in a system which is very anisotropic and far
from equilibrium. At v = �0.23/µ, where Pk has its
maximum, it is roughly 5 times larger than P?. At late
times, the pressures asymptotically approach each other.
At z = 3/µ, the outgoing maximum in the energy density
is located near v = 4/µ. There, Pk is more than 3 times
larger than P?.

The fluid/gravity correspondence [17] implies that at
su�ciently late times the evolution of Tµ⌫ will be de-
scribed by hydrodynamics. To test the validly of hydro-
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of time v, at z = 0 and z = 3/µ. Also shown for compari-
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ticular, the two receding maxima are moving outwards at
less than the speed of light. To elaborate on this point,
Figure 2 shows a contour plot of the energy flux S for
positive v and z. The dashed curve shows the location
of the maximum of the energy flux. The inverse slope
of this curve, equal to the outward speed of the maxi-
mum, is V = 0.86 at late times. The solid line shows the
point beyond which S/µ4 < 10�4, and has slope 1. Ev-
idently, the leading disturbance from the collision moves
outwards at the speed of light, but the maxima in E and
S move significantly slower.

Figure 3 plots the transverse and longitudinal pressures
at z = 0 and z = 3/µ, as a function of time. At z = 0,
the pressures increase dramatically during the collision,
resulting in a system which is very anisotropic and far
from equilibrium. At v = �0.23/µ, where Pk has its
maximum, it is roughly 5 times larger than P?. At late
times, the pressures asymptotically approach each other.
At z = 3/µ, the outgoing maximum in the energy density
is located near v = 4/µ. There, Pk is more than 3 times
larger than P?.

The fluid/gravity correspondence [17] implies that at
su�ciently late times the evolution of Tµ⌫ will be de-
scribed by hydrodynamics. To test the validly of hydro-

Lessons from gauge/gravity duality!

Thermalization time naturally short teq~1/T!

Hydrodynamization ≠ thermalization, isotropization!
!
Thermalization always top down (causal argument)

Thermalization process of strongly coupled N=4 SYM is mapped to 
black hole formation in asymptotically AdS space!
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Geodesic length
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Entanglement entropy
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Comparison with entropy density
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Entanglement entropy is a useful theoretical probe to study the time 
evolution of strongly coupled systems 

Allows one to extract information from behind the horizon

EE in collapsing shell models shows universal  linear scaling in time

In the anisotropic case EE shows oscillations around thermal value with 
QNM ringdown at late times

Preliminary results suggest that  entropy density and EE show different 
fall off behaviour 


