Thermalization in strongly coupled 2D CFT

Shu Lin RIKEN BNL Research Center

INT, 08/12/2015 SL, Shuryak, Teaney

Outline

- Vacuum and thermal correlator in CFT
- Holographic description of thermalization in CFT
- Recipe of bulk-bulk correlator
- Boundary correlator in coordinate space
- Integrated boundary correlator
- Summary

Probe of thermalization in strongly coupled theory

No quasi-particle picture, we look at thermalization from correlation functions

One point function: VEV of operators used in hydrodynamic evolution

Two point function: spectral densities Includes fluctuations of hydrodynamic modes Includes more generic out-of-equilibrium physics, e.g. photon production in history of QGP

Properties of CFT correlator in vacuum and thermal state

 $iG^{>}(2|1) \equiv \langle \mathcal{O}(t_2, x_2)\mathcal{O}(t_1, x_1) \rangle$

$$t_{21} = t_2 - t_1 x_{21} = x_2 - x_1$$

O scalar operator with mass dimension d

$$iG_0^>(2|1) = \frac{2}{\pi} \frac{1}{(-(t_{21} - i\epsilon)^2 + x_{21}^2)^d}$$

vacuum: long range correlation in space and time (power law)

$$iG_{th}^{>}(2|1) = \frac{1}{2\pi} \frac{(2\pi T)^{2d}}{(-\cosh(2\pi T t_{21} - i\epsilon) + \cosh(2\pi T x_{21}))^d}$$

thermal: screening in space and time (exponential)

Gravity dual of thermalization process

boundary z=0 BTZ black hole $ds^{2} = \frac{1}{z^{2}} \left(-f(z)dt^{2} + dx^{2} + \frac{dz^{2}}{f(z)} \right)$ $f(z) = 1 - m z^{2}$ massless shell falling "horizon": $z = m^{-1/2}$ pure AdS $ds^{2} = \frac{1}{z^{2}} (-dt^{2} + dx^{2} + dz^{2})$

Shell starts falling from the boundary z=0 at t=0, dual to:

t < 0, vacuum t = 0, injection of energy density m t > 0, thermalizing state. $t \to \infty$, thermal state

Features of our thermalizing state

 $T^{tt}(t,x) = T^{xx}(t,x) = 2m\theta(t)$ O(t) = 0

 $0 \propto TrG^2$, mass dimension 2

One point function thermalizes instantaneously after energy injection

Two point function takes longer to thermalize

In this work, focus on two point function of O:

Wightman correlator for thermalizing state $\langle O(t,x)O(t',x')\rangle$

Retarded correlator is state independent Can be calculated from response to external source. Wightman correlator is state dependent Needs to know initial density matrix of state

Caron-Huot, Chesler, Teaney, PRD 2011

AdS-Vaidya metric

Eddington-Finkelstein Coordinate $dv = dt - \int_0^z \frac{dz'}{f(z')}$ v=t on the boundary

$$ds^{2} = \frac{-fdv^{2} - 2dvdz + dx^{2}}{z^{2}} \qquad f = 1 - mz^{2}\theta(v)$$

Set m=1 from now \Leftrightarrow set $T = \frac{1}{2\pi}$

boundary z=0

Dictionary

Wightman correlator for thermalizing state $\langle O(t,x)O(t',x')\rangle$

Extrapolated dictionary (good for out-of-equilibrium)

 $\langle \mathcal{O}(x_1) \dots \mathcal{O}(x_n) \rangle_{CFT} = C_n \lim_{z \to 0} z^{-n\Delta} \langle \phi(x_1, z) \dots \phi(x_n, z) \rangle_{bulk}$

Skenderis, van Rees, JHEP 2010 Keranen, Kleinert, JHEP 2015

 ϕ bulk field dual to boundary operator O mass dimension $\Delta = 2$

Representation of bulk correlator

$$G^{>}(4|3) = \int dz_1 dx_1 dz_2 dx_2 G_0^{>}(2|1) \overleftrightarrow{D}^{v_1} \overleftrightarrow{D}^{v_2} G_{\rm th}^R(3|1) G_{\rm th}^R(4|2)$$

Initial data

 $iG_0^>(2|1) = \langle \hat{\phi}(v_2, x_2, z_2) \hat{\phi}(v_1, x_1, z_1) \rangle$

Caron-Huot, Chesler, Teaney, PRD 2011

 t_1)

Propagators

$$iG_{\rm th}^{R}(3|1) = \langle [\hat{\phi}(v_3, x_3, z_3), \hat{\phi}(v_1, x_1, z_1)] \rangle \theta(t_3 - t_1) \\ iG_{\rm th}^{R}(4|2) = \langle [\hat{\phi}(v_4, x_4, z_4), \hat{\phi}(v_2, x_2, z_2)] \rangle \theta(t_4 - t_2) \\ iG^{>}(4|3) = \langle \hat{\phi}(v_4, x_4, z_4) \hat{\phi}(v_3, x_3, z_3) \rangle$$

Propagator

 $iG_{\rm th}^R(3|1) = \langle [\hat{\phi}(v_3, x_3, z_3), \hat{\phi}(v_1, x_1, z_1)] \rangle \theta(t_3 - t_1) \qquad \langle \rangle \text{ in BTZ}$

BTZ is equivalent to AdS locally

Non-vanishing only on the lightcone

Initial data

$$iG_0^>(2|1) = \langle \hat{\phi}(v_2, x_2, z_2) \hat{\phi}(v_1, x_1, z_1) \rangle$$
 () in AdS

$$iG_0^>(2|1) = G_E(\xi = \frac{2z_2z_1}{z_2^2 + z_1^2 - (v_2 - v_1 + z_2 - z_1 - i\epsilon)^2 + (x_{21})^2})$$

Euclidean AdS bulk-bulk correlator
$$G_E(2|1) = \frac{1}{4\pi} \left(\frac{1}{\sqrt{1 - \xi^2}} - 1\right)$$

Singular as $v_1, v_2 \rightarrow 0$ and $x_{21} \rightarrow 0$ ($\xi \rightarrow 1$, lightcone singularity)! Regularize by subtracting BTZ counterpart

$$\begin{split} iG_{\rm th}^{>}(2|1) &= G_E(\xi = \frac{z_2 z_1}{\cosh(x_{21}) - \sqrt{1 - z_2^2}\sqrt{1 - z_1^2}\cosh(v_2 - v_1 + y_2 - y_1 - i\epsilon)})\\ y_i &= -\frac{1}{2}\ln\frac{1 - z_i}{1 + z_i} \end{split}$$
$$\begin{split} & \Delta G^{>}(2|1) \ = \ G_0^{>}(2|1) - G_{\rm th}^{>}(2|1) \quad \text{free of singularity} \end{split}$$

Regularized CFT correlator

 $\Delta G^{>}(2|1) = G_{0}^{>}(2|1) - G_{\text{th}}^{>}(2|1) \longrightarrow \Delta G^{>}(4|3) = G^{>}(4|3) - G_{\text{th}}^{>}(4|3)$

$$\Delta G^{>}(4|3) = \int dz_1 dx_1 dz_2 dx_2 \Delta G^{>}(2|1) \overleftrightarrow{D}^{v_1} \overleftrightarrow{D}^{v_2} G^R_{\mathrm{th}}(3|1) G^R_{\mathrm{th}}(4|2)$$

$$\langle G^{>}(4|3) \rangle \rightarrow z_4^2 z_3^2 \langle O(v_4, x_4) O(v_3, x_3) \rangle$$

 $\Delta \langle O(v_4, x_4) O(v_3, x_3) \rangle$ Boundary correlator in thermalizing state – thermal correlator

Correlator in coordinate space

 $\Delta \langle O(v_4, x_4) O(v_3, x_3) \rangle$

- Equal time correlator $v_3 = v_4, x_{43} \neq 0$ measure of spatial decorrelation
- Equal space correlator $v_3 \neq v_4, x_{43} = 0$ measure of temporal decorrelation

Correlator in momentum space

Keranen, Kleinert, JHEP 2015

Thermalization of distance x

 $O(v2, x)O(v1, 0) \sim \begin{cases} e^{-\pi(v2+v1)/\tau} & x > v2 + v1 \\ e^{-2\pi x/\tau} & |v2 - v1| < x < v2 + v1 \end{cases}$

au, screening length in initial state

Calabrese, Cardy, PRL 2006

In AdS/CFT, sees sharp transition between different regimes: artifact of geodesic approximation Aparicio, Lopez, JHEP 2009 Balasubramanian et al, PRL&PRD 2010

Smooth transition occurs when $|x - v^2 - v^1| \leq \tau$

Enhanced correlation

Initial state w/wo long range correlation

Thermalization time $v \sim x/2$

Calabrese, Cardy, PRL 2006

 $\langle O(v,x)O(v,0)\rangle \sim \frac{1}{x^4}v^2 e^{-4v}$

Thermalization reached $\langle O(v, x)O(v, 0) \rangle$ ~ thermal ~ e^{-2x}

 $\ln x$ correction to thermalization time?

Transition between x > v4 + v3& x < v4 + v3

 $\langle O(v4, x = v4 + \delta)O(v3,0) \rangle \sim e^{-2v4}h(\delta) \qquad v3 \ll 1, v4 \gg 1, \delta \sim 1$ $h(\delta) \text{ analytically known, monotonous decaying function}$ $h^{(\delta)}$ g^{0} g^{0}

Thermalization time: v4 + v3 + O(1)

No $\ln x$ correction! in thermalization time Also confirmed numerically for v4 = v3.

 $\delta v \ll 1$, $\langle \Delta O(v + \delta v, 0) O(v, 0) \rangle = \frac{1}{\delta v^2} g(\frac{v}{\delta v})$

Equal-space correlator $\langle \Delta O(v + \delta v, 0) O(v, 0) \rangle$

 $\delta v \gg 1, v \leq 1, \qquad \langle \Delta O(v + \delta v, 0) O(v, 0) \rangle \sim v \, \delta v \, e^{-2(2v + \delta v)}$

 $\langle \Delta O(v + \delta v, 0) O(v, 0) \rangle$ ~ thermal ~ $e^{-2\delta v}$

Thermalization time $v \lesssim 1$

 $O(v + \delta v, 0)O(v, 0) \sim e^{-\pi \delta v/\tau}$ $v \gtrsim 1$ Calabrese, Cardy, PRL 2006

Thermalization time ~ 1 , independent of interval δv . In contrast to equal-time case.

Spatially integrated correlator (k=0 mode)

k=0 mode $\int dx \left< \Delta O(v4, x) O(v3, 0) \right>$

Two analytic limits:

$$v_3, v_4 \ll 1 \qquad \qquad \int dx \left< \Delta O(v4, x) O(v3, 0) \right> \simeq \frac{3\pi}{512\sqrt{v4 \, v3}}$$

$$v_3 \ll 1, v_4 \gg 1$$
 $\int dx \langle \Delta O(v4, x) O(v3, 0) \rangle \simeq \frac{3\pi}{128\sqrt{v3}} v4e^{-2v4}$

k=0 mode \neq long distance?

$$\int dx \, \langle \Delta O(v, x) O(v, 0) \rangle \sim \frac{1}{v} \qquad \text{when } v \ll 1$$

$$x, v \ll 1, \qquad \langle \Delta O(v, x) O(v, 0) \rangle = \frac{1}{x^2} f(\frac{v}{x})$$

$$\int dx \left\langle \Delta O(v,x) O(v,0) \right\rangle \sim \int dx \frac{1}{x^2} f\left(\frac{v}{x}\right) \sim \frac{1}{v}$$

At early time, dorminant contribution from short distance!

Summary

Thermalization in 1+1D CFT with long range correlation in initial state:

- Enhanced correlation, however does not lead to *lnx* correction in thermalization time as compared to the case without initial long range correlation
- Qualitatively different thermalization scenarios in thermalization of equal-time correlator and equal-space correlator
- Should distinguish low momentum and long distance. At early time, low momentum correlator can be dorminated by short distance contribution.

Compare with similar models

Frequency modes with finite resolution

Gabor transform

 $i\Delta G^{>}(\bar{v},\omega) = \frac{1}{\sqrt{\pi\sigma}} \int dv_3 dv_4 e^{-\frac{(v_3-\bar{v})^2}{2\sigma^2}} e^{-\frac{(v_4-\bar{v})^2}{2\sigma^2}} e^{i\omega(v_4-v_3)} i\Delta G^{>}(v_4,v_3)$

Chesler, Teaney 2011

Time resolution $\sim \sigma$, requires $\omega \gtrsim 1/\sigma$

$$iG_{\rm th}^{>}(\omega) = \frac{1}{\sqrt{\pi\sigma}} \int dv_3 dv_4 e^{-\frac{(v_3-\bar{v})^2}{2\sigma^2}} e^{-\frac{(v_4-\bar{v})^2}{2\sigma^2}} e^{i\omega(v_4-v_3)} \int dx_{43} iG_{\rm th}^{>}(v_4,v_3,x_{43})$$

Decoupling of frequency modes

Early decoupling of high frequency modes