On the effective action in hydrodynamics

Pavel Kovtun, University of Victoria

arXiv: 1502.03076

August 2015, Seattle

Outline

Introduction

Effective action: Phenomenology

Effective action: Bottom-up

Effective action: Top-down

Questions

What is hydrodynamics?

Basic hydrodynamics

Symmetry \Rightarrow conservation laws

 ρ = number density, momentum density, energy density

Cooking ingredients

Variables: velocity, temperature, B fields, superfluids, liquid crystals, ...

Symmetries: Galilean, Lorentz, anomalies, external sources...

Derivative expansion: J=J(u,∂u,∂²u,...)

Constraints: Onsager relations, entropy current, ...

Predictions of hydro can be tested

PHYSICAL REVIEW A

VOLUME 1, NUMBER 1

JANUARY 1970

Decay of the Velocity Autocorrelation Function*

B. J. Alder and T. E. Wainwright

Lawrence Radiation Laboratory, University of California, Livermore, California 94550 (Received 10 July 1969)

Molecular-dynamic studies of the behavior of the diffusion coefficient after a long time s have shown that the velocity autocorrelation function decays as s^{-1} for hard disks and as $s^{-3/2}$ for hard spheres, at least at intermediate fluid densities. A hydrodynamic similarity solution

 $\langle v(t)v(0)\rangle \sim \frac{1}{t^{d/2}}$ hydrodynamics fails at *long* times

$$
D = \lim_{\omega \to 0} (D_0 + \text{const } \omega^{1/2}), \qquad d = 3
$$

$$
D = \lim_{\omega \to 0} (D_0 + \text{const } \ln \omega) \,, \qquad d = 2
$$

Want an incredible machine

Want an incredible machine

Main question

How do you build the incredible machine?

The point of the action is to provide a weight in the path integral.

The point of the path integral is to build the generating functional.

In a classical thermal system, path integral $=$ thermal fluctuations.

What is the action for that path integral?

Main question

How do you do low-energy effective field theory in a thermal state?

Outline

Introduction

Effective action: Phenomenology

Effective action: Bottom-up

Effective action: Top-down

Questions

Linear hydro fluctuations

Get $\langle \delta T \delta T \rangle$, $\langle \delta v^i \delta v^j \rangle$, $\langle T^{ij}T^{kl} \rangle$, Kubo formulas...

Non-linear hydro fluctuations

Example: viscosity in 3+1 dim

Total physical viscosity includes all such corrections

Function η + 1/η has a minimum, lower bound on η_{tot} ?

Small viscosity implies large corrections

Quark-gluon plasma at T≳Tc : corrections are large for η/s=0.08

Analogy with gravity

 $T_{\text{cl}}^{\mu\nu} = T_{(0)}^{\mu\nu} + T_{(1)}^{\mu\nu} + T_{(2)}^{\mu\nu} + \ldots$ Classical hydro: $G_{xy,xy}(\omega) = O(1) + O(\omega) + O(\omega^{3/2}) + O(\omega^2) + \dots$ $\left[\frac{1}{16\pi G}R + c_1R^2 + c_2R^{\mu\nu}R_{\mu\nu} + \dots \right]$:
1980 - Paul Barnett, amerikansk matematik
1980 - Paul Barnett, amerikansk matematik Classical gravity: $S =$ d^4x

$$
V(r) = -\frac{Gm_1m_2}{r} \left[1 + O\left(\frac{Gm}{r}\right) + O\left(\frac{G\hbar}{r^2}\right) + O(e^{-m_0r}) \right]
$$

 $m_0 \sim (c_i G)^{-1/2}$

−1*/*2 Classical: [Stelle 1978](http://dx.doi.org/10.1007/BF00760427) Quantum: [Bjerrum-Bohr, Donoghue, Holstein, 2002](http://arxiv.org/abs/hep-th/0211072)

Example: charge conductivity in 2+1 dim

2+1 dim: $\eta = \eta_0 + O(\ln \omega)$, $\sigma = \sigma_0 + O(\ln \omega)$

Running viscosity: $\eta(\lambda) \equiv \eta(\omega = \lambda)$, $\sigma(\lambda) \equiv \sigma(\omega = \lambda)$, $g_{\eta} \equiv \eta/s$, $g_{\sigma} \equiv \sigma T/\chi$

IR "fixed line" as ω→0 :

 η s = σT χ

These were bits and pieces of the machine

How do we build the full incredible machine?

Building machine: just add the noise

$$
\partial_{\mu} \left(T^{\mu \nu}_{\rm cl} + \tau^{\mu \nu} \right) = 0
$$

$$
T_{\rm cl}^{\mu\nu} = \epsilon u^\mu u^\nu + p\Delta^{\mu\nu} - G^{\mu\nu\alpha\beta}\partial_\alpha u_\beta
$$

 \blacktriangleright viscosities & projectors, standard Landau-Lifshitz hydro

$$
\langle \tau_{\mu\nu}(x)\tau_{\alpha\beta}(y)\rangle = 2TG_{\mu\nu\alpha\beta}\,\delta(x-y)
$$

Same G_{μναβ} for FDT in equilibrium

Get stochastic differential eq-s with multiplicative noise Discretization ambiguities...

Effective action for dissipative relativistic fluids

Integrate out the noise:

$$
S_{\text{eff}} = \int dt \, d^d x \left[i \partial_\mu \tilde{\phi}_\nu T_{\text{cl}}^{\mu\nu} + T \, \partial_\mu \tilde{\phi}_\nu \, G^{\mu\nu\lambda\sigma} \, \partial_\lambda \tilde{\phi}_\sigma + \sqrt{\mathcal{P}^{\text{op}}_{\text{Wiv}} \mathcal{P}^{\text{op}}}\right]
$$
\nexponentiating the Jacobian

Where is the derivative expansion?

Where is the "frame" invariance?

How to get all types of correlation functions?

Why is the noise Gaussian?

UV divergences?

Outline

Introduction

Effective action: Phenomenology

Effective action: Bottom-up

Effective action: Top-down

Questions

FInite-temperature field theory

$$
G^{\rm Ret} = -i \langle \varphi_r \varphi_a \rangle
$$

$$
G^{\rm Adv} = -i \langle \varphi_a \varphi_r \rangle
$$

$$
G^{\rm Symm} = 2 \langle \varphi_r \varphi_r \rangle
$$

Example: diffusion

$$
G_{nn}^{\text{Ret}} = \frac{D\chi k^2}{i\omega - Dk^2}, \quad G_{nn}^{\text{Adv}} = \frac{-D\chi k^2}{i\omega + Dk^2}, \quad G_{nn}^{\text{Symm}} = \frac{4TD\chi k^2}{\omega^2 + (Dk^2)^2}
$$

i ω -Dk² from diffusion eqn ∂_t n-D ∇^2 n=0

 $\chi = (\partial n/\partial \mu)_{\mu=0}$ susceptibility, from coupling to the source

T=temperature, from FDT

A: Such S_{eff} is easy to find, but it is non-local.

Diffusion: effective action

Add auxiliary fields

- Add external sources
- Make Lorentz-invariant

Make r- and a-gauge invariant

$$
Z[A_r, A_a] = \int D\phi_r D\phi_a e^{iS[\phi_r, \phi_a, A_r, A_a]}
$$

$$
S = \int dt d^d x \left(J_{\text{cl}}^{\mu} [\phi_r, A_r] D_{\mu} \phi_a + i T \sigma \Delta^{\mu \nu} D_{\mu} \phi_a D_{\nu} \phi_a \right)
$$

hydro current $\int \int$
 \int
 \int
 physical gauge field
set to zero at the end

This gives all $\langle J_\mu J_\nu\rangle^{\mathcal{R},A,S}$ in equilibrium

Linear hydro: effective action

$$
Z[h_r, h_a] = \int D\phi^r_\mu D\phi^a_\mu e^{iS[\phi^r, \phi^a, h_r, h_a]}
$$

This gives all $\langle T_{\mu\nu} T_{\alpha\beta} \rangle^{R,A,S}$ in equilibrium

Whatever S_{eff} is, it must reduce to this near equilibrium

Full hydro effective action?

$$
S = \int dt \, d^d x \, \sqrt{-g_r} \left(T_{\text{cl}}^{\mu\nu} [\phi_r, g_r] \mathcal{D}_{\mu} \phi_{\nu}^a + iT \, \mathcal{D}_{\mu} \phi_{\nu}^a \, G^{\mu\nu\alpha\beta} \mathcal{D}_{\alpha} \phi_{\beta}^a \right)
$$

Small fluctuations only (2-point functions)

Derivative expansion not obvious

Need to understand the symmetries

Outline

Introduction

Effective action: Phenomenology

Effective action: Bottom-up

Effective action: Top-down

Questions

Effective action: first pass

Near equilibrium $\beta^{\mu} = \bar{\beta}^{\mu} + \beta^{\prime \mu}$

Choose $T=1/(-\beta \cdot \beta)^{1/2}$, $u^{\mu}=T\beta^{\mu}$ as variables

Derivative expansion:

$$
\Gamma = \int dt \, d^d x \, \sqrt{-g} \, \left(p(T) + a(T) \nabla \cdot u + b(T) \dot{T} + \dots \right)
$$

Vary w.r.t. g, keep β fixed:

$$
T^{\mu\nu} = pg^{\mu\nu} + Tp'u^{\mu}u^{\nu} + (b-a')\left(\Delta^{\mu\nu}\dot{T} - Tu^{\mu}u^{\nu}\nabla\cdot u\right)
$$

normal perfect fluid
can be set to zero by a frame choice

No dissipation here

Symmetries

CTP generating functional:

$$
Z_{\rho}[j_1,j_2] = \int d\tilde{q}_1 d\tilde{q}_2 dq_f \langle \tilde{q}_1 | \rho | \tilde{q}_2 \rangle \int_{\tilde{q}_1}^{q_f} Dq_1 \int_{\tilde{q}_2}^{q_f} Dq_2 e^{i \int_{t_0}^{t_f} L(q_1,j_1) - i \int_{t_0}^{t_f} L(q_2,j_2)}
$$

1. Local symmetries:

$$
Z_{\rho}[j_1, j_2] = Z_{\rho'}[j_1 + \delta_{\xi_1} j_1, j_2 + \delta_{\xi_2} j_2]
$$

2. Can use r,a variables: $q_r=(q_1+q_2)/2$, $q_a=q_1-q_2$

$$
S[q_1, j_1] - S[q_2, j_2] = \int q_a \, EOM(q_r, j_r) + O(j_a, q_a^2)
$$

3. Normalization:

$$
Z_\rho[j_1,j_1]=1
$$

Conservation laws: 1 and 2

$$
\delta_g W[g^1, g^2] = \int \frac{1}{2} \sqrt{-g^1} \langle T_1^{\mu\nu} \rangle \delta g^1_{\mu\nu} - \int \frac{1}{2} \sqrt{-g^2} \langle T_2^{\mu\nu} \rangle \delta g^2_{\mu\nu}
$$

$$
\delta g^1_{\mu\nu} = g^1_{\mu\lambda} \partial_\nu \xi_1^\lambda + g^1_{\nu\lambda} \partial_\mu \xi_1^\lambda + \partial_\lambda g^1_{\mu\nu} \xi_1^\lambda, \quad \delta g^2_{\mu\nu} = g^2_{\mu\lambda} \partial_\nu \xi_2^\lambda + g^2_{\nu\lambda} \partial_\mu \xi_2^\lambda + \partial_\lambda g^2_{\mu\nu} \xi_2^\lambda
$$

Diffeo invariance of $W[g^1,g^2]$ gives

$$
\nabla^1_\mu \langle T_1^{\mu\nu} \rangle = 0 \,, \ \ \nabla^2_\mu \langle T_2^{\mu\nu} \rangle = 0
$$

not useful b/c hydro variables are r-fields

Conservation laws: r and a

 $g^r \equiv \frac{1}{2}$ **Define r- and a-sources:** $g^r \equiv \frac{1}{2} (g^1 + g^2)$, $g^a \equiv g^1 - g^2$

physical metric set to zero at the end

 $\sqrt{-g^{r}}\left\langle T_{r}^{\mu\nu}\right\rangle \equiv\frac{1}{2}\sqrt{-g^{1}}\left\langle T_{1}^{\mu\nu}\right\rangle +\frac{1}{2}\sqrt{-g^{2}}\left\langle T_{2}^{\mu\nu}\right\rangle$ $\sqrt{-g^{r}}\left\langle T_{a}^{\mu\nu}\right\rangle \equiv\sqrt{-g^{1}}\left\langle T_{1}^{\mu\nu}\right\rangle -\sqrt{-g^{2}}\left\langle T_{2}^{\mu\nu}\right\rangle$ physical stress tensor

Diffeo invariance of $W[g^1,g^2]$ gives

$$
\left[g_{\nu\lambda}^r\nabla_\mu\langle T_r^{\mu\nu}\rangle+\tfrac{1}{4}\left(g_{\nu\lambda}^a\partial_\mu\langle T_a^{\mu\nu}\rangle+\Gamma^a_{\lambda\mu\nu}\langle T_a^{\mu\nu}\rangle+g_{\nu\lambda}^a\Gamma^{\rho\ r}_{\rho\mu}T_a^{\mu\nu}\right)=0\,,\right.\\\left.g_{\nu\lambda}^r\nabla_\mu\langle T_a^{\mu\nu}\rangle+g_{\nu\lambda}^a\partial_\mu\langle T_r^{\mu\nu}\rangle+\Gamma^a_{\lambda\mu\nu}\langle T_r^{\mu\nu}\rangle+g_{\nu\lambda}^a\Gamma^{\rho\ r}_{\rho\mu}\langle T_r^{\mu\nu}\rangle=0\right.\\\left.\left.\Gamma_{\lambda\mu\nu}=\tfrac{1}{2}(\partial_{\mu}g_{\nu\lambda}+\partial_{\nu}g_{\mu\lambda}-\partial_{\lambda}g_{\mu\nu}),\right.\right.\left.\nabla_\mu\equiv\nabla_\mu^r\right.
$$

Main problem

To manifest the symmetries, need 1- and 2-fields

To write down hydro e.o.m., need r- and a-fields

A proposal

Realize the symmetries as if $D_1 \times D_2 \rightarrow D_r$

Dr manifest in hydro

*a-*type d.o.f. ξ^a →φa look like Goldstone bosons

Structure of the effective action

$$
S_{\text{eff}} = \mathcal{I}_r + \mathcal{J}_r \mathcal{D}\varphi_a + \mathcal{K}_r (\mathcal{D}\varphi_a)^2 + \dots
$$

\n
$$
\begin{bmatrix}\n\vdots \\
\vdots \\
\varphi_a\n\end{bmatrix}
$$

\n
$$
O(a^0)
$$

\n
$$
O(a^0)
$$

\n
$$
O(a^2)
$$

I_r: contains thermodynamics

J_r: classical hydro equations

Kr: responsible for FDT

Different orders in the a-expansion are not independent

Effective action for the neutral fluid

Up to $O(a)$ can work with r- and a-diffeos instead of 1- and 2-diffeos

Variables:

 βμ vector under *r*, singlet under *a* ϕ*^a ^μ* vector under *r*, shifts under *a*

Data to construct S_{eff}:

$$
T=1/\sqrt{-\beta\!\cdot\!\beta}
$$

$$
u^\mu = \beta^\mu/\sqrt{-\beta \!\cdot\!\beta}
$$

$$
g_{\mu\nu}^r
$$

$$
\xi^a_{\mu\nu} \equiv g^a_{\mu\nu} - \nabla_{\!\mu} \varphi^a_\nu - \nabla_{\!\nu} \varphi^a_\mu
$$

Effective action for the neutral fluid

Scalars up to $O(a)$ and $O(\partial^0)$:

$$
\alpha_1 \equiv T, \ \alpha_2 \equiv u^{\mu} u^{\nu} \xi_{\mu\nu}^a, \ \alpha_3 \equiv g_r^{\mu\nu} \xi_{\mu\nu}^a
$$

Scalars up to $O(a)$ and $O(\partial)$:

 $\dot{\alpha}_i\,,\,\,\nabla_\mu u^\mu\,,\,\,u^\mu\xi^a_{\mu\nu}\nabla^\nu T\,,\,\,\xi^a_{\mu\nu}\nabla^\mu u^\nu\,,\,\,u^\mu\xi^a_{\mu\nu}\dot{u}^\nu\,,\,\,u^\mu u^\nu\dot{\xi}^a_{\mu\nu}\,,\,\,u^\mu\nabla^\nu\xi^a_{\mu\nu}$

integrate by parts

Effective action up to $O(a)$ and up to $O(\partial)$:

$$
S = \int \sqrt{-g_r} \left[F + f_1 \dot{T} + f_2 \nabla_\mu u^\mu + f_3 \, \xi^a_{\mu\nu} u^{(\mu} \nabla^\nu) T + f_4 \xi^a_{\mu\nu} \nabla^{(\mu} u^{\nu)} + f_5 \xi^a_{\mu\nu} u^{(\mu} \dot{u}^{\nu)} \right] + O(a^2)
$$

This does describe the most general dissipative fluid

Energy-momentum tensor from the effective action

$$
S_{\text{eff}} = O(a^0) + \int \frac{1}{2} \sqrt{-g_r} T_r^{\mu\nu} \left(g_{\mu\nu}^a - \nabla_\mu \varphi_\nu^a - \nabla_\nu \varphi_\mu^a \right) + O(a^2)
$$

$$
T_r^{\mu\nu} = \mathcal{E}u^{\mu}u^{\nu} + \mathcal{P}\Delta^{\mu\nu} + (q^{\mu}u^{\nu} + q^{\nu}u^{\mu}) + t^{\mu\nu}
$$

 $\mathcal{E}, \mathcal{P}, q^{\mu}, t^{\mu\nu}$ made out of $F(\alpha_j), f_i(\alpha_j)$

This is the standard dissipative fluid in a general frame:

$$
\epsilon(T) = 2\frac{\partial F}{\partial \alpha_2} - 2\frac{\partial F}{\partial \alpha_3}, \quad p(T) = 2\frac{\partial F}{\partial \alpha_3}
$$

η=−f4, *ς=*(combination of *f1',f2',f3,f4*)

To sum up

$$
S_{\text{eff}} = \mathcal{I}_r + \mathcal{J}_r \mathcal{D} \varphi_a + \mathcal{K}_r (\mathcal{D} \varphi_a)^2 + \dots
$$

\n
$$
\downarrow \qquad \qquad \downarrow
$$

\n
$$
O(a^0) \qquad O(a) \qquad O(a^2)
$$

S_{eff} up to O(a), up to O(∂) gives the standard dissipative hydro

Can generalize to charged fluids, with external gauge fields

Can presumably repeat up to $O(\partial^2)$, get 2nd order hydro

Outline

Introduction

Effective action: Phenomenology

Effective action: Bottom-up

Effective action: Top-down

Questions

Where is the FDT?

We only went to $O(a)$, using r- and a- diffeo invariance FDT appears at $O(a^2)$

But it's not legit to use r- and a-diffeo invariance beyond $O(a)$ So need S_{eff} in terms of 1- and 2-variables... what are they?

Example: $U(1)_1 \times U(1)_2 \rightarrow U(1)_r$

Break to the diagonal subgroup, one Goldstone:

$$
\mathcal{L} = v^2 (\partial_\mu \varphi + Z_\mu)(\partial^\mu \varphi + Z^\mu) + \text{(massive)}
$$

$$
\Delta^1_\mu - A^2_\mu
$$

Naive derivative expansion for φ does not know about $U(1)\times U(1)$ Realizing $U(1)\times U(1)$ requires the "Higgs", a "non-hydro" mode

Other questions

$$
S_{\text{eff}} = \mathcal{I}_r + \mathcal{J}_r \, \mathcal{D}\varphi_a + \mathcal{K}_r \, (\mathcal{D}\varphi_a)^2 + \ldots
$$

Ir, Jr, Kr appear at different orders in the derivative expansion, but they are not independent

Constraints coming from the entropy current or from the existence of equilibrium are not obvious

Integration measure for r-fields is not clear: remember \mathbb{N}^{∞}

Related work

The "eightfold" way

Haehl, Loganayagam, Rangamani, arXiv: 1502.00636

 Classify transport coefficients in *classical* hydro Non-dissipative transport follows from an effective action Impose extra $U(1)$ _T gauge invariance for adiabaticity and 2nd law Double the d.o.f. similar to the CTP formalism Coupling between 1- and 2-sectors unclear

Conclusions

Effective action for near-equilibrium states is not obvious: are thermal fluctuations really harder than quantum fluctuations?

Double the d.o.f.

Non-linear realization of the doubled symmetry

May need "high-energy" fields (1 and 2) in the effective theory

If you know how to construct the effective theory, please tell me!

Thank you!