Stefan Stricker TU Vienna

Holographic entanglement entropy in anisotropic systems

INT, Seattle Aug 11, 2015

C. Ecker, D. Grumiller, S. Stricker 1506.02658 (JHEP); & Wilke van der Schee

Der Wissenschaftsfonds.

Motivation

Use entanglement entropy to study time evolution of strongly coupled \bullet systems

Why use entanglement entropy?

- Might show new features in the thermalization process which is not captured by other observables
- Relatively easy to compute via the gauge gravity duality
- Most therm. studies have quantum quenches ala Cardy and Calabrese \bigcirc in mind

Our goal

Study the evolution of entanglement entropy in holographic models \bigcirc that are used to study heavy ion collisions

Outline

Start with quenches and collapsing shell models \bigcirc

Entanglement entropy in an anisotropic system \bigcirc

Entanglement entropy in shock wave collisions \bigcirc

Quenches

- Take QFT and prepare it in its vacuum state \bullet
- Excite system by injecting energy into the system \bullet
- E.g. time dependent coupling \bigcirc

Use **entanglement entropy** to study the dynamics of the \bigcirc system

Entanglement entropy

Definition

- Split a system into two parts, a subsystem of interest A and the rest B
- Observables in A are determined by the reduced density matrix

$$
\rho_A=\text{Tr}_B\rho
$$

Von Neumann entropy of subsystem A \bullet

$$
S_{EE}(\rho) = -\text{Tr}_A(\rho_A \log \rho_A)
$$

Properties

- Nonlocal quantity
- Serves as an order parameter in condensed matter systems
- Prop. to the degrees of freedom:
- Prop. to the area of the entangling surface

 $S(l) = \frac{c}{3} \log \frac{l}{\epsilon}$

Quench of 2 dim CFT's

Cardy, Calabrese (2005)

- Prepare system in pure state $|\Psi_0\rangle$
- at t=0 quench from $\lambda_0 \rightarrow \lambda$ $\frac{1}{2}$ $\rightarrow \lambda$

In the case where $\overline{}$ and the case where $\overline{}$

System evolves unitarily according to $H(\lambda)$

$$
S_A(t) \sim \begin{cases} \frac{\pi ct}{6\epsilon} & (t < \ell/2), \\ \frac{\pi c \ell}{12\epsilon} & (t > \ell/2), \end{cases}
$$

- Linear increase with time t_{incomm} \blacksquare \blacks
	- \bullet Saturation at $1/2$
- **Can be understood in terms of quasiparticle pairs created by the** quench energy (as well as well as $\frac{1}{\sqrt{2}}$ the result is is in order to make sense of the result it is is in order to make sense of the result in the result is in the result in the result in the result in the result in the re \sim 5.1 σ 6.1 σ the state of the state. With-energy components of the path integral inte

Quench of the Ising model

Cardy, Calabrese (2005)

Quantum Ising chain in transverse magnetic field \bullet

$$
H_I(h) = -\frac{1}{2} \sum_j \left[\sigma_j^x \sigma_{j+1}^x + h \sigma_j^z \right]
$$

- Quench system at t=0 from \bullet infinite h to $h = 1$ (from uncorrelated state to critical point)
- Linear scaling of EE

The gravity story

Correlators

Equal time two point function for operators of large conformal weight \bigcirc

$$
\langle \mathcal{O}(t, \vec{x}) \mathcal{O}(t, \vec{x}') \rangle \sim e^{-\Delta L}
$$

Entanglement entropy

The EE is conjectured to be given by the area of extremal surfaces \bigcirc

$$
S_{EE}=\frac{A_{ext}}{4G_N}
$$

Far from equilibrium dynamics holographic systems. Ear trom equilibrium en nom oquinonum determined by the sourcing process in the sourcing process in the boundary the-boundary the-boundary the-boundary the- $\n **Vnamice**\n$ e.g. [29–35] for more explicit discussions. In the classical

the entangled region, which we called an "entanglement

The falling shell setup *Lin, Shuryak (2008)* $\sum_{i=1}^n \sum_{j=1}^n$

Danielsson, Keski-Vakkuri, Kruczenski (1999); $\overline{000}$ $I_{\rm 0}$

the large *N* and strongly coupled limit of the boundary

Thermalization from geometric probes: slow the growth of entanglement.

Top down thermalization: High energetic modes approach equilibrium value first \mathbf{I}

EE in the Vaidya space time

Stages of the time evolution

 Liu and Suh (2013)

1. Quadratic part:

$$
\Delta S_{EE} = \epsilon A t^2
$$

2. Linear part

 $\Delta S_{EE} = A s_{eqn} v_E t$

- Both parts 1 & 2 seem universal
- The coefficient v_E characterizes how fast A is getting entangled

Linear scaling comes from critical surfaces behind the EH

$$
v_E = \frac{(\eta - 1)^{\frac{\eta - 1}{2}}}{\eta^{\eta/2}} \qquad \eta = \frac{2(d - 1)}{d}
$$

Slower collapse

- Release shell from rest at a certain position \bigcirc in the bulk
- Equations of motion follow from Einstein \bigcirc equations for different equations of state: $p=c E$
- In the dual field theory this is a state that \bullet starts out thermal at short length scales

Keranen, Nishimura, SS, Taanila, Vuorinen (2014)

shell trajectories for different EoS

EE in the collapsing shell setup

EE for different equations of state p = c E

Keranen, Nishimura, SS, Taanila, Vuorinen (2014)

- 1. Quadratic part: depends on the acceleration (depends on c) of the shell: t $S_{E E} = A F(z_0) a t^2$
- 2. Linear part same as before: $S_{ren} = A s_{eq} v_E t$
- Linear scaling only depends on equilibrium state and originates from geometry \bullet behind the horizon
- Linear scaling seems quite generic in falling shell models. Also appears in geometries with Lifshitz scaling and hyper scaling violation
- Next we move on to geometries that are more relevant for heavy ion collisions

The anisotropic geometry

Chessler, Yaffe (2009); Heller, Mateos, van der Schee, Trancanelli (2012)

Anisotropic asymptotically AdS₅ spacetime \bigcirc

$$
ds^{2} = -A(r, v)dv^{2} + 2dr dv + \Sigma^{2}(r, v)\left(e^{-2B(r, v)} dx_{\parallel}^{2} + e^{B(r, v)} d\vec{x}_{\perp}^{2}\right)
$$

- Introduces anisotropy between long. and transverse directions
- Energy momentum tensor

$$
\langle T^{\mu\nu} \rangle = \frac{N_c^2}{2\pi^2} \operatorname{diag} (\mathcal{E}, P_{\parallel}(t), P_{\perp}(t), P_{\perp}(t))
$$

Create far from equilibrium state by choosing anisotropy function on the \bigcirc initial time slice

$$
B(r, v_0) = \frac{\beta}{r^4} \exp\left[-\left(\frac{1}{r} - \frac{1}{r_0}\right)^2/\omega^2\right]
$$

The geometry

- System evolves towards static Schwarzschild black brane solution \circ
- Approach to equilibrium shows exponential damped oscillations \bullet

The geometry: late times

Quasinormal modes

- At sufficiently late times: linearised regime \bigcirc
- Approach to equilibrium accurately described by lowest QNM \bigcirc
- QNM from spin two symmetry channel of grav. fluctuations \bigcirc
- Response of the system

$$
\delta p(t) \sim \text{Re}\left(c_1 e^{-i\omega_1 t}\right)
$$

$$
\frac{\omega_1}{\pi T} = \pm 3.119452 - 2.746676 i
$$

<i>Chessler, Yaffe (2013) $\overline{\mathbf{7}}$. The fit the numerical mode agrees with the numerical mode and $\overline{\mathbf{7}}$

Correlators in the anisotropic geometry

 x_{1}

l

 σ

x||

- Calculate geodesic length in anisotropic background \bullet
- Separate them in the longitudinal or transverse direction
- To obtain geodesic length we have to solve the \bigcirc geodesic equation in the two subspaces

$$
ds_{\perp}^{2} = -A dv^{2} - \frac{2}{z^{2}} dz dv + \Sigma^{2} e^{B} dx_{\perp}^{2}
$$

$$
ds_{\parallel}^{2} = -A dv^{2} - \frac{2}{z^{2}} dz dv + \Sigma^{2} e^{-2B} dx_{\parallel}^{2}
$$

The length is given by

$$
L_{\parallel} = \int_{-\sigma_m}^{\sigma_m} d\sigma \sqrt{-A(v')^2 - \frac{2}{z^2}z'v' + \Sigma^2 e^{-2B}(x'_{\perp})^2}
$$

$$
L_{\perp} = \int_{-\sigma_m}^{\sigma_m} d\sigma \sqrt{-A(v')^2 - \frac{2}{z^2}z'v' + \Sigma^2 e^{B}(x'_{\perp})^2}
$$

Numerical implementation

Relaxation method

- Start with initial guess
- Iteratively relax to the true solution \bigcirc
- Start with pure AdS solution \bigcirc

$$
x_{\pm}(z) = \pm \sqrt{\frac{l^2}{4} - z^2}
$$
 $v(z) = v_0 - z$

- Geodesics bend back in time: limits time domain \bullet
- Use non affine parametrization that covers both branches \bullet

$$
z(\sigma) = \frac{l}{2}(1 - \sigma^2) \qquad x(\sigma) = \frac{l}{2}(\sigma\sqrt{2 - \sigma^2}) \qquad v(\sigma) = v_0 - z(\sigma)
$$

Geodesics

Profile of the geodesics

- At late times geodesics approach the apparent horizon without crossing it
- At early times and far from equilibrium geodesics can cross the horizon \bigcirc

Geodesic length dedresie tengun

are geodesics with different boundary separation probing the thermal regime (none of them crosses

 \bullet To make approach to thermal equilibrium most transparent we normalise the geodesic length

- Transverse and longitudinal directions oscillate out of phase \bigcirc
- \mathbf{F} . Renormalized length of geodesics for different separations in longitudinal and transverse \mathbf{F} directions. Thermalization time increases as separation increases

Holographic entanglement entropy

Extremize the 3-surface functional

$$
\mathcal{A} = \int d^3 \sigma \sqrt{\det \left(\frac{\partial X^\mu}{\partial \sigma^a} \frac{\partial X^\nu}{\partial \sigma^b} g_{\mu\nu} \right)}
$$

In the case of a strip entangling region with finite extend in the transverse or \bullet longitudinal direction the problem reduces to finding geodesics in an auxiliary spacetime

$$
ds^2 = g_{\mu\nu}dx^{\mu}dx^{\nu} = h_{\alpha\beta}dx^{\alpha}dx^{\beta} + \phi_1^2 dx_2^2 + \phi_2^2 dx_3^2
$$

The area functional becomes

$$
\mathcal{A} = \int dx_3 \int dx_2 \int d\sigma \sqrt{\phi_1^2 \phi_2^2 h_{\alpha\beta} \frac{\partial x^{\alpha}}{\partial \sigma} \frac{\partial x^{\beta}}{\partial \sigma}}.
$$

Finding extremal surfaces reduces to finding geodesics in the conformal metric

$$
d\tilde{s} = \tilde{h}_{\alpha\beta}dx^{\alpha}dx^{\beta} = \phi_1^2 \phi_2^2 h_{\alpha\beta}dx^{\alpha}dx^{\beta}
$$

Holographic entanglement entropy

In the case at hand the conformal metrics are

$$
d\tilde{s}_{\perp}^{2} = \Sigma^{4} e^{-B} \left(-Adv^{2} + 2dr dv + \Sigma^{2} e^{B} dx_{\perp}^{2} \right)
$$

$$
d\tilde{s}_{\parallel}^{2} = \Sigma^{4} e^{2B} \left(-Adv^{2} + 2dr dv + \Sigma^{2} e^{-2B} dx_{\parallel}^{2} \right).
$$

Initial guess from conformal metrics

$$
ds^{2} = \frac{1}{z^{6}} \left(-dv^{2} - 2dzdv + dx^{2} \right)
$$

$$
x_{\pm} = \mp \frac{l}{2} \pm \frac{Lz^{4}}{4} {}_{2}F_{1} \left[\frac{1}{2}, \frac{2}{3}, \frac{5}{3}; L^{2}z^{6} \right]
$$

$$
x_{0.0}
$$

$$
x_{0.0}
$$

$$
x_{0.0}
$$

$$
x_{0.0}
$$

$$
x_{10.0}
$$

$$
x_{20.0}
$$

$$
x_{10.0}
$$

$$
x_{21}
$$

$$
x_{10.0}
$$

$$
x_{22}
$$

$$
x_{23}
$$

$$
x_{24}
$$

$$
x_{10.0}
$$

$$
x_{21}
$$

$$
x_{11}
$$

$$
x_{12}
$$

$$
x_{13}
$$

$$
x_{14}
$$

$$
x_{15}
$$

$$
x_{16}
$$

$$
x_{18}
$$

$$
x_{19}
$$

$$
x_{10}
$$

$$
x_{10}
$$

$$
x_{11}
$$

$$
x_{12}
$$

$$
x_{13}
$$

$$
x_{14}
$$

$$
x_{15}
$$

$$
x_{16}
$$

$$
x_{18}
$$

$$
x_{19}
$$

$$
x_{10}
$$

$$
x_{11}
$$

$$
x_{12}
$$

$$
x_{13}
$$

$$
x_{14}
$$

$$
x_{15}
$$

$$
x_{16}
$$

$$
x_{18}
$$

$$
x_{19}
$$

$$
x_{10}
$$

$$
x_{10}
$$

$$
x_{11}
$$

$$
x_{12}
$$

Holographic entanglement entropy Figure IV. Comparison of longitudinal and transverse geodesic lengths for the same boundary

Results

separation.

- Similar behaviour as for the geodesics \bullet Figure 10 and the governors.
- At early times extremal surfaces can extend beyond apparent horizon \bigcirc
- Extend much further into the bulk as geodesics $\ddot{}$ Δx can be seen from Fig. Into the built as geodesics reaches reach much function Δy .

Late time behaviour

- Geodesic length and EE follows quasinormal ringing at late times \bullet
- \mathcal{A} is renormalized geodesic length for longitudinal (red) and transverse (blue) sep- \mathcal{A} At early times extremal surfaces can extend beyond apparent horizon
- Extend much further into the bulk as geodesics

Shock wave collisions

- is modelled by two colliding sheets of energy with infinite extend in
were direction and a Coussian distribution in the lang direction HIC is modelled by two colliding sheets of energy with infinite extend in \bigcirc transverse direction and a Gaussian distribution in the long direction
- Hydrodynamics applies although system is still anisotropic **Fig. 119 and** *Sapples* and organ system is suit anisotropic FIG. 2: Energy flux *^S/µ*⁴ as a function of time *^v* and longi-

Shock wave collisions

Geodesic length

Linear rise and fall off before and after the collision \bullet

Shock wave collisions

Entanglement entropy

- Linear rise before the collisions \bullet
- Power law fall off after the collision \bullet

Fall off behaviour

Comparison with entropy density

Define effective entropy density: \bullet

 $s_{eff} \sim A_{ah}$

- Entropy density: \bigcirc
- Entanglement entropy: $S_{ren} \sim$ \bullet

1

1

t

 $s_{eff} \sim$

*t*2

Conclusions

- Entanglement entropy is a useful theoretical probe to study the time \bullet evolution of strongly coupled systems
- Allows one to extract information from behind the horizon
- EE in collapsing shell models shows universal linear scaling in time
- In the anisotropic case EE shows oscillations around thermal value with QNM ringdown at late times
- Preliminary results suggest that entropy density and EE show different \bigcirc fall off behaviour