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Outline

I CGC, Glasma, JIMWLK evolution
I Initial conditions for CYM

T.L., [arXiv:1105.5511], PLB 2011

I Wilson loop in glasma
Dumitru, T.L., Nara [arXiv:1401.4124], PLB 2014

I Debye mass in nonequilibrium classical Yang-Mills
Work in progress with J. Peuron
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Gluon saturation, Glass and Glasma

Small x : the hadron/nucleus
wavefunction is characterized by
saturation scale Qs � ΛQCD.

H
pT ∼ Qs: strong fields Aµ ∼ 1/g

I occupation numbers ∼ 1/αs

I classical field approximation.
I small αs, but nonperturbative
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CGC: Effective theory for wavefunction of nucleus
I Large x = source ρ, probability distribution Wy [ρ]

I Small x = classical gluon field Aµ + quantum flucts.

Glasma: field configuration of two colliding sheets of CGC.
JIMWLK: y-dependence of Wy [ρ]; Langevin implementation



3/20

Gluon saturation, Glass and Glasma

Small x : the hadron/nucleus
wavefunction is characterized by
saturation scale Qs � ΛQCD.

H
pT ∼ Qs: strong fields Aµ ∼ 1/g

I occupation numbers ∼ 1/αs

I classical field approximation.
I small αs, but nonperturbative

10-5
10-4

10-3
10-2

1

10

0.1

Λ2
QCD

Q
2  

(G
eV

2 )

200 120 40
A x

P
ro

to
n

C
al

ci
um

G
ol

d

Parton Gas

Color Glass Condensate

Confinement Regime

EIC
 C

overage

CGC: Effective theory for wavefunction of nucleus
I Large x = source ρ, probability distribution Wy [ρ]

I Small x = classical gluon field Aµ + quantum flucts.

Glasma: field configuration of two colliding sheets of CGC.
JIMWLK: y-dependence of Wy [ρ]; Langevin implementation



3/20

Gluon saturation, Glass and Glasma

Small x : the hadron/nucleus
wavefunction is characterized by
saturation scale Qs � ΛQCD.

H
pT ∼ Qs: strong fields Aµ ∼ 1/g

I occupation numbers ∼ 1/αs

I classical field approximation.
I small αs, but nonperturbative

10-5
10-4

10-3
10-2

1

10

0.1

Λ2
QCD

Q
2  

(G
eV

2 )

200 120 40
A x

P
ro

to
n

C
al

ci
um

G
ol

d

Parton Gas

Color Glass Condensate

Confinement Regime

EIC
 C

overage

CGC: Effective theory for wavefunction of nucleus
I Large x = source ρ, probability distribution Wy [ρ]

I Small x = classical gluon field Aµ + quantum flucts.

Glasma: field configuration of two colliding sheets of CGC.
JIMWLK: y-dependence of Wy [ρ]; Langevin implementation



3/20

Gluon saturation, Glass and Glasma

Small x : the hadron/nucleus
wavefunction is characterized by
saturation scale Qs � ΛQCD.

H
pT ∼ Qs: strong fields Aµ ∼ 1/g

I occupation numbers ∼ 1/αs

I classical field approximation.
I small αs, but nonperturbative

10-5
10-4

10-3
10-2

1

10

0.1

Λ2
QCD

Q
2  

(G
eV

2 )

200 120 40
A x

P
ro

to
n

C
al

ci
um

G
ol

d

Parton Gas

Color Glass Condensate

Confinement Regime

EIC
 C

overage

CGC: Effective theory for wavefunction of nucleus
I Large x = source ρ, probability distribution Wy [ρ]

I Small x = classical gluon field Aµ + quantum flucts.

Glasma: field configuration of two colliding sheets of CGC.
JIMWLK: y-dependence of Wy [ρ]; Langevin implementation



4/20

Wilson line

Classical color field described as Wilson line

U(xT ) = P exp
{

ig
∫

dx−A+
cov(xT , x−)

}
∈ SU(3)

Color charge ρ : ∇T
2A+

cov(xT , x−) = −gρ(xT , x−)

( x± = 1√
2
(t ± z) ; A± = 1√

2
(A0 ± Az) ; xT 2d transverse )

Qs is characteristic momentum/distance scale

Precise definition here is:

1
Nc

〈
Tr U†(0T )U(xT )

〉
= e−

1
2

⇐⇒ x2
T =

2
Q2
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r/a
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Gluon fields in AA collision

Classical Yang-Mills

η = cst.

t

z

x+x−

(3)

Aµ = ?

(4)

Aµ = 0

(2)

Aµ = pure gauge 2

(1)

Aµ = pure gauge 1

τ = cst.

2 pure gauges

Ai
(1,2) =

i
g

U(1,2)(xT )∂iU
†
(1,2)(xT )

U(1,2)(xT ) = Pe
ig

R
dx−

ρ(xT ,x
−)

∇T
2

At τ = 0:

Ai
∣∣∣
τ=0

= Ai
(1) + Ai

(2)

Aη|τ=0 =
ig
2

[Ai
(1),A

i
(2)]

τ > 0 Solve numerically CYM equations [Dµ, Fµν ] = 0.
This is the glasma field =⇒ Then average over initial U’s.

Fix gauge, Fourier-decompose: gluon spectrum
Gluons with pT ∼ Qs — strings of size R ∼ 1/Qs



5/20

Gluon fields in AA collision

Classical Yang-Mills

η = cst.

t

z

x+x−

(3)

Aµ = ?

(4)

Aµ = 0

(2)

Aµ = pure gauge 2

(1)

Aµ = pure gauge 1

τ = cst.

2 pure gauges

Ai
(1,2) =

i
g

U(1,2)(xT )∂iU
†
(1,2)(xT )

U(1,2)(xT ) = Pe
ig

R
dx−

ρ(xT ,x
−)

∇T
2

At τ = 0:

Ai
∣∣∣
τ=0

= Ai
(1) + Ai

(2)

Aη|τ=0 =
ig
2

[Ai
(1),A

i
(2)]

τ > 0 Solve numerically CYM equations [Dµ, Fµν ] = 0.
This is the glasma field =⇒ Then average over initial U’s.

Fix gauge, Fourier-decompose: gluon spectrum
Gluons with pT ∼ Qs — strings of size R ∼ 1/Qs



5/20

Gluon fields in AA collision

Classical Yang-Mills

η = cst.

t

z

x+x−

(3)

Aµ = ?

(4)

Aµ = 0

(2)

Aµ = pure gauge 2

(1)

Aµ = pure gauge 1

τ = cst.

2 pure gauges

Ai
(1,2) =

i
g

U(1,2)(xT )∂iU
†
(1,2)(xT )

U(1,2)(xT ) = Pe
ig

R
dx−

ρ(xT ,x
−)

∇T
2

At τ = 0:

Ai
∣∣∣
τ=0

= Ai
(1) + Ai

(2)

Aη|τ=0 =
ig
2

[Ai
(1),A

i
(2)]

τ > 0 Solve numerically CYM equations [Dµ, Fµν ] = 0.
This is the glasma field =⇒ Then average over initial U’s.

Fix gauge, Fourier-decompose: gluon spectrum
Gluons with pT ∼ Qs — strings of size R ∼ 1/Qs



6/20

Gluon spectrum in the glasma
T.L., Phys.Lett. B703 (2011) 325

Qs is only dominant scale

Parametrically gluon spectrum
dNg

dy d2xT d2pT

=
1
αs

f
(

pT

Qs

)
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Universality in the IR spectrum?
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I Gluon spectrum in the UV
depends on initial
condition

I IR seems to scale, close to

dN

d2pT

∼ 1
pT

How to probe pT . Qs?
Gauge invariant Wilson loop

W (A) =
1

Nc
Tr P exp

{
ig
∮

A
dxT · AT

}
A = area inside loop

2d lattice: links:

= Ui(xT ) = exp {igaAi}

W (A) =
1

Nc
Tr
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Measure Wilson loops
Dumitru, Nara, Petreska [arXiv:1302.2064], PRD 2013
& Dumitru, T.L., Nara [arXiv:1401.4124]

Calculation is simple:
I Construct initial glasma

fields at τ = 0 using e.g.
I MV model
I rcJIMWLK
I fcJIMWLK

(Try to have same Qsa to minimize
lattice effects)

I Evolve forward in τ

I Measure W (A)

0.1 1 10 100
AQ

s

2

0
0.

2
0.

4
0.

6
0.

8
1

W

JIMWLK Q
s
τ = 0

JIMWLK Q
s
τ = 2 ... 10

MV Q
s
τ = 0

MV Q
s
τ = 2 ... 10

Parametrize both UV (AQ2
s . 1) and IR (AQ2

s & 1) as

W = exp {−(σA)γ}

Fit is quite good: solid lines in figure.
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Fit to Wilson loop area dependence

W = exp {−(σA)γ} ⇐⇒ ln(− ln W ) = γln(AQ2
s ) + γ ln(σ/Q2

s )

0.1 1 10
AQ

s

2

-10

-5

0

ln
(-

ln
(W

))

MV Q
s
τ = 0

MV Q
s
τ = 1 ... 5

rc-J Q
s
τ = 0

rc-J Q
s
τ = 1 ... 5

fc-J Q
s
τ = 0

fc-J Q
s
τ = 1 ... 5

Main observations
I UV (small loop): initial slope γ stays
I IR (big loop): collapse to universal behavior
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Wilson loop scaling exponents

0 2 4 6 8 10
Q

s
τ

1
1.

2
1.

4
1.

6
1.

8
γ U

V

MV, 1024
MV, 2048
rc JIMWLK, 1024
rc JIMWLK, 2048
fc JIMWLK, 1024
fc JIMWLK 2048

UV (e−3.5 < AQ2
s < e−0.5)

Remembers initial condition

0 2 4 6 8 10
Q

s
τ

0.
6

0.
8

1
1.

2
1.

4
γ IR

MV, 1024
MV, 2048
rc JIMWLK, 1024
rc JIMWLK, 2048
fc JIMWLK, 1024
fc JIMWLK 2048

IR (e0.5 < AQ2
s < e5)

Initial conditions collapse to
γIR ≈ 1.2,

decreasing slowly with τ
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Magnetic field correlator
Wilson loop measures magnetic flux:

W (A) =
1

Nc
Tr P exp

{
ig
∮

A
dxT · AT

}
=

1
Nc

Tr exp
{

ig
∫

d2xT Bz(xT )

}
If magnetic field consists of uncorrelated Gaussian domains:

〈W (A)〉 = exp

{
−1

2
1

Nc
Tr

〈[∫
d2xT gBz(xT )

]2
〉}

=⇒ W (A) related to 〈B(xT )B(yT )〉
(No gauge fixing, but connect B(xT ) and B(yT ) with gauge link)

Check: compare
I Direct measurement of W (A)

I Reconstruction from
BB-correlator

good agreement.
0.1 1 10

Q
s
A/τ

0
0.

5
1

1.
5

2
W

Q
sA

/τ

MV, 1024
2
, Q

s
τ = 10

BB
MV, 2048

2
, Q

s
τ = 5

BB
rcJ, 1024, Q

s
τ = 10

BB
rcJ, 2048

2
, Q

s
τ = 5

BB
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The IR region: quasiparticle view
Work in progress with J. Peuron

0.25 1 4 16
p

T
/Q

s

adj
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0.2

0.4

0.6

0.8

1

1.2

p T

2  d
N

/d
2 p T

y = 0
y = 1.30
y = 2.59
y = 3.89
y = 5.18

I Perturbatively dN
d2pT
∼ 1

p2
T

I Numerically dN
d2pT
∼ 1

pT

=⇒ 2d thermal spectrum
I How to understand this in a

quasiparticle picture?
I How does this change with

isotropization: 2d→ 3d ?
The numerical calculation here uses

dN

d2kT

=
1
2

[
E i

a(kT )E i
a(−kT )

|kT |
+ |kT |Ai

a(kT )Ai
a(−kT )

]
(Plus appropriate explicit powers of τ in expanding coordinates)
This assumes a linear dispersion relation ω(kT ) = |kT |

Can one go beyond this? Measure ω(|kT |)?
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Dispersion relation in Glasma
Idea: E i

a(xT ) ≡ ∂tAi
a(xT ) =⇒ define gauge fixed

ω2(kT ) =

〈
E i

a(kT )E i
a(−kT )

〉
Coul〈

Ai
a(kT )Ai

a(−kT )
〉

Coul

(+ appropriate powers of τ in expanding coordinates)
Krasnitz, Venugopalan, hep-ph/0007108:
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+

� � � � �
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�
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�
� �

� �
�
�
�
� �

See clear mass gap

m2 ∼ g2µ

τ
g2µ ∼ Qs
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Guidelines from finite-T perturbation theory

Straightforward assumption:
mass gap related to Debye/plasmon mass scale.

How to measure it in CYM?
1. In a thermal plasma, the 1-loop plasmon mass is

ω2
pl =

4g2Nc

3

∫
d3k

(2π)2

f (k)

|k|

(One-loop gluon propagator, f : particle in loop)
Here classical field f (k) ∼ 1/g2, coupling drops out.

2. A homogenous color-E field oscillates at frequency ωpl
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Isotropic 3d classical system

I Goal: understand plasmon mass in
I purely 2d system
I anisotropic 3d

I First check: 3d isotropic nonexpanding classical case

Prepare initial gauge fields〈
Aa

i (p)Ab
j (q)

〉
=

n0

Vg2 δ
ijδab(2π)3δ(3)(p + q) exp

[
− p2

2∆2

]
Ea

i = 0

This corresponds to:

f (k) = n0
|k|
∆

exp

[
− k2

2∆2

]

Idea: clear mass scale ∆

Follow system to large t ,
but not to full equilibrium

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 0.1  0.2  0.4  0.8  1.6  3.2

k/
Δ

 f
(k

)

k/Δ

3D, Δ=0.3, n0=1.0, 1283

tΔ =90
t=0
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Plasmon mass in isotropic 3d classical system

Extract numerically the plasmon mass with the
I TFT formula ω2

pl ∼
∫

k f (k)/|k| (but assume ω(k) = |k| to define f )

I Insert homogenous E -field & measure oscillations in t

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.1  0.2  0.4  0.8  1.6  3.2

m
D

2
/(

n
0
Δ

2
)

n0

t Δ = 90

Δ=0.5 , TFT
Δ=0.5, UE
Δ=0.3, TFT
Δ=0.3, UE

Δ=0.2 , TFT
Δ=0.2, UE

(m2
D = 3ω2

pl)
OK up to factor ∼ 1.5

=⇒ need to project out longitudinal part of E-field
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Time dependence

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 5  25  125  625

m
D

2
/(

n
0
Δ

2
)

tΔ

Δ=0.5

n0=0.1
n0=0.5

n0=1
n0=1.5

n0=2
n0=3
n0=5

I For dilute system n0 . 1: very little time dependence
I Dense system: decrease due to UV cascade

(Nonexpanding system =⇒ thermalizes)
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Dispersion relation in nonexpanding 3d

3d system: possible gap in ω(k) seems not to agree with ωpl

 0.01

 0.1

 1

 10

 100

 0.01  0.1  1  10  100

ω
2
(k

)/
Δ

2

k2/Δ2

Δ=0.3, n0=5.0, tΔ=90

TFT
UE

Conclusion: in 3d cannot use E2/A2 to get mass gap



19/20

Dispersion relation in nonexpanding 2d
For 2d system agreement is much better:

 0.1

 1

 10

 0.01  0.1  1

ω
2
(k

)/
Δ

2

k2/Δ2

2D, Δ=0.3, n0=0.0589, tΔ=90, 10242x1

 0.1

 1

 10

 0.01  0.1  1

ω
2
(k

)/
Δ

2

k2/Δ2

2D, Δ=0.3, n0=1.197, tΔ=120 , 20482x1

TFT

TFT

Note, for 2d thermal

ω2
pl ∼

∫
k

f (k)/|k|

is log IR divergent for

f (k) ∼ δ(kz)/kT

=⇒ TFT formula shaky in 2d

Here IR not yet thermalized

 0
 0.005

 0.01
 0.015

 0.02
 0.025

 0.03
 0.035

 0.04
 0.045

 0.1  0.2  0.4  0.8  1.6  3.2

f(
k)

k/Δ

2D, Δ=0.3, n0=0.0598, 10242x1

tΔ =90
t=0
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Conclusions

I CYM initial state for AA collision
I Universal behavior in the for pT � Qs seen in gluon

spectrum
I Same universality seen in spatial Wilson loop
I Physics of Debye mass scale is very different in 2d and 3d

classical gauge theory.
I There is no real Debye screening in 2d thermal gauge theory

(KT transition)
I But numerically one observes a nice mass gap
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“String tension” coefficients

In expanding system fields naturally decrease as

τ � 1/Qs =⇒ Aµ ∼ 1/
√
τ =⇒ σ/Q2

s ∼ 1/(Qsτ)

Plot “string tension” σ as scaling variable στ/Qs

0 2 4 6 8 10
Q

s
τ

0
0.

1
0.

2
0.

3
0.

4
0.

5
0.

6
τσ

/Q
s (

U
V

)

MV, 1024
MV, 2048
rc JIMWLK, 1024
rc JIMWLK, 2048
fc JIMWLK, 1024
fc JIMWLK, 2048

UV: initial conditions differ

0 2 4 6 8 10
Q

s
τ

0
0.

1
0.

2
τσ

/Q
s (

IR
)

MV, 1024
MV, 2048
rc JIMWLK, 1024
rc JIMWLK, 2048
fc JIMWLK, 1024
fc JIMWLK, 2048

IR: σ universal within ∼ 10%

(Note: numerical value of σ/Q2
s depends on the convention used to define Qs)

At τ = 0: σ/Q2
s ≈ 0.55 . . . 0.6 (UV) and σ/Q2

s ≈ 0.35 . . . 0.45 (IR)



2/3

Magnetic field correlator

However: no obvious scaling
seen in BB-correlator

0 1 2 3
Q

s
r

-2

0

2

4

6

8

rC
B
(r

)/
Q

s3

MV, Q
s
τ = 0

MV, Q
s
τ = 10 (x 100)

rc JIMWLK, Q
s
τ = 0

rc JIMWLK, Q
s
τ = 10 (x 100)

Same on log plot

C(|xT−yT |) ≡ Tr
〈

[B(xT )B(yT )]gauge link

〉

0.5 1 2 4
Q

s
r

1e
-0

7
1e

-0
6

1e
-0

5
C

B
(r

)

MV
rc JIMWLK
fc JIMWLK
~ (rQ

s
)
-1.55

Straight line: ∼ (rQs)
−1.55.

(For C(r) ∼ (rQs)−α one would get γ = 2− α/2⇐⇒ α = 4− 2γ;
from W (A) measured γ = 1.22)
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Fluctuations and eigenvalue distributions

How are the Wilson lines distributed in SU(3)?

Fluctuations of ReW and ImW

10 100
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s

2

0
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5
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2 
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Re W
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Eigenvalue phase distribution:
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arg(λ)
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2
 = 17

AQ
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For large areas A both look like random SU(3) matrices:

σ2(ReW ) = σ2(ImW ) =
1

2Nc
2 P(ϕ ≡ arg(λ)) =

1
2π

(
1 +

2
3

cos 3ϕ
)
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