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What is hydrodynamics?

all here



Basic hydrodynamics

Symmetry ⇒ conservation laws

∂ρ

∂t
= −∇ · J

conserved density

spatial current

ρ = number density, momentum density, energy density



Cooking ingredients

Variables: velocity, temperature, B fields, superfluids, 
liquid crystals, ...

Symmetries: Galilean, Lorentz, anomalies, external 
sources...

Derivative expansion: J=J(u,∂u,∂2u,...)

Constraints: Onsager relations, entropy current, ...



Predictions of hydro can be tested

hydrodynamics fails at long times



Want an incredible machine

state

all orderings: partially retarded etc
knows about FDT
good for ω,k→0

knows about long-time tails



Want an incredible machine

state

all orderings: partially retarded etc
knows about FDT
good for ω,k→0

knows about long-time tails

W[g]=∫DΦ exp(iSeff[Φ,g])

Q: what are Φ, g, and Seff ?



Main question

How do you build the incredible machine?

The point of the action is to provide a weight in the path integral.

The point of the path integral is to build the generating functional.

In a classical thermal system, path integral = thermal fluctuations.

What is the action for that path integral?



Main question

How do you do low-energy effective field theory 
in a thermal state?
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Linear hydro fluctuations

Tij = T cl
ij + τij

Gaussian noise �τij(x)τkl(y)� = 2TGijkl δ(x−y)

Solve ∂µT
µν = 0 δvi = δvi[τ ], δT = δT [τ ]

Get〈δT δT〉, 〈δvi δvj〉, 〈TijTkl〉, Kubo formulas...

all here



Non-linear hydro fluctuations

T ij = · · ·+ (�+p)vivj + · · ·+ τ ij

linear leading non-linear,
no derivatives term

higher order

〈Txy Txy〉= 2Tη  + (ε+p) (ε+p)

〈δv δv〉

〈δv δv〉

x

y

!

"



Example: viscosity in 3+1 dim

�TxyTxy�R = p+O(Λ3
T )− iω

�
η +

17T 2Λ

120π2η/s

�
+O

�
ω3/2

(η/s)3/2

�
+O(ω2)

0-th order classical 1-st order classical 2-nd order classical

correction to p correction to η cutoff-independent

Total physical viscosity includes all such corrections

Function η + 1/η has a minimum, lower bound on ηtot?

Small viscosity implies large corrections

Quark-gluon plasma at T≳Tc :  corrections are large for η/s=0.08



Analogy with gravity

Tµν
cl = Tµν

(0) + Tµν
(1) + Tµν

(2) + . . .

Gxy,xy(ω) = O(1) +O(ω) +O(ω3/2) +O(ω2) + . . .

Classical hydro:

Classical gravity: S =

�
d4x

�
1

16πG
R+ c1R

2 + c2R
µνRµν + . . .

�

V (r) = −Gm1m2

r

�
1 +O

�
Gm

r

�
+O

�
G�
r2

�
+O(e−m0r)

�

m0 ∼ (ciG)−1/2 Classical: Stelle 1978
Quantum: Bjerrum-Bohr, Donoghue, Holstein, 2002

http://dx.doi.org/10.1007/BF00760427
http://dx.doi.org/10.1007/BF00760427
http://arxiv.org/abs/hep-th/0211072
http://arxiv.org/abs/hep-th/0211072


Example: charge conductivity in 2+1 dim

2+1 dim:   η=η0+O(lnω),  σ=σ0+O(lnω)

0 1 2 3 4

Η

s
0

1

2

3

4

Σ T
Χ

η

s
=

σT

χ

Running viscosity:

s/T2, counts d.o.f.

η(λ) ≡ η(ω=λ) , σ(λ) ≡ σ(ω=λ) , gη ≡ η/s , gσ ≡ σT/χ

IR “fixed line” as ω→0 :

λ
∂gη
∂λ

= − 1

16πc

1

gη
,

λ
∂gσ
∂λ

= − 1

8πc

1

gσ + gη



These were bits and pieces of the machine

How do we build the full incredible machine?



Building machine: just add the noise

∂µ (T
µν
cl + τµν) = 0

Tµν
cl = �uµuν + p∆µν −Gµναβ∂αuβ

viscosities & projectors,
standard Landau-Lifshitz hydro

�τµν(x)ταβ(y)� = 2TGµναβ δ(x−y)

same Gμναβ for FDT in equilibrium

Get stochastic differential eq-s with multiplicative noise

Discretization ambiguities...



Effective action for dissipative relativistic fluids

Where is the derivative expansion?

Where is the “frame” invariance?

How to get all types of correlation functions?

Why is the noise Gaussian?

UV divergences?

Integrate out the noise:

Seff =

�
dt ddx

�
i∂µφ̃ν T

µν
cl + T ∂µφ̃ν G

µνλσ ∂λφ̃σ+
�

exponentiating the Jacobian
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FInite-temperature field theory

0

-iβ

ϕr = 1
2 (ϕ1 + ϕ2)

ϕa = ϕ1 − ϕ2

GRet = −i�ϕrϕa�

GAdv = −i�ϕaϕr�

GSymm = 2�ϕrϕr�



Example: diffusion

χ=(∂n/∂μ)μ=0 susceptibility, from coupling to the source

T=temperature, from FDT

iω-Dk2  from diffusion eqn ∂tn-D∇2n=0

Q:  What is Seff[φr,φa] which gives                            

     in ∫DφrDφa exp[iSeff]...?

GRet
nn = −i�ϕrϕa�

GAdv
nn = −i�ϕaϕr�

GSymm
nn = 2�ϕrϕr�

GRet
nn =

Dχk2

iω −Dk2
, GAdv

nn =
−Dχk2

iω +Dk2
, GSymm

nn =
4TDχk2

ω2 + (Dk2)2

A:  Such Seff is easy to find, but it is non-local.



Diffusion: effective action

Add auxiliary fields

Add external sources

Make Lorentz-invariant

Make r- and a-gauge invariant

Z[Ar, Aa] =

�
DφrDφa eiS[φr,φa,Ar,Aa]

S =

�
dt ddx (Jµ

cl[φr, Ar]Dµφa + iTσ∆µνDµφaDνφa)

∂µφa +Aa
µphysical gauge fieldhydro current

set to zero at the end

This gives all <Jμ Jν>R,A,S in equilibrium

n or μ



Linear hydro: effective action

This gives all <Tμν Tαβ>R,A,S in equilibrium

Z[hr, ha] =

�
Dφr

µDφa
µ eiS[φr,φa,hr,ha]

physical metrichydro E-M tensor

set to zero at the end

βμ 
1
2

�
ha
µν −∇r

µφ
a
ν −∇r

ν φ
a
µ

�

Whatever Seff is, it must reduce to this near equilibrium

S =

�
dt ddx

√
−gr

�
Tµν
cl [φr, gr]Dµφ

a
ν + iT Dµφ

a
ν G

µναβDαφ
a
β

�



Full hydro effective action?

Small fluctuations only (2-point functions)

Derivative expansion not obvious

Need to understand the symmetries

S =

�
dt ddx

√
−gr

�
Tµν
cl [φr, gr]Dµφ

a
ν + iT Dµφ

a
ν G

µναβDαφ
a
β

�
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Effective action: first pass

Γ =

�
dt ddx

√
−g

�
p(T ) + a(T )∇·u+ b(T )Ṫ + . . .

�

Near equilibrium

Choose T=1/(-β⋅β)1/2 , uμ=Tβμ as variables

Derivative expansion:

βµ = β̄µ + β�µ

Vary w.r.t. g, keep β fixed: 

Tµν = pgµν + Tp�uµuν + (b−a�)
�
∆µν Ṫ − Tuµuν∇·u

�

normal perfect fluid
can be set to zero by a frame choice

No dissipation here



Symmetries

Zρ[j1, j2] =

�
dq̃1 dq̃2 dqf �q̃1|ρ|q̃2�

� qf

q̃1

Dq1

� qf

q̃2

Dq2 ei
� tf
t0

L(q1,j1)−i
� tf
t0

L(q2,j2)

CTP generating functional:

2. Can use r,a variables: qr=(q1+q2)/2,  qa=q1-q2 

S[q1, j1]− S[q2, j2] =

�
qa EOM(qr, jr) +O(ja, q

2
a)

1. Local symmetries:

Zρ[j1, j2] = Zρ� [j1 + δξ1j1, j2 + δξ2j2]

3. Normalization:
Zρ[j1, j1] = 1



Conservation laws: 1 and 2

δgW [g1, g2] =

�
1
2

�
−g1 �Tµν

1 �δg1µν −
�

1
2

�
−g2 �Tµν

2 �δg2µν

δg1µν = g1µλ∂νξ
λ
1 + g1νλ∂µξ

λ
1 + ∂λg

1
µν ξ

λ
1 , δg2µν = g2µλ∂νξ

λ
2 + g2νλ∂µξ

λ
2 + ∂λg

2
µν ξ

λ
2

∇1
µ�T

µν
1 � = 0 , ∇2

µ�T
µν
2 � = 0

not useful b/c hydro
variables are r-fields

Diffeo invariance of  W[g1,g2] gives



Conservation laws: r and a

grνλ∇µ�Tµν
r �+ 1

4

�
gaνλ∂µ�Tµν

a �+ Γa
λµν�Tµν

a �+ gaνλΓ
ρ r
ρµ T

µν
a

�
= 0 ,

grνλ∇µ�Tµν
a �+ gaνλ∂µ�Tµν

r �+ Γa
λµν�Tµν

r �+ gaνλΓ
ρ r
ρµ �Tµν

r � = 0

Γλµν =
1

2
(∂µgνλ + ∂νgµλ − ∂λgµν) , ∇µ ≡ ∇r

µ

gr ≡ 1
2

�
g1 + g2

�
, ga ≡ g1 − g2

√
−gr �Tµν

r � ≡ 1
2

�
−g1 �Tµν

1 �+ 1
2

�
−g2 �Tµν

2 �
√
−gr �Tµν

a � ≡
�

−g1 �Tµν
1 � −

�
−g2 �Tµν

2 �

Define r- and a-sources: 
physical metric set to zero at the end

physical stress tensor

Diffeo invariance of  W[g1,g2] gives



Main problem

To manifest the symmetries, need 1- and 2-fields

 To write down hydro e.o.m., need r- and a-fields



A proposal

Realize the symmetries as if D1×D2→Dr 

Dr manifest in hydro

a-type d.o.f. ξa →φa look like Goldstone bosons



Structure of the effective action

Seff = Ir + Jr Dϕa +Kr (Dϕa)
2 + . . .

O(a0) O(a) O(a2)

Ir: contains thermodynamics

Jr: classical hydro equations

Kr: responsible for FDT

Different orders in the a-expansion are not independent



Effective action for the neutral fluid

Up to O(a) can work with r- and a-diffeos instead of 1- and 2-diffeos

Variables:

     βμ vector under r, singlet under a 

     ϕaμ vector under r, shifts under a 

Data to construct Seff :

T = 1/
�
−β·β

uµ = βµ/
�

−β·β

grµν

ξaµν ≡ gaµν −∇µϕ
a
ν −∇νϕ

a
µ



Effective action for the neutral fluid

Scalars up to O(a) and O(∂0): 

Scalars up to O(a) and O(∂): 

α1 ≡ T, α2 ≡ uµuνξaµν , α3 ≡ gµνr ξaµν

α̇i , ∇µu
µ , uµξaµν∇νT , ξaµν∇µuν , uµξaµν u̇

ν , uµuν ξ̇aµν , uµ∇νξaµν

Effective action up to O(a) and up to O(∂): 
integrate by parts

S =

� √
−gr

�
F + f1Ṫ + f2∇µu

µ + f3 ξ
a
µνu

(µ∇ν)
T + f4ξ

a
µν∇(µ

u
ν) + f5ξ

a
µνu

(µ
u̇
ν)
�
+O(a2)

This does describe the most general dissipative fluid



Energy-momentum tensor from the effective action

Seff = O(a0) +

�
1
2

√
−gr T

µν
r

�
g
a
µν −∇µϕ

a
ν −∇νϕ

a
µ

�
+O(a2)

Tµν
r = Euµuν + P∆µν + (qµuν + qνuµ) + tµν

E, P, qμ, tμν made out of F(αj), fi(αj)

This is the standard dissipative fluid in a general frame:

η=−f4,  ς=(combination of f1’,f2’,f3,f4)

�(T ) = 2
∂F

∂α2
− 2

∂F

∂α3
, p(T ) = 2

∂F

∂α3



To sum up

Seff up to O(a), up to O(∂) gives the standard dissipative hydro

Can generalize to charged fluids, with external gauge fields

Can presumably repeat up to O(∂2), get 2nd order hydro

Seff = Ir + Jr Dϕa +Kr (Dϕa)
2 + . . .

O(a0) O(a) O(a2)

ta-da!!!
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Where is the FDT?

We only went to O(a), using r- and a- diffeo invariance

FDT appears at O(a2)

But it’s not legit to use r- and a-diffeo invariance beyond O(a)

So need Seff in terms of 1- and 2-variables... what are they? 



Example: U(1)1×U(1)2→U(1)r 

Break to the diagonal subgroup, one Goldstone:

L = v2(∂µϕ+ Zµ)(∂
µϕ+ Zµ) + (massive)

A1
µ −A2

µ

Naive derivative expansion for φ does not know about U(1)×U(1)

Realizing U(1)×U(1) requires the “Higgs”, a “non-hydro” mode



Other questions

Seff = Ir + Jr Dϕa +Kr (Dϕa)
2 + . . .

Ir, Jr, Kr appear at different orders in the derivative expansion, 
but they are not independent

Constraints coming from the entropy current or from the 
existence of equilibrium are not obvious

Integration measure for r-fields is not clear: remember         ?



Related work

The “eightfold” way 

  Classify transport coefficients in classical hydro

  Non-dissipative transport follows from an effective action

  Impose extra U(1)T gauge invariance for adiabaticity and 2nd law

  Double the d.o.f. similar to the CTP formalism

  Coupling between 1- and 2-sectors unclear

Haehl, Loganayagam, Rangamani, arXiv:1502.00636

http://arxiv.org/abs/1502.00636
http://arxiv.org/abs/1502.00636


Conclusions

Effective action for near-equilibrium states is not obvious: are 
thermal fluctuations really harder than quantum fluctuations?

Double the d.o.f. 

Non-linear realization of the doubled symmetry

May need “high-energy” fields (1 and 2) in the effective theory

If you know how to construct the effective theory, 
please tell me!



Thank you!


