Thermalization process in farfrom equilibrium systems

Soeren Schlichting Brookhaven National Lab

Based on work in collaboration with Berges, Boguslavski & Venugopalan

INT Workshop, Seattle August 2015

Initial state: Far from equilibrium

Non-equilibrium dynamics

Final state: Thermal equilibrium

What is the microscopic dynamics underlying the thermalization process?

How well can different theoretical methods describe the dynamics of thermalization?

Outline

- Theoretical methods to describe non-equilibrium dynamics at weak coupling
- Thermalization process in homogenous & isotropic systems
	- *• Similarities and differences between scalar & gauge theories* (Berges,Boguslavski,SS,Venugopalan PRD 89 (2014) 114007; JHEP 1405 (2014) 054)
	- *• Comparison between different weak-coupling methods*
- Early stages of high-energy heavy-ion collisions
	- *• Effect of momentum anisotropy & longitudinal expansion* (Berges,Boguslavski,SS,Venugopalan PRD 89 (2014) 074011 & 114007)
	- *• Universal behavior in scalar & gauge theories far from equilibrium* (Berges, Boguslavski,SS, Venugopalan PRL114 (2015) 061601; work in preparation)
- Summary & Conclusions

Theoretical methods

Classical-statistical field theory

Whenever the phase-space occupancy f(t,p) of the characteristic degrees is large, their dynamics can be accurately described in terms of classical field theory

$$
D_{\mu}F^{\mu\nu}=J^{\nu}
$$

Classical field theory can be solved numerically from first-principles using standard lattice gauge theory techniques

-> Powerful tool to study non-equilibrium dynamics in high occupancy regime $f(t,p) >> 1$.

Theoretical methods

Kinetic theory

Description of the dynamics in terms of Boltzmann equation for weakly interacting quasi-particles

> $f(t,p)$ $=C[f](t,$

Generally quasi-particles are well defined and weakly interacting as long as

- coupling constant small $(\text{as} < 1)$
- phase space occupancy is perturbative (f(t,p) << 1/αS)
- limited to description of high momentum modes $(p \gg m_D)$

-> Efficient tool for both numerical studies and analytic considerations; straightforward to account for quantum statistics

Theoretical methods

Thermalization process in homogenous & isotropic systems

- Since energy conserved during the thermalization process, the thermal equilibrium state is known
- While initially energy is carried by low momentum excitations, in thermal equilibrium energy is dominated by modes with $p\text{-}T$

Thermalization process — Yang-Mills theory

Classical-statistical simulations

• Choose initial conditions to mimic quasiparticle picture

$$
A_{\mu}^{a}(t_{0}, x) = \int \frac{d^{3}k}{(2\pi)^{3}} \sqrt{f(k, t_{0})} \times [c_{\lambda, a}^{k} \xi_{\mu}^{(\lambda)k}(t_{0}) e^{ikx} + c.c]
$$

- Evolve the system according to Hamilton's equations of motion on the lattice
- Extract time evolution of the gluon distribution from correlation functions

 $\langle \partial_t A_a^{\mu}(t,p) \rangle$ (Coulomb gauge)

-> Infrared power-law

-> Characteristic momentum scale Λ increases with time

(e.g. Kurkela, Moore PRD 86, (2012) 056008; Berges, Boguslavski,SS, Venugopalan PRD 89 (2014) 114007)

Self-similar scaling

Evolution at late times proceeds via a self-similar ultra-violet cascade -> same process repeats itself over and over again

Dynamics can be entirely described in terms of scaling exponents α*=-4/7,* β*=-1/7,* and scaling function *fS which can be* extracted from simulations

$$
f(p,t)=t^{\alpha}\left[f_{S}(t^{\beta}p)\right]
$$

Closely related to the phenomenon of wave turbulence and has been named

"turbulent thermalization"

Kinetic theory qualitative description

• Once the characteristic occupancies become $1 \lt t \lt 1$ /α the dynamics of hard excitations can also be described by kinetic theory

$$
\frac{\partial f(t, \mathbf{p})}{\partial t} = C[f](t, \mathbf{p})
$$
\nSearch for self-similar scaling solution

\n
$$
f(p, t) = t^{\alpha} f_S(t^{\beta}p)
$$

\nScaling behavior of the collision integral

\n
$$
\frac{\text{scale invariance}}{(f \gg 1)} \sim C[f](p, t) = t^{\mu}C[f_S](t^{\beta}p)
$$

-> Boltzmann equation can be decomposed into

$$
[\alpha + \beta \mathbf{p} \cdot \nabla_{\mathbf{p}}] f_S(\mathbf{p}) = C[f_S](1, \mathbf{p}),
$$

$$
\alpha-1=\mu(\alpha,\beta)
$$

time independent fixed-point condition scaling relation

Kinetic theory qualitative description

• Dynamical scaling exponents α*,* β are uniquely determined by

*Scaling of the collision integral +***! !** *Energy conservation* $\alpha - 1 = \mu(\alpha, \beta)$ $\alpha - 4\beta = 0$ **Independent of microscopic parameters (e.g. coupling constant, number of colors,…) Hard scale Occupancy** *Interaction* evolution evolution $(Exponent \alpha)$ $(Exponent B)$ *2<->2 &* g *auge eff. 2<->1 -1/7 -4/7 theory*

(Micha, Tkachev, Kurkela, Moore, Berges, SS, Venugopalan, …)

Kinetic theory quantitative description

Qualitative picture theory (AMY) Numerical solutions of effective kinetic

$$
\partial_t f(p,t) = -\mathcal{C}_{2\leftrightarrow 2}[f](p) - \mathcal{C}_{1\leftrightarrow 2}[f](p).
$$

compared to classical Yang-Mills simulations.

- Dynamics of hard excitations accurately described by eff. kinetic theory.
- Quantitative agreement between the two approaches for momenta above m_p.

(York, Kurkela, Lu, Moore, PRD 89 (2014) 074036; Kurkela,Lu PRL 113 (2014) 18)

Thermalization process — scalar theory

• Cruicial difference to gauge theory is that inelastic (particle number changing) processes are highly suppressed in the scalar theory.

-> In addition to energy conservation, particle number may be effectively conserved over a large time scale.

- Classical statistical simulations show that the scalar theory accommodates for this by the emergence of an inverse particle cascade.
- -> Energy is transported to the UV

-> Particle number is transported to the IR and results in the formation of a Bose Condensate

Berges, Boguslavski, SS, Venugopalan JHEP 1405 (2014) 054

Challenge for kinetic description

• Description of infrared dynamics of (inverse) particle number cascade involves low momenta and non-perturbatively large occupancies.

Berges,Boguslavski, Pinero-Orioli arXiv:1503.02498

Epelbaum,Gelis,Tanji,Wu Phys.Rev. D90 (2014) 12, 125032

• Naive kinetic description in terms of 2<->2 and 2<->1+condensate, fails to describe condensation dynamics correctly

Challenge for kinetic description

- Description of infrared dynamics of (inverse) particle number cascade involves low momenta and non-perturbatively large occupancies.
- Can not simply neglect the infrared dynamics in this case because it affects the dynamics of hard particles through non-local interactions (hard+hard \lt -> hard + soft), which dominate UV cascade.

-> Clearly interplay between IR and UV sector poses a challenge to kinetic description

Solution for scalars suggested in terms of (1/N) vertex-resummation to extend range of validity towards infrared regime (talk K. Boguslavski)

Heavy-ion collisions in the weakcoupling picture

• High-energy nuclei feature a large number of small-x gluons with typical momentum $Q_s(s)$

- *-> At high energies Qs(s) >>*Λ *QCD such that* α*s(Qs) << 1 is small*
- Collision of high-energy nuclei leads to a far-from equilibrium state 'Glasma' characterized by a large phase space occupancy of gluons

$$
f(p\!\sim\!Q_s)\sim 1/\alpha_s
$$

High initial gluon density allows for an effective classical description of the early stages

Effect of long. expansion

- Dilution of the system & red-shift of longitudinal momenta *-> System can be anisotropic on large time scales*
- Different scenarios developed based on kinetic theory
	- Baier et al. (BMSS), PLB 502 (2001) 51-58
	- Kurkela, Moore (KM), JHEP 1111 (2011) 120

…

Blaizot et al. (BGLMV), Nucl. Phys. A 873 (2012) 68-80

• Difference arises due to treatment of soft (non-perturbative) physics

-> Need first-principles simulations to decide which scenario is realized

Qualitative description of early stages

- We will neglect the transverse expansion of the system and consider a system which is only expanding in the longitudinal direction
- Characterize the initial state at $\tau_0 \sim 1/Q_s$ in terms of an initial gluon distribution

initial occupancy

$$
f(\mathrm{p_T},\mathrm{p_z},\tau_0)=\frac{n_0}{\alpha_s}\,\Theta\bigg(Q-\sqrt{\mathrm{p_T^2}+(\xi_0\mathrm{p_z})^2}\bigg)
$$

-> Captures the possible dependencies on initial occupancy and momentum space anisotropy

initial anisotropy

Evolution in classical regime

Transverse spectrum shows thermal-like $1/p_T$ behavior up to Q_s .

Dynamics in the scaling regime consists of *longitudinal momentum broadening —* not strong enough to completely compensate for red-shift due to longitudinal expansion

(Berges,Boguslavski,SS,Venugopalan PRD 89 (2014) 074011; 89 (2014) 114007)

Self-similarity

Dynamics can be entirely described in terms of universal scaling exponents $\alpha = -2/3$, $\beta = 0$, $\gamma = 1/3$ and scaling function f_s extracted from simulations

$$
f(p_T, p_z, \tau) = (Q\tau)^{\alpha} f_S((Q\tau)^{\beta} p_T, (Q\tau)^{\gamma} p_z)
$$

(Berges,Boguslavski,SS,Venugopalan PRD 89 (2014) 074011; 89 (2014) 114007)

Kinetic theory comparison

- Universal scaling behavior independent of the initial conditions
- Surprising agreement with "bottom up" scenario $(2 \leftarrow > 2$ and $2 \leftarrow > 1)$

(Baier,Mueller,Schiff, Son, PLB 502, 51 (2001))

• No sign of plasma instabilities affecting the late time evolution of hard excitations

Could be that the "pre-factor" is just small and instabilities only become important when the system is extremely anisotropic?

Could be that we do not understand something about screening in anisotropic plasmas / interplay of soft and hard excitations?

Scaling analysis

Consider the Boltzmann equation (c.f. Baier et al. PLB 502 (2001) 51-58)

$$
[\partial_{\tau} - \frac{p_z}{\tau} \partial_{p_z}] f(p_{\tau}, p_z, \tau) = C[f](p_{\tau}, p_z, \tau)
$$

with a self-similar evolution

$$
f(p_T, p_Z, \tau) = (Q\tau)^{\alpha} f_s((Q\tau)^{\beta} p_T, (Q\tau)^{\gamma} p_z)
$$

 \rightarrow Non-thermal fixed point solution $(f \gg 1)$

 $[\alpha + \beta p_T \partial_{p_T} + (\gamma - 1) p_Z \partial_{p_T}] f_S(p_T, p_Z) = Q^{-1} C[f_S](p_T, p_Z)$

- \rightarrow Scaling exponents determined by scaling relations for
	- $(2\alpha-2\beta+\gamma=-1)$ • Small angle elastic scattering
	- $(\alpha 3\beta \gamma = -1)$ • Energy conservation
	- $(\alpha 2\beta \gamma = -1)$ • Particle number conservation

 $\rightarrow \alpha = -2/3$, $\beta = 0$, $\gamma = 1/3$

Scaling exponents are independent of detailed microscopic dynamics -> Could be any process with the same parametric dependencies -> Chance to observe identical behavior in different physical systems

Expanding scalar field theory

Consider massless N-component scalar field theory with quartic self-interaction

$$
S[\varphi]=\int d^4x\sqrt{-g(x)}\left(\frac{1}{2}(\partial_{\mu}\varphi_{a})g^{\mu\nu}(\partial_{\nu}\varphi_{a})-\frac{\lambda}{24N}(\varphi^2)^2\right)
$$

in a longitudinally expanding setup.

Even though perturbatively there is no preference for small angle scattering, one at least expects elastic processes to dominate

> *-> Energy conservation & Particle number conservation*

(Berges,Boguslavski,SS,Venugopalan PRL114 (2015) 061601)

Comparison of simulations

Comparison of longitudinally expanding Yang-Mills and scalar field theory in the classical regime of high occupancy

Scalar theory shows three distinct scaling regimes at soft (\sim p⁻⁵), intermediate (\sim 1/p_T) and hard momenta (\sim const) *->Common ~1/pT scaling regime*

(Berges,Boguslavski,SS,Venugopalan PRL114 (2015) 061601)

Universality far from equilibrium

• Scaling exponents and scaling functions agree in the inertial range of momenta, where both theories show $1/p_T$ behavior

Kinetic interpretation in expanding scalar theory still unclear — *Points to the fact that "bottom-up" solution is more general than small angle scattering* (Berges,Boguslavski,SS,Venugopalan PRL114 (2015) 061601)

Summary & Conclusions

- Generally the thermalization process in far-from equilibrium system proceeds via "non-thermal" fixed points, which correspond to self-similar attractor solutions.
- We observe for the first time qualitative agreement between kinetic theory predictions and classical lattice simulations in some systems

Clearly problems remain concerning in all cases where infrared dynamics is important (plasma instabilities, condensation in scalars)

• Striking universality observed between expanding scalar and gauge theory in the early time classical regime.

-> Even though precise origin is still unclear there is an exciting *possibility to learn about the dynamics of thermalization process from different physical systems.*