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Motivation

e Use entanglement entropy to study time evolution of strongly coupled
systems

Why use entanglement entropy?

e Might show new features in the thermalization process which is not
captured by other observables

e Relatively easy to compute via the gauge gravity duality

e Most therm. studies have quantum quenches ala Cardy and Calabrese
in mind
Our goal

e Study the evolution of entanglement entropy in holographic models
that are used to study heavy 1on collisions



Outline

e Start with quenches and collapsing shell models

¢ Entanglement entropy in an anisotropic system

¢ Entanglement entropy in shock wave collisions



Quenches

e Take QFT and prepare it in 1ts vacuum state
e Excite system by injecting energy into the system

e E.g.time dependent coupling

H = Hy+ A1) /d:v O(x)
A(t)
A(t)

/-

e Use entanglement entropy to study the dynamics of the
system



Entanglement entropy

Definition

e Split a system 1nto two parts, a subsystem of interest A and the rest B

@ Observables in A are determined by the reduced density matrix

pa = lTrpp

e Von Neumann entropy of subsystem A

See(p) = —Tra(palogpa) =) .

e Nonlocal quantity

Properties

@ Serves as an order parameter in condensed matter systems

[

e Prop. to the degrees of freedom: S(l) = g log-
€

e Prop. to the area of the entangling surface
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Quench of 2 dim CFT's

Cardy, Calabrese (2005)

Prepare system in pure state |U)
at t=0 quench from Ag — A

System evolves unitarily according to H (\)

Tct

— 2

= (t<t/2).
Sa(t) ~ ,

e

— 2

Linear increase with time
Saturation at 1/2

Can be understood in terms of quasiparticle pairs created by the
quench



Quench of the Ising model

Cardy, Calabrese (2005)

¢ Quantum Ising chain in transverse magnetic field

1
Hi __52 05071 + hoj]
J

¢ Quench system at t=0 from
infinite h to h =1 (from
uncorrelated state to critical point)

e Linear scaling of EE
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The gravity story

Correlators

e Equal time two point function for operators of large conformal weight

(O(t, D)O(t, 7)) ~ e 2L

Entanglement entropy

e The EE 1s conjectured to be given by the area of extremal surfaces

S L Aext
EE —
4G N
0AdSy
t = const.
geodesic extr. surface
of length L R t) of area Oa(t)

S. Ryu, T. Takayanagi, hep th/ 603001




Far from equilibrium dynamics

Danielsson, Keski-Vakkuri, Kruczenski (1999);

The falling shell setup Lin, Shuryak (2008)
AdS-bh
AdS 7 _ black hole
\ : / (v>0)
i z

=
|

-
x
>

s r =00

1
ds? = — [—(1 — m(v)2dv? — 2dvdz + d?
2

Thermalization from geometric probes:

e Top down thermalization: High energetic modes approach equilibrium value first



EE 1n the Vaidya space time

D
Abajo-Arrastia, Apricio, Lopez

EE in 2-dim field theory from holography (2010)

L{.p)
e Linear growth [
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Stages of the time evolution

Liu and Suh (2013)

1. Quadratic part:

ASEE :EAtz
2. Linear part
ASEE — AseqnvEt

e Both parts 1 & 2 seem universal

e The coefficient vg characterizes how
fast A 1s getting entangled

(n—1)" 2(d — 1)

VE — ’)’]77/2 =

@ Conjecture: Collapse to Schwarzschild black hole maximizes vg

e Linear scaling comes from critical surfaces behind the EH

10



Slower collapse

e Release shell from rest at a certain position
in the bulk

e Equations of motion follow from Einstein
equations for different equations of state:
p=c E

e In the dual field theory this 1s a state that
starts out thermal at short length scales
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shell trajectories for different EoS
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singularity

Arepunoq

Keranen, Nishimura, S5,
Taanila, Vuorinen (2014)



EE 1n the collapsing shell setup

EE for different equations of state p=c E

0.0;

f Keranen, Nishimura, SS,

-0.1" " Taanila, Vuorinen (2014)
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t
1. Quadratic part: depends on the acceleration (depends on ¢)

of the shell: Spr = AF(z)a 2
2. Linear part same as before:  Sren = ASeqUEt

e Linear scaling only depends on equilibrium state and originates from geometry
behind the horizon



e Linear scaling seems quite generic in falling shell models. Also
appears 1n geometries with Lifshitz scaling and hyper scaling
violation

e Next we move on to geometries that are more relevant for heavy ion
collisions



The anisotropic geometry

Chessler, Yaffe (2009); Heller, Mateos,

: . : , van der Schee, Trancanelli (2012)
Anisotropic asymptotically AdSs spacetime

ds® = —A(r,v)dv? + 2drdv + X% (r, v) (e_QB(T’”)dxﬁ + eB(r’”)dfi)

Introduces anisotropy between long. and transverse directions

Energy momentum tensor

(T9) = 5 ding (€, Py(t), PL(t), P()

T

Create far from equilibrium state by choosing anisotropy function on the
initial time slice

B(r,v) = T_iexp [_(1 _ i)z/uﬂ]

T To



The geometry
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e System evolves towards static Schwarzschild black brane solution

e Approach to equilibrium shows exponential damped oscillations
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The geometry: late times

Quasinormal modes
e At sufficiently late times: linearised regime
@ Approach to equilibrium accurately described by lowest QNM
e QNM from spin two symmetry channel of grav. fluctuations

e Response of the system
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Chessler, Yaffe (2013)



Correlators 1n the anisotropic geometry

e Calculate geodesic length in anisotropic background

e Separate them in the longitudinal or transverse direction [

e To obtain geodesic length we have to solve the
geodesic equation in the two subspaces

2 o
dsT = —Adv* — gdzdv + Y¥%ePda?
dsf = —Adv® — —dedv +3%e™ P daj
Z
e The length i1s given by
L = / da\/ — —z v+ ¥2e728 (2! )?




Numerical implementation

Relaxation method
e Start with initial guess

e Iteratively relax to the true solution

e Start with pure AdS solution

12
r4(z) =+ Z_ZQ v(z) =v9 — 2

@ Geodesics bend back 1in time: limits time domain

e Use non affine parametrization that covers both branches

z(0) = %(1 —0?) x(o) = l (V2 —0?) v(o) =vg — 2(0)

T2



Geodesics

Profile of the geodesics
e At late times geodesics approach the apparent horizon without crossing it

e At early times and far from equilibrium geodesics can cross the horizon
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Lren

Geodesic length

e To make approach to thermal equilibrium most transparent we normalise the geodesic

length
; _L—Lu
ren — L
th
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e Transverse and longitudinal directions oscillate out of phase

e Thermalization time increases as separation increases
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Holographic entanglement entropy

¢ Extremize the 3-surface functional

OXH OXY
L 3
A= / d 0\/det ( 900 Dob g“”)

e In the case of a strip entangling region with finite extend in the transverse or

longitudinal direction the problem reduces to finding geodesics in an auxiliary
spacetime

ds® = g, dr"ds” = hapdx®ds’ + ¢2dxs + ¢5das

e The area functional becomes

Oz OxP
A:/d$3/d$2/d0\/¢%¢%ha5 9o Oo .

e Finding extremal surfaces reduces to finding geodesics in the conformal metric

d3 = hogdz®dzP = $2¢2hesdr®dx”
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Holographic entanglement entropy

e In the case at hand the conformal metrics are

ds: = 246_3( — Adv® + 2drdv + ZQBBda?QL)
déﬁ = 24623( — Adv* + 2drdv + 226_23dﬂjﬁ) :

e Initial guess from conformal metrics

1 | Lz*
ds® = — (—va — 2dzdv + dw2) Ty =F- Lt —oF] [%, %, %; L226]
z

EERR
; / /




Holographic entanglement entropy

Results
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e Similar behaviour as for the geodesics
e At early times extremal surfaces can extend beyond apparent horizon

e Extend much further into the bulk as geodesics
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[.ate time behaviour
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e Geodesic length and EE follows quasinormal ringing at late times
e Atearly times extremal surfaces can extend beyond apparent horizon

e Extend much further into the bulk as geodesics
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Shock wave collisions

e HIC 1s modelled by two colliding sheets of energy with infinite extend in
transverse direction and a Gaussian distribution in the long direction

e Hydrodynamics applies although system 1is still anisotropic

0.75;

0.5

0.25;
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Shock wave collisions

Geodesic length

energy density

-10

e Linear rise and fall off before and after the collision
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Shock wave collisions

Entanglement entropy

energy density

e Linear rise before the collisions

e Power law fall off after the collision
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Fall off behaviour

Comparison with entropy density
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t
e Define effective entropy density: Serfr ~ Aan
: 1
e Entropy density: Seff ~ 5
1
¢ Entanglement entropy: Sren ™~ 2
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Conclusions

Entanglement entropy is a useful theoretical probe to study the time
evolution of strongly coupled systems

Allows one to extract information from behind the horizon
EE in collapsing shell models shows universal linear scaling in time

In the anisotropic case EE shows oscillations around thermal value with
QNM ringdown at late times

Preliminary results suggest that entropy density and EE show different
fall off behaviour
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