Thermalization of mini-jets in a quark-gluon plasma

Edmond Iancu IPhT Saclay & CNRS

recent work with Bin Wu, arXiv:1506.07871 [hep-ph]

building upon previous work w/ J.-P. Blaizot, F. Dominguez, Y. Mehtar-Tani

Jet quenching in heavy ion collisions

- Hard processes in QCD typically create pairs of partons which propagate back-to-back in the transverse plane
- In the vacuum, this leads to a pair of symmetric jets
- In a dense medium, the two jets can be differently affected by their interactions with the surrounding medium: 'di-jet asymmetry'

• The ensemble of medium-induced modifications: 'jet quenching'

Di-jets in p+p collisions at the LHC

Di-jet asymmetry (ATLAS)

- Central Pb+Pb: 'mono-jet' events
- The secondary jet cannot be distinguished from the background: $E_{T1} \ge 100$ GeV, $E_{T2} > 25$ GeV

Thermalization of mini-jets

Di-jet asymmetry at the LHC (CMS)

- Additional energy imbalance as compared to p+p : 20 to 30 GeV
- Compare to the typical scale in the medium: $T \sim 1$ GeV (average p_{\perp})
- A remarkable pattern for the energy loss:

many soft ($p_{\perp} < 2$ GeV) hadrons propagating at large angles

A challenge for the theorists

- Can one understand these data from first principles (QCD) ?
 - how gets the energy transmitted from the leading particle to these many soft quanta ?
 - do these soft quanta thermalize ? is the medium locally heated ?
 - is all that consistent with weak coupling ?
- Very different from the branching pattern for a jet in the vacuum

- quasi-collinear splittings
- pQCD: DGLAP equation
- $\bullet\,$ energy carried by a few partons with large x
- energy remains within a narrow jet

A challenge for the theorists

- Can one understand these data from first principles (QCD) ?
 - how gets the energy transmitted from the leading particle to these many soft quanta ?
 - do these soft quanta thermalize ? is the medium locally heated ?
 - is all that consistent with weak coupling ?
- Medium-induced branching looks indeed very different !

- $\bullet \ \ \text{multiple scattering} \Longrightarrow \mathsf{LPM} \ \text{effect}$
- quasi-democratic branchings
- wave turbulence: very efficient energy transmission from large x to small x
- efficient thermalization of the small-x quanta via collisions with the medium

Medium-induced gluon branching

Baier, Dokshitzer, Mueller, Peigné, and Schiff; Zakharov (96–97); Wiedemann (2000); Arnold, Moore, and Yaffe (2002–03); ...

- Incoming particle: an energetic gluon with $p = p_z \gg T$
- Multiple soft scattering \implies momentum broadening

- Transverse kicks provide acceleration and thus allow for radiation
- Gluon emissions require a formation time $t_{
 m f}\simeq\omega/k_{\perp}^2$

ullet During formation, the gluon acquires a momentum $k_{\perp}^2 \sim \hat{q} t_{
m f}$

INT Seattle 2015

Thermalization of mini-jets

Formation time & emission angle

$$t_{
m f}(\omega)\simeq \sqrt{rac{\omega}{\hat{q}}} \qquad \& \qquad heta_{
m f}(\omega)\simeq \; rac{\sqrt{\hat{q}t_{
m f}}}{\omega}\sim \left(rac{\hat{q}}{\omega^3}
ight)^{1/4}$$

This mechanism applies so long as

 $\lambda \ll t_{\rm f}(\omega) \leq L \implies T \ll \omega \leq \omega_c \equiv \hat{q}L^2$

• Soft gluons : short formation times & large emission angles

The emission angle keeps increasing with time, via rescattering

Formation time & emission angle

$$t_{
m f}(\omega)\simeq \sqrt{rac{\omega}{\hat{q}}}$$
 & & $heta_{
m f}(\omega)\simeq ~rac{\sqrt{\hat{q}t_{
m f}}}{\omega}\sim \left(rac{\hat{q}}{\omega^3}
ight)^{1/4}$

This mechanism applies so long as

 $\lambda \ll t_{\rm f}(\omega) \leq L \implies T \ll \omega \leq \omega_c \equiv \hat{q}L^2$

• Soft gluons : short formation times & large emission angles

• Emissions can effectively be treated as collinear

Democratic branchings

• Probability for a branching $p \to \{xp, (1-x)p\}$ to occur during Δt

$$\Delta \mathcal{P} \sim \alpha_s \, \frac{\Delta t}{t_{\rm f}} \sim \, \alpha_s \, \sqrt{\frac{\hat{q}}{xp}} \, \Delta t$$

- LPM effect : the emission rate decreases with increasing $\omega=xp$
 - coherence: many collisions contribute to a single, hard, emission
- The probability becomes large for either ...
 - soft splittings : $x \ll 1$ (for generic p) ...
 - ... or democratic splittings $(x \sim 1/2)$ but soft parent gluon (small p)

Democratic branchings

• Probability for a branching $p \to \{xp, (1-x)p\}$ to occur during Δt

$$\Delta \mathcal{P} \sim \alpha_s \, \frac{\Delta t}{t_{\rm f}} \sim \, \alpha_s \, \sqrt{\frac{\hat{q}}{xp}} \, \, \Delta t$$

- Compare to bremsstrahlung in the vacuum : $\Delta \mathcal{P} \sim lpha_s \ln(1/x)$
 - large probability for soft splittings alone
- Democratic branchings are known to be important at strong coupling (Y. Hatta, E.I., Al Mueller '08)
 - high density can mimic strong coupling

Democratic cascades

- \bullet When probability for one branching $\sim \mathcal{O}(1) \Rightarrow$ multiple branching
- Consider first quasi-democratic branchings : $x\sim 1/2$

- $t_{\rm br}(p) =$ 'gluon lifetime' : the time it takes a gluon with energy p to disappear via a quasi-democratic branching
- Daughter gluons are softer, so they disappear even faster
 - energy transmitted to arbitrarily soft quanta during an interval $\sim t_{
 m br}(p)$

Democratic cascades

- \bullet When probability for one branching $\sim \mathcal{O}(1) \Rightarrow$ multiple branching
- $\bullet\,$ Consider first quasi-democratic branchings : $x\sim 1/2$

- $t_{\rm br}(p) =$ 'gluon lifetime' : the time it takes a gluon with energy p to disappear via a quasi-democratic branching
- $t_{\rm br}(p)$ = the lifetime of the mini-jet initiated by p ('stopping time')

Democratic cascades

- \bullet When probability for one branching $\sim \mathcal{O}(1) \Rightarrow$ multiple branching
- $\bullet\,$ Consider first quasi-democratic branchings : $x\sim 1/2$

- $t_{\rm br}(p) =$ 'gluon lifetime' : the time it takes a gluon with energy p to disappear via a quasi-democratic branching
- $t_{\rm br}(p)$ = the lifetime of the mini-jet initiated by p ('stopping time')
- This requires $t_{
 m br}(p) \lesssim L \implies p \lesssim \omega_{
 m br}(L) \equiv \alpha_s^2 \hat{q} L^2$

Jet versus mini-jets

• At the LHC, the energy E of the leading particle is much higher

 $E \geq 100 \, {
m GeV} \, \gg \, \omega_{
m br} = lpha_s^2 \hat{q} L^2 \simeq 10$ GeV for L=5 fm

- the leading particle cannot suffer democratic branchings
- it abundantly emits primary gluons with $p \lesssim \omega_{\rm br}(L)$

- these primary gluons generate 'mini-jets' via democratic branchings
- the energy carried by these mini-jets is deposited into the medium

Jet versus mini-jets

- At the LHC, the energy E of the leading particle is much higher $E \ge 100 \,\text{GeV} \gg \omega_{\text{br}} = \alpha_s^2 \hat{q} L^2 \simeq 10$ GeV for L = 5 fm
 - the leading particle cannot suffer democratic branchings
 - it abundantly emits primary gluons with $p \lesssim \omega_{\rm br}(L)$

• How to transform this physical picture into explicit calculations ?

Kinetic theory: only branchings

- Multiple medium-induced gluon branching pprox a Markovian process
 - non-trivial: potential interferences due to coherent emissions
 - coherence is efficiently washed out by scattering in the medium Mehtar-Tani, Salgado, Tywoniuk; Casalderrey-Solana, E. I. (10-11) Blaizot, Dominguez, E.I., Mehtar-Tani (2012)
- Evolution equation for the gluon spectrum $D(x,t) \equiv x \frac{\mathrm{d}N}{\mathrm{d}x}$

Kinetic theory: only branchings

- Multiple medium-induced gluon branching pprox a Markovian process
 - non-trivial: potential interferences due to coherent emissions
 - coherence is efficiently washed out by scattering in the medium Mehtar-Tani, Salgado, Tywoniuk; Casalderrey-Solana, E. I. (10-11) Blaizot, Dominguez, E.I., Mehtar-Tani (2012)
- Evolution equation for the gluon spectrum $D(x,t)\equiv xrac{\mathrm{d}N}{\mathrm{d}x}$

$$\frac{\partial D(x,t)}{\partial t} = \frac{1}{t_{\rm br}(x)} \int \frac{\mathrm{d}z}{\left[z(1-z)\right]^{\frac{3}{2}}} \left[\sqrt{z} D\left(\frac{x}{z},t\right) - \frac{1}{2} D(x,t)\right]$$

• Simplified version of the AMY equation (Arnold, Moore, Yaffe, '03)

- previously used for studies of glasma thermalization Baier, Mueller, Schiff, Son '01 ('bottom-up'); Kurkela, Zhu, '15
- ... and for the phenomenology of jet quenching: Schenke, Gale, Jeon, '09 (MARTINI)

J.-P. Blaizot, E. I., Y. Mehtar-Tani, PRL 111, 052001 (2013)

• Initial condition $D(x,t=0) = \delta(x-1)$ (that is, $\omega = E$)

$$D(x,\tau) = \frac{\tau}{\sqrt{x}(1-x)^{3/2}} e^{-\pi \frac{\tau^2}{1-x}}, \qquad \tau \equiv \frac{t}{t_{\rm br}(E)}$$

J.-P. Blaizot, E. I., Y. Mehtar-Tani, PRL 111, 052001 (2013)

• Initial condition $D(x, t = 0) = \delta(x - 1)$ (that is, $\omega = E$)

$$D(x,\tau) = \frac{\tau}{\sqrt{x(1-x)^{3/2}}} e^{-\pi \frac{\tau^2}{1-x}}, \qquad \tau \equiv \frac{t}{t_{\rm br}(E)}$$

• $x \simeq 1 \& \tau \ll 1$: the broadening of the leading particle

J.-P. Blaizot, E. I., Y. Mehtar-Tani, PRL 111, 052001 (2013)

• Initial condition $D(x,t=0) = \delta(x-1)$ (that is, $\omega = E$)

$$D(x,\tau) = \frac{\tau}{\sqrt{x(1-x)^{3/2}}} e^{-\pi \frac{\tau^2}{1-x}}, \qquad \tau \equiv \frac{t}{t_{\rm br}(E)}$$

- $x\simeq 1$ & $\tau\ll 1$: the broadening of the leading particle
- when $au \sim 1$, the LP disappears via democratic branching

J.-P. Blaizot, E. I., Y. Mehtar-Tani, PRL 111, 052001 (2013)

• Initial condition $D(x,t=0) = \delta(x-1)$ (that is, $\omega = E$)

$$D(x,\tau) = \frac{\tau}{\sqrt{x}(1-x)^{3/2}} e^{-\pi \frac{\tau^2}{1-x}}, \qquad \tau \equiv \frac{t}{t_{\rm br}(E)}$$

- $\bullet\,$ the case $\tau \ll 1$ is representative for the leading particle at the LHC
- $\tau\gtrsim 1$ rather refers to a mini-jet

Exact solution: Wave turbulence

J.-P. Blaizot, E. I., Y. Mehtar-Tani, PRL 111, 052001 (2013)

• $x \ll 1$: the same power spectrum as for a single emission

$$D(x,\tau) \simeq \frac{\tau}{\sqrt{x}} e^{-\pi\tau^2} \quad \text{for } x \ll 1$$

- a fixed point of the branching term: Kolmogorov spectrum
- with increasing au, the spectrum is uniformly suppressed at any x

x

Exact solution: Wave turbulence

J.-P. Blaizot, E. I., Y. Mehtar-Tani, PRL 111, 052001 (2013)

• $x \ll 1$: the same power spectrum as for a single emission

$$D(x,\tau) \simeq \frac{\tau}{\sqrt{x}} e^{-\pi\tau^2} \quad \text{for } x \ll 1$$

- energy flows from large x to small x, w/o accumulating at any intermediate value of x : energy flux is independent of x
- it (formally) accumulates into a condensate at x = 0

Exact solution: Wave turbulence

J.-P. Blaizot, E. I., Y. Mehtar-Tani, PRL 111, 052001 (2013)

• $x \ll 1$: the same power spectrum as for a single emission

$$D(x,\tau) \simeq \frac{\tau}{\sqrt{x}} e^{-\pi\tau^2} \quad \text{for } x \ll 1$$

- energy flows from large x to small x, w/o accumulating at any intermediate value of x : energy flux is independent of x
- it (formally) accumulates into a condensate at x = 0

The thermalization problem

- This branching dynamics cannot extend all the way down to x = 0
 - when $p \sim T$, the formation time $t_{\rm f}(p)$ becomes comparable with the mean free path $\lambda \Longrightarrow$ no LPM suppression
 - $\bullet\,$ gluons with $p\sim T$ can efficiently thermalize via collisions
 - recombination effects become important and stop the branching process
- Thermalization is not instantaneous: "medium is not a perfect sink"
 - $\bullet\,$ the branching dynamics at p>T can be modified as well
 - $\bullet\,$ e.g. 'pile-up' around $p\sim T$ would destroy the power spectrum
- The full AMY equations (jet + medium) encode the relevant dynamics
 - ... but cumbersome to use in practice, even numerically
 - previous numerical applications assumed spatial homogeneity ...
 - ... but the jet is highly localized to start with
- Understand the relevant time scales and write some simpler equations *E.I. and Bin Wu, arXiv:1506.07871 [hep-ph]*

Time scales: branching vs. thermalization

• Via elastic, $2 \rightarrow 2$ collisions, the particles loses energy ('drag') and broadens its momentum distribution ('diffusion')

- Eventually, thermal equilibrium with the medium: $f_p \propto {
 m e}^{-p/T}$
- For hard gluons $(p_0 \gg T)$, collisional energy loss is not important

$$t_{\rm coll}(p_0) = \frac{p_0}{\eta} \gg t_{\rm br}(p_0) = \frac{1}{\alpha_s} \sqrt{\frac{p_0}{\hat{q}}}$$

• hard gluons branch again before having the time to lose energy via drag

Time scales: branching vs. thermalization

• Via elastic, $2 \rightarrow 2$ collisions, the particles loses energy ('drag') and broadens its momentum distribution ('diffusion')

- Eventually, thermal equilibrium with the medium: $f_p \propto {
 m e}^{-p/T}$
- For soft gluons with $p \sim T$, the 2 processes compete with each other:

$$t_{\rm coll}(T) \sim t_{\rm br}(T) \sim t_{\rm rel} \equiv \frac{1}{\alpha_s^2 T \ln(1/\alpha_s)}$$

• soft gluons thermalize within a typical time $\Delta t \sim t_{
m rel}$

Kinetic theory: branchings + collisions

- When $p \gg T$, jet partons can be distinguished from medium ones
- Gluon system produced via branchings remains dilute: $f(t, \boldsymbol{x}, \boldsymbol{p}) \ll 1$
- The most interesting dynamics is the longitudinal one (z, p_z)
 - $p_z \gg p_\perp$ so long as $p \gg T \Longrightarrow p_z$ controls the branchings
 - the strongest inhomogeneity is in z: $f(t, z, p_z) \equiv \frac{dN}{dzdp_z} \propto \delta(t-z)$
- Small angle scattering can be described by Fokker-Planck (leading-log)
- Linear equation for longitudinal gluon distribution produced by the jet

$$\begin{pmatrix} \frac{\partial}{\partial t} + v_z \frac{\partial}{\partial z} \end{pmatrix} f(t, z, p_z) = \frac{\hat{q}}{4} \frac{\partial}{\partial p_z} \left[\left(\frac{\partial}{\partial p_z} + \frac{v_z}{T} \right) f \right]$$
$$+ \frac{1}{t_{\rm br}(p_z)} \int_{p_*} \mathrm{d}x \, \mathcal{K}(x) \left[\frac{1}{\sqrt{x}} f\left(\frac{p_z}{x} \right) - \frac{1}{2} f(p_z) \right]$$

• drift, elastic collisions (drag + diffusion), collinear branchings

Kinetic theory: branchings + collisions

- When $p \gg T$, jet partons can be distinguished from medium ones
- Gluon system produced via branchings remains dilute: $f(t, \boldsymbol{x}, \boldsymbol{p}) \ll 1$
- The most interesting dynamics is the longitudinal one (z, p_z)
 - $p_z \gg p_\perp$ so long as $p \gg T \Longrightarrow p_z$ controls the branchings
 - the strongest inhomogeneity is in z: $f(t, z, p_z) \equiv \frac{dN}{dzdp_z} \propto \delta(t-z)$
- Small angle scattering can be described by Fokker-Planck (leading-log)
- Linear equation for longitudinal gluon distribution produced by the jet

$$\begin{pmatrix} \frac{\partial}{\partial t} + v_z \frac{\partial}{\partial z} \end{pmatrix} f(t, z, p_z) = \frac{\hat{q}}{4} \frac{\partial}{\partial p_z} \left[\left(\frac{\partial}{\partial p_z} + \frac{v_z}{T} \right) f \right]$$
$$+ \frac{1}{t_{\rm br}(p_z)} \int_{p_*} \mathrm{d}x \, \mathcal{K}(x) \left[\frac{1}{\sqrt{x}} f\left(\frac{p_z}{x} \right) - \frac{1}{2} f(p_z) \right]$$

 $\bullet\,$ branching process cut off by hand at a scale $p_* \sim T$

Kinetic theory: branchings + collisions

- When $p \gg T$, jet partons can be distinguished from medium ones
- Gluon system produced via branchings remains dilute: $f(t, \boldsymbol{x}, \boldsymbol{p}) \ll 1$
- The most interesting dynamics is the longitudinal one (z, p_z)
 - $p_z \gg p_\perp$ so long as $p \gg T \Longrightarrow p_z$ controls the branchings
 - the strongest inhomogeneity is in z: $f(t, z, p_z) \equiv \frac{dN}{dzdp_z} \propto \delta(t-z)$
- Small angle scattering can be described by Fokker-Planck (leading-log)
- Linear equation for longitudinal gluon distribution produced by the jet

$$\begin{pmatrix} \frac{\partial}{\partial t} + v_z \frac{\partial}{\partial z} \end{pmatrix} f(t, z, p_z) = \frac{\hat{q}}{4} \frac{\partial}{\partial p_z} \left[\left(\frac{\partial}{\partial p_z} + \frac{v_z}{T} \right) f \right]$$
$$+ \frac{1}{t_{\rm br}(p_z)} \int_{p_*} \mathrm{d}x \, \mathcal{K}(x) \left[\frac{1}{\sqrt{x}} f\left(\frac{p_z}{x} \right) - \frac{1}{2} f(p_z) \right]$$

- strictly valid for $p_z \gg T,$ parametric extrapolation down to $p_z \sim T$

The 'steady source' approximation

- The ultrarelativistic FP equation in D = 1 + 1 can be solved exactly (E.I. and Bin Wu, arXiv:1506.07871; not previously recognized)
- The branching process \approx a source of gluons with $p \sim T$
 - $\bullet\,$ gluons with $p\gg T$ are not significantly affected by collisions
 - the medium is implicitly treated as a 'perfect sink'
- The steady source approximation : a realistic 'toy-model'

$$\left(\frac{\partial}{\partial t} + v\frac{\partial}{\partial z}\right)f = \frac{\hat{q}}{4}\frac{\partial}{\partial p}\left[\left(\frac{\partial}{\partial p} + \frac{v}{T}\right)f\right] + \delta(t-z)\delta(p-p_*)$$

- $p_* \sim T$: the lower end of the cascade
- thermalization of the soft gluons with $p \sim T$ is much faster than the internal evolution of the cascade: $t_{\rm rel} \ll t_{\rm br}(E)$ for $E \gg T$
- ullet representative for a high-energy jet at the LHC : $L \ll t_{\rm br}(E)$

The front & the tail

• The 'front' $\propto \delta(t-z)$:

 \triangleright gluons recently injected that had no time to thermalize

• The 'tail' at $z \lesssim t - t_{
m rel}$: $f_p \propto {
m e}^{-|p|/T}$

 $\,\triangleright\,$ gluons in thermal equilibrium with the medium

The front & the tail

- After a sufficiently large time $t \gg t_{\rm rel}$, most of the energy injected by the source is found in the thermalized tail
- The energy lost by the jet is carried by soft, thermal, quanta

Numerical studies of the full dynamics (1)

 $T=0.5~{
m GeV}$, $t_{
m rel}=1~{
m fm}$, $E\,=\,90\,T$, $t_{
m br}(E)\simeq 9.5~{
m fm}$

• $t = 0.1 t_{\rm br}(E) \simeq 1$ fm is representative for the 'leading jet' at the LHC

- $t = 0.3 t_{\rm br}(E) \simeq 3$ fm : the 'subleading jet' (partially quenched)
 - a second peak emerges near p = T (branchings)
 - this second peak develops a thermalized tail at z < t (collisions)
- The jet substructure is softening and broadening

INT Seattle 2015

Thermalization of mini-jets

Numerical studies of the full dynamics (2)

• $t = t_{\rm br}(E)$: the leading particle disappears (democratic branching)

Numerical studies of the full dynamics (2)

• $t = 1.5 t_{\rm br}(E) \simeq 15$ fm : very large medium (almost fully quenched)

The late stages: thermalizing a mini-jet

- At late times $t \gg t_{\rm br}(E)$, the jet is 'fully quenched'
 - no trace of the leading particle, just a thermalized tail
 - the typical situation for a mini-jet : $E \lesssim \omega_{\rm br}(L)$

Energy distribution

• Left: *z*-distribution of the energy density $\varepsilon(t, z) = \int dp |p| f(t, z, p)$

- even for $t = t_{br}(E)$, most of the energy is still carried by the front ...
- but the respective 'front' is mostly made with soft gluons $(p \sim T)$
- branching products which did not yet have the time to thermalize
- $\bullet\,$ a thermalized tail is clearly visible at z < t

Energy distribution

- Left: *z*-distribution of the energy density $\varepsilon(t, z) = \int dp |p| f(t, z, p)$
- Right: *p*-distribution near the front: f(t, z, p) for z = t
 - scaling window at $t \ll t_{\rm br}(E)$: $p^{3/2}f \approx {\rm const.} \Longrightarrow$ wave turbulence
 - for $t\gtrsim 0.5\,t_{
 m br}(E)$, some pile-up is visible around p=T
 - thermalization is efficient but certainly not instantaneous

Energy loss towards the medium

• Upper curves: E = 90 T; lower curves: E = 25 T

- The energy carried by the thermalized tail is ...
 - somewhat smaller than the 'flow' energy: medium is not a 'perfect sink'
 - ... but still substantial: $6 \div 20 \text{ GeV}$ for $L = 3 \div 6 \text{ fm}$

Conclusions

- A simple, yet detailed, 2-step, picture for jet quenching from pQCD
 - copious production of 'mini-jets' via democratic branchings
 - $\bullet\,$ thermalization of the soft branching products with $p\sim T$
- Characteristic, 'front + tail', structure of the (partially) quenched jet
 - 'front' : the leading particle, but also soft gluons radiated at late times
 - 'tail' : soft partons in local thermal equilibrium with the medium
- Energy loss by the jet towards the medium is identified as the energy carried by the thermalized tail.
- Very robust: based on separation of timescales between branching of hard partons and thermalization of their soft products
- Many approximations, need for more detailed/precise studies:
 coupled evolution of jet + medium in D= 1 + 3 + 3

Di-jet asymmetry : $A_{\rm J}$ (CMS)

 Event fraction as a function of the di-jet energy imbalance in p+p (a) and Pb+Pb (b-f) collisions for different bins of centrality

$$A_{\rm J} = \frac{E_1 - E_2}{E_1 + E_2} \qquad (E_i \equiv p_{T,i} = \text{ jet energies})$$

• N.B. A pronounced asymmetry already in the p+p collisions !

Energy imbalance @ large angles: R = 0.8

• No missing energy : $E_{\text{Lead}}^{\text{in+out}} = E_{\text{SubLead}}^{\text{in+out}}$

• In-Cone : $E_{
m Lead}^{
m in} > E_{
m SubLead}^{
m in}$: di-jet asymmetry, hard particles

• Out-of-Cone : $E_{\rm Lead}^{\rm out}$ < $E_{\rm SubLead}^{\rm out}$: soft hadrons @ large angles

An exact solution to the 1-D FP equation

• The Green's function for ultrarelativistic FP in D=1+1+1

$$\left(\frac{\partial}{\partial t} + v\frac{\partial}{\partial z}\right)f = \frac{\hat{q}}{4}\frac{\partial}{\partial p}\left(\frac{\partial}{\partial p} + \frac{v}{T}\right)f, \quad f(t=0,z,p) = \delta(z)\delta(p-p_0)$$

$$f(t,z,p>0) = \frac{e^{-\frac{p_0-p}{2}-\frac{t}{4}}}{2\sqrt{\pi t}} \left[e^{-\frac{(p-p_0)^2}{4t}} - e^{-\frac{(p+p_0)^2}{4t}} \right] \delta(t-z)$$

$$+ \frac{\mathrm{e}^{-\frac{(p+p_0-z)^2}{4t}-p}}{8\sqrt{\pi}t^{5/2}} \left[t(t+2) - (p+p_0-z)^2\right] \times \\ \times \operatorname{erfc}\left(\frac{1}{2}\sqrt{t-\frac{z^2}{t}}\left(\frac{p+p_0}{t+z}-1\right)\right)$$

+
$$\frac{(t+z)(p+p_0+t-z)}{4\pi t^2\sqrt{t^2-z^2}} e^{-\frac{(p+p_0)^2}{2(t+z)}+\frac{p_0-p}{2}-\frac{t}{4}}$$

Limiting behaviors

• Physics transparent at both small and large times: $t_{coll}(p_0) = \frac{p_0}{T} t_{rel}$

• small times: $t_{
m rel} \lesssim t \ll t_{
m coll}(p_0)$

$$f(t,z,p) \propto e^{-\frac{(p-\langle p(t)\rangle)^2}{\hat{q}t}} \delta(t-z)$$

$$\langle p(t) \rangle = p_0 - \frac{t}{t_{\rm rel}} T$$

- energy loss & diffusion
- large times: $t > t_{
 m coll}(p_0) \gg t_{
 m rel}$

$$f \simeq e^{-\frac{|p|}{T}} \exp\left\{-\frac{\left(z - (p_0/T)t_{\rm rel}\right)^2}{4tt_{\rm rel}}\right\}$$

• equilibrium & spatial diffusion

• plots:
$$p_0=5T$$
, $t_1=t_{
m rel}$, $t_2=20t_{
m rel}$