From unitary dynamics to statistical mechanics

in isolated quantum systems

Marcos Rigol

Department of Physics
The Pennsylvania State University

Equilibration Mechanisms in Weakly and Strongly
Coupled Quantum Field Theory
Institute for Nuclear Theory
August 11, 2015

Marcos Rigol (Penn State) Dynamics in quantum systems August 11, 2015



0 Introduction
@ Foundations of quantum statistical mechanics
@ Experiments with ultracold gases
@ Unitary evolution and thermalization

e Generic (nonintegrable) systems
@ Time evolution vs exact time average
@ Statistical description after relaxation
@ Eigenstate thermalization hypothesis
@ Time fluctuations

e Integrable systems
@ Time evolution
@ Generalized Gibbs ensemble

e Summary

Marcos Rigol (Penn State) Dynamics in quantum systems August 11, 2015



0 Introduction
@ Foundations of quantum statistical mechanics

Marcos Rigol (Penn State) Dynamics in quantum systems August 11, 2015 3/39



Foundations of quantum statistical mechanics

Quantum ergodicity: John von Neumann ‘29
(Proof of the ergodic theorem and the
H-theorem in quantum mechanics)
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Foundations of quantum statistical mechanics

Quantum ergodicity: John von Neumann ‘29
(Proof of the ergodic theorem and the
H-theorem in quantum mechanics)

Recent works:
Tasaki ‘98
(From Quantum Dynamics to the Canonical Distribution. . .)
Goldstein, Lebowitz, Tumulka, and Zanghi ‘06
(Canonical Typicality)
Popescu, Short, and A. Winter ‘06
(Entanglement and the foundation of statistical mechanics)
Goldstein, Lebowitz, Mastrodonato, Tumulka, and Zanghi ‘10
(Normal typicality and von Neumann’s quantum ergodic theorem)
MR and Srednicki ‘12
(Alternatives to Eigenstate Thermalization)
P. Reimann ‘15
(Generalization of von Neumann’s Approach to Thermalization)
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Experiments with ultracold gases in 1D

Effective one-dimensional ¢ potential
M. Olshanii, PRL 81, 938 (1998).

Uip(z) = g1pd(x)

where
- 2hasw |
91D 1— Ca, %
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Experiments with ultracold gases in 1D

Effective one-dimensional ¢ potential
M. Olshanii, PRL 81, 938 (1998).

Uip(z) = g1pd(x)

where
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Absence of thermalization in 1D

Density profile Momentum profile
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T. Kinoshita, T. Wenger, and D. S. Weiss, Nature 440, 900 (2006).
MR, A. Muramatsu, and M. Olshanii, Phys. Rev. A 74, 053616 (2006).
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Absence of thermalization in 1D
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Absence of thermalization in 1D
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T. Kinoshita, T. Wenger, and D. S. Weiss,
Nature 440, 900 (2006).
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g1p: Interaction strength
p: One-dimensional density

If v > 1 the system is in the
strongly correlated
Tonks-Girardeau regime

ol gamma=1.4

If v < 1 the system is in the
weakly interacting regime

Gring et al., Science 337, 1318 (2012).
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Coherence after quenches in Bose-Fermi mixtures
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S. Will, D. lyer, and MR
Nat. Commun. 6, 6009 (2015).
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Coherence after quenches in Bose-Fermi mixtures
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Nat. Commun. 6, 6009 (2015).
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Exact results from quantum mechanics

If the initial state is not an eigenstate of 4
o) # la)  where  Hla) = Eola) and B = (ol H|to),

then a generic observable O will evolve in time following

O(7) = B(N)|Ol(r)) where [3(r)) = e~ A7 |gho).
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Exact results from quantum mechanics

If the initial state is not an eigenstate of 4
[o) # la)  where  Hla) = Eola) and  Eo = (Yol H|vo),
then a generic observable O will evolve in time following
O(r) = ((M)IOf(r)) where [(r)) = e~ " |y).
What is it that we call thermalization?
O(1) = O(Ey) = O(T) = O(T, )
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Exact results from quantum mechanics

If the initial state is not an eigenstate of 4
[o) # la)  where  Hla) = Eola) and  Eo = (Yol H|vo),
then a generic observable O will evolve in time following
O(r) = ((M)IOf(r)) where [(r)) = e~ " |y).
What is it that we call thermalization?
O(1) = O(Ey) = O(T) = O(T, )

One can rewrite
= Z C*,C, el Fr=EIT0 . where |ig) = ZCa|a>,
Taking the infinite time average (diagonal ensemble ppe = 3, |Cal?|a){a|)

hm —/ dT |O|\If Z|C | Oaa = >d1aga

which depends on the initial conditions through C = (a|vo).
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Width of the energy density after a sudden quench

Initial state [0) = >, C«|a) is an eigenstate of Ho. AtT=0

Ho— H=Ho+W with W=> () and Hla)= Eala).
J

MR, V. Dunjko, and M. Olshanii, Nature 452, 854 (2008).
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Width of the energy density after a sudden quench

Initial state [0) = >, C«|a) is an eigenstate of Ho. AtT=0

Ho— H=Ho+W with W=> () and Hla)= Eala).

The width of the weighted energy density AFE is then

aF= \/ 3" BRICal? = (3 BalCal?)? = v/ (ol W2It0) — (ol Ww0)?,

or

> (ol (1) (j2)lo) — (ol (jr)lwo) (ol (52)lwe)] " VN,

J1,J2€0

where N is the total number of lattice sites.

MR, V. Dunjko, and M. Olshanii, Nature 452, 854 (2008).
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Width of the energy density after a sudden quench

Initial state [0) = >, C«|a) is an eigenstate of Ho. AtT=0

Ho— H=Ho+W with W=> () and Hla)= Eala).

The width of the weighted energy density AFE is then

= \/Z B2ICal? = (X BalCal?)? = / (0o W2[0) — (ol W[¥0)?,

or

S Lol () (G2t — (Wold (i)l (wold(j2)lwo)] " % VN,

J1,J2€0

where N is the total number of lattice sites.
Since E¥ «« N, then the ratio

AE N— oo 1

E < N
S0, as in any thermal ensemble, it vanishes in the thermodynamic limit.
MR, V. Dunjko, and M. Olshanii, Nature 452, 854 (2008).
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e Generic (nonintegrable) systems
@ Time evolution vs exact time average
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Relaxation dynamics of hard-core bosons in 2D

Hard-core boson Hamiltonian
H=-7Y (bl +He ) +U Y mny, 62 =0 =0
(3,5) (2,9)

MR, V. Dunjko, and M. Olshanii, Nature 452, 854 (2008).
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Relaxation dynamics of hard-core bosons in 2D
Hard-core boson Hamiltonian
a=-7% (Ejéj + H.c.) +US amy,  BP=8=0
MR, V. Dunjko, and M. g;::lanii, Nature 452, 854 (2%3;).
Nonequilibrium dynamics in 2D
Weak n.n. U = 0.1J

N, = 5 bosons
N = 21 lattice sites

Initial Hilbert space: D = 20349

All states are used!
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Relaxation dynamics of hard-core bosons in 2D

Hard-core boson Hamiltonian
= —JZ (bfb, + He) +U D wuny, B> =82 =0
(2,9)

MR, V. Dunjko, and M. Olshanii, Nature 452, 854 (2008).

“One can rewrite

(1) = Z C;/Caei(Eo"iEa)TOa’a where |¢o) = an|0‘>7

and taking the infinite time average (diagonal ensemble)

@

— lm = / dr' (W) O (7)) = 3 |Cal? O = |

>diaga
T—00 T
a

which depends on the initial conditions through C,, = (a|vy).”
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Relaxation dynamics of hard-core bosons in 2D

Hard-core boson Hamiltonian
H=-7Y (bl +He ) +U Y mny, 62 =0 =0
(4,5) (i,5)
MR, V. Dunjko, and M. Olshanii, Nature 452, 854 (2008).

Nonequilibrium dynamics in 2D

Time evolution of n(k,)
T

T
fime average -+

0 —— Weak n.n. U = 0.1J

N, = 5 bosons

N = 21 lattice sites
Hilbert space: D = 20349

All states are used!

0
kl2m/L, d))

Marcos Rigol (Penn State) Dynamics in quantum systems August 11, 2015

15/39


/home/mrigol/3_Presentation/Talks/VIDEOS/Bosons2D.gif

Relaxation dynamics of hard-core bosons in 2D

Hard-core boson Hamiltonian
H=-7Y (bl +He ) +U Y mny, 62 =0 =0
(i,5) (4,3)
MR, V. Dunjko, and M. Olshanii, Nature 452, 854 (2008).

Nonequilibrium dynamics in 2D

Weak n.n. U = 0.1J
N, = 5 bosons

N = 21 lattice sites

Hilbert space: D = 20349

= relaxation dynamics

— — — time average

41  All states are used!

0 50 100 150 200
tJ

Marcos Rigol (Penn State) Dynamics in quantum systems August 11, 2015 15/39



e Generic (nonintegrable) systems

@ Statistical description after relaxation
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Statistical description after relaxation

Canonical calculation . Momentum distribution
O="Tr {Oﬁ}
~ 1.5+ 4
p=Z lexp (—H/kBT> -
z =T {exp (~H/ksT) } b T NS
4 — — = canonical §\
EO:Tr{ET[)} T=1.9J F | <
T2 il

0
k2L )
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Statistical description after relaxation

Canonical calculation ,__Momentum distribution
O="Tr {Oﬁ}
~ 1.5+ 4
p=Z lexp (—H/kBT> -
z =T {exp (~H/ksT) } T/ Gl A\
7 — — = canonical oY
Ey=Tr {Hﬁ} T=1.9J . <

05 : : :
2
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k2L )

Microcanonical calculation
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e Generic (nonintegrable) systems

@ Eigenstate thermalization hypothesis

Marcos Rigol (Penn State) Dynamics in quantum systems August 11, 2015 18/39



Eigenstate thermalization hypothesis

Paradox?

1
Z |Ca|20aa = <O>microcan.(EO) = Z Oo‘a

N,
Bloo AN |Eo—Eq.|<AE

Left hand side: Depends on the initial conditions through C, = (¥, |¢r)
Right hand side: Depends only on the initial energy
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Eigenstate thermalization hypothesis

Paradox?

1

NE,,AE

> Oaa

|Eo—Eo|<AE

Z |Ca|20aa = <O>microcan.(E0) =

Left hand side: Depends on the initial conditions through C,, = (¥, |¢r)
Right hand side: Depends only on the initial energy

i) For physically relevant initial conditions, |C,|? practically do not
fluctuate (remember that AE is subextensive).

ii) Large (and uncorrelated) fluctuations occur in both O,, and
|C4|?. A physically relevant initial state performs an unbiased
sampling of O,

MR and M. Srednicki, PRL 108, 110601 (2012).
K. He and MR, Phys. Rev. A 87, 043615 (2013).
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Eigenstate thermalization hypothesis

Paradox?
1
Z |Ca|20aa = <O>microcan.(EO) =~ Z Oaa
o Neoap |Eo—Eo|<AE

Left hand side: Depends on the initial conditions through C,, = (¥, |¢r)
Right hand side: Depends only on the initial energy

o f 462, T=34 “— |

r ’ 1 r

l_)d 4 L_.)d 4

r r
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r r

r r

r o
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r r

3 3
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E E

MR, PRA 82, 037601 (2010).
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Eigenstate thermalization hypothesis

Paradox?

1

NE,,AE

> Oaa

|Eo—Eo|<AE

Z |Ca|20aa = <O>microcan.(E0) =

Left hand side: Depends on the initial conditions through C,, = (¥, |¢r)
Right hand side: Depends only on the initial energy

i) For physically relevant initial conditions, |C,|? practically do not
fluctuate (remember that AE is subextensive).

ii) Large (and uncorrelated) fluctuations occur in both O,, and
|C4|?. A physically relevant initial state performs an unbiased
sampling of O,

MR and M. Srednicki, PRL 108, 110601 (2012).
K. He and MR, Phys. Rev. A 87, 043615 (2013).
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Eigenstate thermalization hypothesis

Paradox?

1
Z |Ca|20aa = <O>microcan.(EO) = Z Oo‘a

N,
Bloo AN |Eo—Eq.|<AE

Left hand side: Depends on the initial conditions through C, = (¥, |¢r)
Right hand side: Depends only on the initial energy

Eigenstate thermalization hypothesis (diagonal part)
[J. M. Deutsch, PRA 43 2046 (1991); M. Srednicki, PRE 50, 888 (1994);

MR, V. Dunjko, and M. Olshanii, Nature 452, 854 (2008).]
iii) The expectation value (¥, |O|¥,,) of a few-body observable O in
an eigenstate of the Hamiltonian |, ), with energy E.,, of a large

interacting many-body system equals the thermal average of O
at the mean energy E,:

<\I/o¢ |OA|\IIO¢> = <O>microcan‘(Ea)
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Eigenstate thermalization

2
Momentum distribution sr ]
Eigenstates a — d are the ones
. . ime average/microcan.
with energies closest to Ej i m— :
— — — eigenstate b
- — - = eigenstate ¢
----- eigenstate d

0.5 . (‘) :
k [2n/L a]
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Eigenstate thermalization

2
Momentum distribution . ]
Eigenstates a — d are the ones
. . ime average/microcan.
with energies closest to Ej i m— :
— — — eigenstate b
- — - = eigenstate ¢
----- eigenstate d

05 ! ! !

? K 2L al ’
n(k, = 0) vs energy
0 ; — ; s p(E) = P(E) X dens. stat.
T :g exact = P(E)exact = |Cal®
----- P microcan.

L — — p(E) canonical 1 % P(E)mlc — constant

S——— ——___] = P(E)can — exp (—E/kgT)
10 -8 -6 4 2 00
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One-dimensional integrable case

Similar experiment in one dimension

Initial
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One-dimensional integrable case

Similar experiment in one dimension

Initial

0.6 - T

Time average vs Stat. Mech. o4}

X

n(k )

No thermalization!

02+ —— time average

= = microcan.
- = - canonical

0 -5 0 5
k 2L a]
X X
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Breakdown of eigenstate thermalization

0.6 I*\ ]
I\
1 \
= 7'—\
Momentum distribution M A% 1
Eigenstates a — d are the ones £
with energies closest to Ey 02| cigenstate a i

— — - eigenstate b
- — - . eigenstate ¢
— — eigenstate d

PR
s - k [21/L al
n(k; = 0) vs energy
. . p(E) = P(E) x dens. stat.
—— P(E) exacr — P(E>exact — |Ca|2
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Integrable vs Nonintegrable cases

Correlations between n(k) and C,,

1D (integrable) case 2D (nonintegrable) case

08 T . T 8107 2 T T T 8x10°

eigenstate

eigenstate

= = = microcan.

= = microcan.

q6x10”
4 4x10° N;‘S
4 2x10°
0 - 0 1 — . (]
1230 1235 1240 1245 1250 1085 1090 1095 1100 1105
o o
Conservation laws play a role in Correlations are not relevant, and
integrable models. they are not present!

Transition between integrability and nonintegrability:
MR, PRL 103, 100403 (2009); PRA 80, 053607 (2009).
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e Generic (nonintegrable) systems

@ Time fluctuations
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Relaxation dynamics of hard-core bosons in 2D

Hard-core boson Hamiltonian

Nonequilibrium dynamics in 2D

Weak n.n. U =0.1J
N, = 5 bosons

N = 21 lattice sites

Hilbert space: D = 20349

——— relaxation dynamics

12k — — — time average

4  All states are used!

1 Il Il Il
0 50 100 150 200
tJ
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Time fluctuations

Are they small because of dephasing?

o (Bor—Ea)t

o)) — (O@)) = C*,C, B =Bt ), ~ :
(O(t)) — {O@)) QZ;Y ~C, o az;l —
o'#a o o
\Y% N, s2tates Otypical -~ Otypical
Nstates > a'a
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Time fluctuations

Are they small because of dephasing?

A Z(E 1—Eq )t
(0®) - Z CiCpePor =Bt~ 3 Toa,a
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a 7504 e ;’éa
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Time average of (O)
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Time fluctuations

Are they small because of dephasing?

o (Bor—Ea)t

o)) —(0@1)) = C*,C ¢ Far=EtQ ,  ~ :
(O(2)) — (0(?)) az;l *C, . az;l —
o'#a o o
@pricm ~ obpical
Nstates > a'a

Time average of (O)

<O> - Z |Ca|20aa

1 .

typical

~ E N Opo ~ OXP
o states
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Eigenstate thermalization hypothesis

Eigenstate thermalization hypothesis
M. Srednicki, J. Phys. A 32, 1163 (1999).

Oup = O(E)Sup + e 5BEV/2f6(E,w)Rap

where E = (E, + Eg)/2, w = E, — Eg, S(E) is the thermodynamic entropy at
energy E, and R, is a random number with zero mean and unit variance.
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Eigenstate thermalization hypothesis

Eigenstate thermalization hypothesis
M. Srednicki, J. Phys. A 32, 1163 (1999).
Oup = O(E)Sup + e 5BEV/2f6(E,w)Rap

where E = (E, + Eg)/2, w = E, — Eg, S(E) is the thermodynamic entropy at
energy E, and R, is a random number with zero mean and unit variance.

Off-diagonal matrix elements [histogram of (|Oag| — |Oagslave)/|Oaslavel

~mk=0) 4" I ] Nonintegrable o I j
1 - n(x=0)
10 - ave m(k=0) 2 1 b 3 2F b
10” 0
%
S 10°
10"
10°
0 5 10 ‘ 15

Ecx'EB

E. Khatami, G. Pupillo, M. Srednicki, and MR, PRL 111, 050403 (2013).
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e Integrable systems
@ Time evolution

Marcos Rigol (Penn State) Dynamics in quantum systems August 11, 2015 28/39



Bose-Fermi mapping

Hard-core boson Hamiltonian in an external potential

FAI = —JZ (iji)i-‘rl =+ HC) + ZU,‘, ﬁ,
Constraints on the bosonic operators

b2 =2 =0
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Bose-Fermi mapping

Hard-core boson Hamiltonian in an external potential
FAI = —JZ (iji)i-‘rl =+ HC) + ZU,‘, ﬁ,
Constraints on the bosonic operators

b2 =2 =0

4

Map to spins and then to fermions (Jordan-Wigner transformation)
1—1 1—1
ot = f [T e, o7 = [[ ¥4,
B=1 ps=1

4

Non-interacting fermion Hamiltonian

HF = —JZ (f;rfiﬂ +H.c.> —&—Zvi ﬁf
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One-particle density matrix

One-particle Green'’s function

Gij = <\I’HC’B|0' g |\I/HCB \I/F| HemfﬁfﬁffTHe in f] f“/|\IJF>
B=1

Time evolution

N L
[Up(r)) = e ML) = T Y- Pos(r)fE10)

6=1 o=1
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One-particle density matrix

One-particle Green'’s function

Gij = <\I’HC’B|0' g |\I/HCB \I/F| HemfﬁfﬁffTHe in f] f“/|\IJF>
B=1

Time evolution
. N L
9 p(r)) = e /M wly = [ Z (r)f5 10)
d=1 o=1

4

Gi(7) = det | (P!(7)) " P"(7)]

Computation time ~ L2N?3

Exact Green'’s function

3000 lattice sites, 300 particles
MR and A. Muramatsu, PRL 93, 230404 (2004); PRL 94, 240403 (2005).

Marcos Rigol (Penn State) Dynamics in quantum systems August 11, 2015 30/39



Relaxation dynamics in an integrable system

Density profile

Momentum profile

0.2

0.1

0— 0 —
.. ‘ | 03 | g

0.4 T m T

0.2 | 9
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0 1

0
-300 -150
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150

300 - —m/2 0 /2 T
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MR, V. Dunjko, V. Yurovsky, and M. Olshanii, PRL 98, 050405 (2007).
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Relaxation dynamics in an integrable system
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e Integrable systems

@ Generalized Gibbs ensemble
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Statistical description after relaxation

Thermal equilibrium
p=2Ztexp [— (ﬁ] - uNb> /kBT}
Z =Tr {exp [— (ﬁ — uNb) /kBT]}
E=Tr {f[,@} . Ny=Tr {Nbf)}

MR, PRA 72, 063607 (2005).
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Statistical description after relaxation

Thermal equilibrium s Evolution of nj—o

. :
— Time evolution

p=2Ztexp [— (fl - uNb) /kBT} 3 Thermal |
Z ="Tr {exp [— (ﬁ — NNb) /kBT]} L
E=Tr {Flﬁ} . Ny=Tr {Nb[)} 02 A== ]

MR, PRA 72, 063607 (2005). % 1000 29?0 3000 4000

ny, after relaxation

0.5 ; T T
— After relax. (Nb:30)
o |- Afterrelax. (N,=15)
= Thermal (Nb=30) £

.- Thermal (N,=15); }

0_71: T

Marcos Rigol (Penn State) Dynamics in quantum systems August 11, 2015 34/39



Statistical description after relaxation

Thermal equilibrium s Evolution of nj—g

. :
— Time evolution

p=ZLexp [— (ﬁ[ — ,uNb> /kBT} 3, Thermal |
Z =Tr {exp {— (Zfl - ﬂNb) /kBT]}
E=Tr {Hﬁ} . Ny=Tr {Nbﬁ} 02 A=< ]

MR, PRA 72, 063607 (2005). % 1000 29?0 3000 4000

ny, after relaxation
Integrals of motion 031 rer relax. (¥,=30) ‘

(underlying noninteracting fermions) ==y ’T‘i’e‘fr’,;:;“(jvl(:’;;)’5)
~ .- Thermal (N,=15); }
Hp4$1|0) = En4iT10) 0.25F |

{2} = {438}

0 L — .
- -T2 0 /2 T
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Statistical description after relaxation

Thermal equilibrium 5 Evolution of nx—q
X A ’ = %’lm‘e ev;)luti‘on
ﬁ: Z_l eXp |:_ (H_MNb> /kBT] ? q "Gégma ]
Z =Tr {exp {— <I:I - HNb) /kBT]}
X X 0.5 ]
E:ﬁ{Hﬁ}, N, :Tr{Nbﬁ} i
MR, PRA 72, 063607 (2005). % 1000 zo‘oo 3000 4000
Generalized Gibbs ensemble WL relaxatlon

— After relaxatton

p exp[ Z)\ I} << |7 Thermal

0.25r+ 1
Z,="Tr {exp [— Z )\mfm] }

(E)rmo = Tt { Fpe} R TR
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Statistical description after relaxation

Density profile Momentum profile
0.24 T T T 0.5 T T T
1=2000t —— 1=2000t ——
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c 012 | E &
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Statistical description after relaxation

Density profile Momentum profile
0.24 T T T 0.5 T T T
1=2000t —— 1=2000t ——
GGE —— GGE
04 | =
0.18 | E
03| A .
= 012 e & I\
0.2 | =
0.06 AN A ANNAA DN
NV VYNV 0.1 N 7
\ |
\ /
o 1 1 1 0 A ,//”’
-20 -10 0 10 20 -n T
x/a

Why does the GGE work?
Generalized eigenstate thermalization:

A. C. Cassidy, C. W. Clark, and MR, Phys. Rev. Lett. 106, 140405 (2011).
K. He, L. F. Santos, T. M. Wright, and MR, Phys. Rev. A 87, 063637 (2013).
J.-S. Caux and F. H. L. Essler, Phys. Rev. Lett. 110, 257203 (2013).
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@ Thermalization occurs in generic
isolated systems
% Finite size effects
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@ Thermalization occurs in generic %
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* Finite size effects e |
° Eigenstqte thermalization hypothesis %"
* <\IJ01’O|\I]0¢> = <O>microcan.(Ea)

@ Thermalization and ETH break down
close integrability (finite system)
% Quantum equivalent of KAM?
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time,
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Initial state

@ Small time fluctuations <— smallness of
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@ Thermalization occurs in generic %
isolated systems thoma X

* Finite size effects e |
@ Eigenstate thermalization hypothesis %"
* <\IJ01’O|\I]0¢> = <O>microcan.(Ea)

@ Thermalization and ETH break down
close integrability (finite system)
% Quantum equivalent of KAM?

Thermal state

Y

time,

dephasing

Initial state

@ Small time fluctuations <— smallness of
off-diagonal elements

° Tlme plays Only an aUX”Iary r0|e ‘ EIGENSTATE THERMALIZATION

@ Integrable systems are different
(Generalized Gibbs ensemble)
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Fluctuation-dissipation theorem (dipolar bosons)

Occupation in the center of the tra P
2 ° P (1;=1/2) Hamiltonian

L=15,N=5 Z=1
integ. 10 H=—-J E (b;bj+1 + HC)
Jj=1

+Vy _ﬁﬁl‘s EDIAL
J

<l

magnetic atoms, polar molecules

2 . . s . . .
il momint C or Relaxation dynamics
O(t) = C(t)O(t = 0)
where
o) = o(t + t)O(t')
(O@))*
0 5 10 15 0 5 10 15 20 Srednicki, JPA32, 1163 (1999).

E. Khatami, G. Pupillo, M. Srednicki, and MR, PRL 111, 050403 (2013).
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Information entropy (S; = — 3, |cf|?In |c¥}?)
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L.F. Santos and MR, PRE 81, 036206 (2010); PRE 82, 031130 (2010).
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