Thermalization of mini-jets in a quark-gluon plasma

Edmond Iancu IPhT Saclay & CNRS

recent work with Bin Wu, arXiv:1506.07871 [hep-ph] building upon previous work w/ J.-P. Blaizot, F. Dominguez, Y. Mehtar-Tani

Jet quenching in heavy ion collisions

- Hard processes in QCD typically create pairs of partons which propagate back–to–back in the transverse plane
- In the vacuum, this leads to a pair of symmetric jets
- In a dense medium, the two jets can be differently affected by their interactions with the surrounding medium: 'di-jet asymmetry'

• The ensemble of medium-induced modifications: 'iet quenching'

Di–jets in p+p collisions at the LHC

Di-jet asymmetry (ATLAS)

- Central Pb+Pb: 'mono–jet' events
- The secondary jet cannot be distinguished from the background: $E_{T1} > 100$ GeV, $E_{T2} > 25$ GeV

Di–jet asymmetry at the LHC (CMS)

- Additional energy imbalance as compared to $p+p$: 20 to 30 GeV
- Compare to the typical scale in the medium: $T \sim 1$ GeV (average p_{\perp})
- A remarkable pattern for the energy loss:

many soft (p_{\perp} < 2 GeV) hadrons propagating at large angles

A challenge for the theorists

- Can one understand these data from first principles (QCD)?
	- how gets the energy transmitted from the leading particle to these many soft quanta ?
	- do these soft quanta thermalize ? is the medium locally heated ?
	- is all that consistent with weak coupling?
- Very different from the branching pattern for a jet in the vacuum

- quasi-collinear splittings
- pQCD: DGLAP equation
- energy carried by a few partons with large x
- energy remains within a narrow jet

A challenge for the theorists

- Can one understand these data from first principles (QCD)?
	- how gets the energy transmitted from the leading particle to these many soft quanta ?
	- do these soft quanta thermalize ? is the medium locally heated ?
	- is all that consistent with weak coupling?
- Medium-induced branching looks indeed very different !

- multiple scattering \implies LPM effect
- quasi-democratic branchings
- wave turbulence: very efficient energy transmission from large x to small x
- e efficient thermalization of the small- x quanta via collisions with the medium

Medium-induced gluon branching

Baier, Dokshitzer, Mueller, Peigné, and Schiff; Zakharov (96–97); Wiedemann (2000); Arnold, Moore, and Yaffe (2002–03); ...

- Incoming particle: an energetic gluon with $p = p_z \gg T$
- Multiple soft scattering \implies momentum broadening

- **•** Transverse kicks provide acceleration and thus allow for radiation
- Gluon emissions require a formation time $t_{\rm f} \simeq \omega/k_\perp^2$

During formation, the gluon acquires a momentum $k_{\perp}^2\sim \hat{q}t_{\rm f}$

INT Seattle 2015 [Thermalization of mini-jets](#page-0-0) Edmond Iancu 7 / 29

Formation time & emission angle

$$
t_{\rm f}(\omega) \simeq \sqrt{\frac{\omega}{\hat{q}}}
$$
 & $\& \quad \theta_{\rm f}(\omega) \simeq \frac{\sqrt{\hat{q}t_{\rm f}}}{\omega} \sim \left(\frac{\hat{q}}{\omega^3}\right)^{1/4}$

• This mechanism applies so long as

 $\lambda \ll t_{\rm f}(\omega) \leq L \implies T \ll \omega \leq \omega_c \equiv \hat{q}L^2$

• Soft gluons : short formation times & large emission angles

• The emission angle keeps increasing with time, via rescattering

Formation time & emission angle

$$
t_{\rm f}(\omega) \simeq \sqrt{\frac{\omega}{\hat{q}}}
$$
 & $\& \quad \theta_{\rm f}(\omega) \simeq \frac{\sqrt{\hat{q}t_{\rm f}}}{\omega} \sim \left(\frac{\hat{q}}{\omega^3}\right)^{1/4}$

• This mechanism applies so long as

 $\lambda \ll t_{\rm f}(\omega) \leq L \implies T \ll \omega \leq \omega_c \equiv \hat{q}L^2$

• Soft gluons : short formation times & large emission angles

• Emissions can effectively be treated as collinear

Democratic branchings

• Probability for a branching $p \to \{xp, (1-x)p\}$ to occur during Δt

 $\Delta \mathcal{P} \sim \alpha_s \, \frac{\Delta t}{t_{\rm f}}$ $\frac{1}{t_f} \sim \alpha_s$ $\int \hat{q}$ $\frac{1}{xp}$ Δt

- LPM effect : the emission rate decreases with increasing $\omega = xp$
	- coherence: many collisions contribute to a single, hard, emission
- The probability becomes large for either ...
	- soft splittings : $x \ll 1$ (for generic p) ...
	- ... or democratic splittings $(x \sim 1/2)$ but soft parent gluon (small p)

Democratic branchings

• Probability for a branching $p \to \{xp, (1-x)p\}$ to occur during Δt

$$
\Delta \mathcal{P} \sim \alpha_s \frac{\Delta t}{t_{\rm f}} \sim \alpha_s \sqrt{\frac{\hat{q}}{xp}} \Delta t
$$

- Compare to bremsstrahlung in the vacuum : $\Delta P \sim \alpha_s \ln(1/x)$
	- large probability for soft splittings alone
- Democratic branchings are known to be important at strong coupling (Y. Hatta, E.I., Al Mueller '08)
	- high density can mimic strong coupling

Democratic cascades

- When probability for one branching $\sim \mathcal{O}(1) \Rightarrow$ multiple branching
- Consider first quasi-democratic branchings : $x \sim 1/2$

- \bullet $t_{\text{br}}(p) = '$ gluon lifetime' : the time it takes a gluon with energy p to disappear via a quasi-democratic branching
- Daughter gluons are softer, so they disappear even faster
	- energy transmitted to arbitrarily soft quanta during an interval $\sim t_{\rm br}(p)$

Democratic cascades

- When probability for one branching $\sim \mathcal{O}(1) \Rightarrow$ multiple branching
- \bullet Consider first quasi-democratic branchings : $x \sim 1/2$

- $t_{\text{br}}(p) =$ 'gluon lifetime' : the time it takes a gluon with energy p to disappear via a quasi-democratic branching
- $t_{\text{br}}(p)$ = the lifetime of the mini-jet initiated by p ('stopping time')

Democratic cascades

- When probability for one branching $\sim \mathcal{O}(1) \Rightarrow$ multiple branching
- Consider first quasi-democratic branchings : $x \sim 1/2$

- $t_{\text{br}}(p) =$ 'gluon lifetime' : the time it takes a gluon with energy p to disappear via a quasi-democratic branching
- $t_{\text{br}}(p)$ = the lifetime of the mini-jet initiated by p ('stopping time')
- This requires $t_{\rm br}(p)\lesssim L \;\; \Longrightarrow \;\; p\lesssim \omega_{\rm br}(L)\equiv \alpha_s^2\hat q L^2$

Jet versus mini-jets

 \bullet At the LHC, the energy E of the leading particle is much higher

 $E \ge 100 \,\text{GeV} \ \gg \ \omega_{\text{br}} = \alpha_s^2 \hat{q} L^2 \simeq 10 \,\text{GeV}$ for $L = 5 \,\text{fm}$

- the leading particle cannot suffer democratic branchings
- it abundantly emits primary gluons with $p \lesssim \omega_{\rm br}(L)$

- these primary gluons generate 'mini-jets' via democratic branchings
- the energy carried by these mini-jets is deposited into the medium

Jet versus mini-jets

- \bullet At the LHC, the energy E of the leading particle is much higher $E \ge 100 \,\text{GeV} \ \gg \ \omega_{\text{br}} = \alpha_s^2 \hat{q} L^2 \simeq 10 \,\text{GeV}$ for $L = 5 \,\text{fm}$
	- the leading particle cannot suffer democratic branchings
	- it abundantly emits primary gluons with $p \lesssim \omega_{\rm br}(L)$

• How to transform this physical picture into explicit calculations?

Kinetic theory: only branchings

- Multiple medium-induced gluon branching \approx a Markovian process
	- non-trivial: potential interferences due to coherent emissions
	- coherence is efficiently washed out by scattering in the medium Mehtar-Tani, Salgado, Tywoniuk; Casalderrey-Solana, E. I. (10 –11) Blaizot, Dominguez, E.I., Mehtar-Tani (2012)
- Evolution equation for the gluon spectrum $D(x,t)\equiv x\frac{{\rm d}N}{{\rm d}x}$ dx

Kinetic theory: only branchings

- Multiple medium-induced gluon branching \approx a Markovian process
	- non-trivial: potential interferences due to coherent emissions
	- coherence is efficiently washed out by scattering in the medium Mehtar-Tani, Salgado, Tywoniuk; Casalderrey-Solana, E. I. (10 –11) Blaizot, Dominguez, E.I., Mehtar-Tani (2012)
- Evolution equation for the gluon spectrum $D(x,t) \equiv x \frac{dN}{dx}$ dx

$$
\frac{\partial D(x,t)}{\partial t} = \frac{1}{t_{\text{br}}(x)} \int \frac{\mathrm{d}z}{[z(1-z)]^{\frac{3}{2}}} \left[\sqrt{z} D\left(\frac{x}{z},t\right) - \frac{1}{2} D(x,t) \right]
$$

• Simplified version of the AMY equation (Arnold, Moore, Yaffe, '03)

- previously used for studies of glasma thermalization Baier, Mueller, Schiff, Son '01 ('bottom-up'); Kurkela, Zhu, '15
- ... and for the phenomenology of jet quenching: Schenke, Gale, Jeon, '09 (MARTINI)

J.-P. Blaizot, E. I., Y. Mehtar-Tani, PRL 111, 052001 (2013)

• Initial condition $D(x, t = 0) = \delta(x - 1)$ (that is, $\omega = E$)

$$
D(x,\tau) = \frac{\tau}{\sqrt{x}(1-x)^{3/2}} e^{-\pi \frac{\tau^2}{1-x}}, \qquad \tau \equiv \frac{t}{t_{\text{br}}(E)}
$$

J.-P. Blaizot, E. I., Y. Mehtar-Tani, PRL 111, 052001 (2013)

• Initial condition $D(x, t = 0) = \delta(x - 1)$ (that is, $\omega = E$)

$$
D(x,\tau) = \frac{\tau}{\sqrt{x}(1-x)^{3/2}} e^{-\pi \frac{\tau^2}{1-x}}, \qquad \tau \equiv \frac{t}{t_{\text{br}}(E)}
$$

• $x \approx 1$ & $\tau \ll 1$: the broadening of the leading particle

J.-P. Blaizot, E. I., Y. Mehtar-Tani, PRL 111, 052001 (2013)

• Initial condition $D(x, t = 0) = \delta(x - 1)$ (that is, $\omega = E$)

$$
D(x,\tau) = \frac{\tau}{\sqrt{x}(1-x)^{3/2}} e^{-\pi \frac{\tau^2}{1-x}}, \qquad \tau \equiv \frac{t}{t_{\text{br}}(E)}
$$

- $x \approx 1$ & $\tau \ll 1$: the broadening of the leading particle
- when $\tau \sim 1$, the LP disappears via democratic branching

J.-P. Blaizot, E. I., Y. Mehtar-Tani, PRL 111, 052001 (2013)

• Initial condition $D(x, t = 0) = \delta(x - 1)$ (that is, $\omega = E$)

$$
D(x,\tau) = \frac{\tau}{\sqrt{x}(1-x)^{3/2}} e^{-\pi \frac{\tau^2}{1-x}}, \qquad \tau \equiv \frac{t}{t_{\text{br}}(E)}
$$

- the case $\tau \ll 1$ is representative for the leading particle at the LHC
- $\tau \geq 1$ rather refers to a mini-jet

Exact solution: Wave turbulence

J.-P. Blaizot, E. I., Y. Mehtar-Tani, PRL 111, 052001 (2013)

 $\bullet x \ll 1$: the same power spectrum as for a single emission

$$
D(x,\tau) \simeq \frac{\tau}{\sqrt{x}} e^{-\pi\tau^2} \qquad \text{for } x \ll 1
$$

- a fixed point of the branching term: Kolmogorov spectrum
- with increasing τ , the spectrum is uniformly suppressed at any x

 \boldsymbol{x}

Exact solution: Wave turbulence

J.-P. Blaizot, E. I., Y. Mehtar-Tani, PRL 111, 052001 (2013)

 $\bullet x \ll 1$: the same power spectrum as for a single emission

$$
D(x,\tau) \simeq \frac{\tau}{\sqrt{x}} e^{-\pi\tau^2} \qquad \text{for } x \ll 1
$$

- energy flows from large x to small x, w/o accumulating at any intermediate value of x : energy flux is independent of x
- it (formally) accumulates into a condensate at $x = 0$

Exact solution: Wave turbulence

J.-P. Blaizot, E. I., Y. Mehtar-Tani, PRL 111, 052001 (2013)

 $\bullet x \ll 1$: the same power spectrum as for a single emission

$$
D(x,\tau) \simeq \frac{\tau}{\sqrt{x}} e^{-\pi\tau^2} \qquad \text{for } x \ll 1
$$

- energy flows from large x to small x, w/o accumulating at any intermediate value of x : energy flux is independent of x
- it (formally) accumulates into a condensate at $x = 0$

The thermalization problem

- \bullet This branching dynamics cannot extend all the way down to $x=0$
	- when $p \sim T$, the formation time $t_f(p)$ becomes comparable with the mean free path $\lambda \implies$ no LPM suppression
	- gluons with $p \sim T$ can efficiently thermalize via collisions
	- recombination effects become important and stop the branching process
- Thermalization is not instantaneous: "medium is not a perfect sink"
	- the branching dynamics at $p > T$ can be modified as well
	- e.g. 'pile-up' around $p \sim T$ would destroy the power spectrum
- \bullet The full AMY equations (jet $+$ medium) encode the relevant dynamics
	- ... but cumbersome to use in practice, even numerically
	- previous numerical applications assumed spatial homogeneity ...
		- ... but the jet is highly localized to start with
- Understand the relevant time scales and write some simpler equations E.I. and Bin Wu, arXiv:1506.07871 [hep-ph]

Time scales: branching vs. thermalization

• Via elastic, $2 \rightarrow 2$ collisions, the particles loses energy ('drag') and broadens its momentum distribution ('diffusion')

- Eventually, thermal equilibrium with the medium: $f_p \propto {\rm e}^{-p/T}$
- For hard gluons $(p_0 \gg T)$, collisional energy loss is not important

$$
t_{\text{coll}}(p_0) = \frac{p_0}{\eta} \gg t_{\text{br}}(p_0) = \frac{1}{\alpha_s} \sqrt{\frac{p_0}{\hat{q}}}
$$

• hard gluons branch again before having the time to lose energy via drag

Time scales: branching vs. thermalization

• Via elastic, $2 \rightarrow 2$ collisions, the particles loses energy ('drag') and broadens its momentum distribution ('diffusion')

- Eventually, thermal equilibrium with the medium: $f_p \propto {\rm e}^{-p/T}$
- For soft gluons with $p \sim T$, the 2 processes compete with each other:

$$
t_{\text{coll}}(T) \sim t_{\text{br}}(T) \sim t_{\text{rel}} \equiv \frac{1}{\alpha_s^2 T \ln(1/\alpha_s)}
$$

• soft gluons thermalize within a typical time $\Delta t \sim t_{\text{rel}}$

Kinetic theory: branchings $+$ collisions

- When $p \gg T$, jet partons can be distinguished from medium ones
- Gluon system produced via branchings remains dilute: $f(t, x, p) \ll 1$
- The most interesting dynamics is the longitudinal one (z, p_z)
	- $p_z \gg p_{\perp}$ so long as $p \gg T \Longrightarrow p_z$ controls the branchings
	- the strongest inhomogeneity is in z : $f(t, z, p_z) \equiv \frac{dN}{dzdp_z} \propto \delta(t z)$
- Small angle scattering can be described by Fokker-Planck (leading-log)
- Linear equation for longitudinal gluon distribution produced by the jet

$$
\left(\frac{\partial}{\partial t} + v_z \frac{\partial}{\partial z}\right) f(t, z, p_z) = \frac{\hat{q}}{4} \frac{\partial}{\partial p_z} \left[\left(\frac{\partial}{\partial p_z} + \frac{v_z}{T} \right) f \right]
$$

$$
+ \frac{1}{t_{\text{br}}(p_z)} \int_{p_*} dx \, \mathcal{K}(x) \left[\frac{1}{\sqrt{x}} f\left(\frac{p_z}{x}\right) - \frac{1}{2} f(p_z) \right]
$$

 \bullet drift, elastic collisions (drag $+$ diffusion), collinear branchings

Kinetic theory: branchings $+$ collisions

- When $p \gg T$, jet partons can be distinguished from medium ones
- Gluon system produced via branchings remains dilute: $f(t, x, p) \ll 1$
- The most interesting dynamics is the longitudinal one (z, p_z)
	- $p_z \gg p_{\perp}$ so long as $p \gg T \Longrightarrow p_z$ controls the branchings
	- the strongest inhomogeneity is in z : $f(t, z, p_z) \equiv \frac{dN}{dzdp_z} \propto \delta(t z)$
- Small angle scattering can be described by Fokker-Planck (leading-log)
- Linear equation for longitudinal gluon distribution produced by the jet

$$
\left(\frac{\partial}{\partial t} + v_z \frac{\partial}{\partial z}\right) f(t, z, p_z) = \frac{\hat{q}}{4} \frac{\partial}{\partial p_z} \left[\left(\frac{\partial}{\partial p_z} + \frac{v_z}{T} \right) f \right]
$$

$$
+ \frac{1}{t_{\text{br}}(p_z)} \int_{p_*} dx \, \mathcal{K}(x) \left[\frac{1}{\sqrt{x}} f\left(\frac{p_z}{x}\right) - \frac{1}{2} f(p_z) \right]
$$

• branching process cut off by hand at a scale $p_* \sim T$

Kinetic theory: branchings $+$ collisions

- When $p \gg T$, jet partons can be distinguished from medium ones
- Gluon system produced via branchings remains dilute: $f(t, x, p) \ll 1$
- The most interesting dynamics is the longitudinal one (z, p_z)
	- $p_z \gg p_{\perp}$ so long as $p \gg T \Longrightarrow p_z$ controls the branchings
	- the strongest inhomogeneity is in z : $f(t, z, p_z) \equiv \frac{dN}{dzdp_z} \propto \delta(t z)$
- Small angle scattering can be described by Fokker-Planck (leading-log)
- Linear equation for longitudinal gluon distribution produced by the jet

$$
\left(\frac{\partial}{\partial t} + v_z \frac{\partial}{\partial z}\right) f(t, z, p_z) = \frac{\hat{q}}{4} \frac{\partial}{\partial p_z} \left[\left(\frac{\partial}{\partial p_z} + \frac{v_z}{T} \right) f \right]
$$

$$
+ \frac{1}{t_{\text{br}}(p_z)} \int_{p_*} dx \, \mathcal{K}(x) \left[\frac{1}{\sqrt{x}} f\left(\frac{p_z}{x}\right) - \frac{1}{2} f(p_z) \right]
$$

• strictly valid for $p_z \gg T$, parametric extrapolation down to $p_z \sim T$

The 'steady source' approximation

- The ultrarelativistic FP equation in $D = 1 + 1$ can be solved exactly (E.I. and Bin Wu, arXiv:1506.07871; not previously recognized)
- The branching process \approx a source of gluons with $p \sim T$
	- gluons with $p \gg T$ are not significantly affected by collisions
	- the medium is implicitly treated as a 'perfect sink'
- The steady source approximation : a realistic 'toy-model'

$$
\left(\frac{\partial}{\partial t} + v \frac{\partial}{\partial z}\right) f = \frac{\hat{q}}{4} \frac{\partial}{\partial p} \left[\left(\frac{\partial}{\partial p} + \frac{v}{T}\right) f \right] + \delta(t - z) \delta(p - p_*)
$$

- $p_* \sim T$: the lower end of the cascade
- thermalization of the soft gluons with $p \sim T$ is much faster than the internal evolution of the cascade: $t_{rel} \ll t_{br}(E)$ for $E \gg T$
- representative for a high-energy jet at the LHC : $L \ll t_{\text{br}}(E)$

The front & the tail

• The 'front' $\propto \delta(t-z)$:

 \triangleright gluons recently injected that had no time to thermalize

The 'tail' at $z \lesssim t - t_{\mathrm{rel}}$: $f_p \propto \mathrm{e}^{-|p|/T}$

 \triangleright gluons in thermal equilibrium with the medium INT Seattle 2015 [Thermalization of mini-jets](#page-0-0) Edmond Iancu 19 / 29

The front & the tail

- After a sufficiently large time $t \gg t_{\text{rel}}$, most of the energy injected by the source is found in the thermalized tail
- The energy lost by the jet is carried by soft, thermal, quanta

Numerical studies of the full dynamics (1)

 $T = 0.5$ GeV, $t_{rel} = 1$ fm, $E = 90 T$, $t_{br}(E) \simeq 9.5$ fm

 \bullet $t = 0.1 t_{\rm br}(E) \simeq 1$ fm is representative for the 'leading jet' at the LHC

- $\bullet t = 0.3 t_{\rm br}(E) \simeq 3$ fm : the 'subleading jet' (partially quenched)
	- a second peak emerges near $p = T$ (branchings)
	- this second peak develops a thermalized tail at $z < t$ (collisions)
- The jet substructure is softening and broadening

Numerical studies of the full dynamics (2)

 \bullet $t = t_{\text{br}}(E)$: the leading particle disappears (democratic branching)

Numerical studies of the full dynamics (2)

• $t = 1.5 t_{\text{br}}(E) \simeq 15$ fm : very large medium (almost fully quenched)

The late stages: thermalizing a mini-jet

- At late times $t \gg t_{\text{br}}(E)$, the jet is 'fully quenched'
	- no trace of the leading particle, just a thermalized tail
	- the typical situation for a mini-jet : $E \lesssim \omega_{\text{br}}(L)$

Energy distribution

Left: z -distribution of the energy density $\varepsilon(t, z) = \int dp |p| f(t, z, p)$

- even for $t = t_{\text{br}}(E)$, most of the energy is still carried by the front ...
- but the respective 'front' is mostly made with soft gluons $(p \sim T)$
- branching products which did not yet have the time to thermalize
- a thermalized tail is clearly visible at $z < t$

Energy distribution

- Left: z-distribution of the energy density $\varepsilon(t, z) = \int dp |p| f(t, z, p)$
- Right: *p*-distribution near the front: $f(t, z, p)$ for $z = t$
	- scaling window at $t \ll t_{\rm br}(E)$: $p^{3/2}f$ \approx const. \implies wave turbulence
	- for $t \geq 0.5 t_{\text{br}}(E)$, some pile-up is visible around $p = T$
	- thermalization is efficient but certainly not instantaneous

Energy loss towards the medium

• Upper curves: $E = 90 T$; lower curves: $E = 25 T$

- The energy carried by the thermalized tail is ...
	- somewhat smaller than the 'flow' energy: medium is not a 'perfect sink'

• ... but still substantial: $6 \div 20$ GeV for $L = 3 \div 6$ fm

Conclusions

- A simple, yet detailed, 2-step, picture for jet quenching from pQCD
	- copious production of 'mini-jets' via democratic branchings
	- thermalization of the soft branching products with $p \sim T$
- Characteristic, 'front $+$ tail', structure of the (partially) quenched jet
	- 'front' : the leading particle, but also soft gluons radiated at late times
	- 'tail' : soft partons in local thermal equilibrium with the medium
- Energy loss by the jet towards the medium is identified as the energy carried by the thermalized tail.
- Very robust: based on separation of timescales between branching of hard partons and thermalization of their soft products
- Many approximations, need for more detailed/precise studies: coupled evolution of jet + medium in $D= 1 + 3 + 3$

Di–jet asymmetry : A_J (CMS)

Event fraction as a function of the di-jet energy imbalance in $p+p(a)$ and Pb+Pb (b–f) collisions for different bins of centrality

$$
A_J = \frac{E_1 - E_2}{E_1 + E_2} \qquad (E_i \equiv p_{T,i} = \text{ jet energies})
$$

 \bullet N.B. A pronounced asymmetry already in the $p+p$ collisions !

Energy imbalance @ large angles: $R=0.8$

INT Seattle 2015 **[Thermalization of mini-jets](#page-0-0)** Edmond Iancu 27 / 29

An exact solution to the 1-D FP equation

• The Green's function for ultrarelativistic FP in $D=1+1+1$

$$
\left(\frac{\partial}{\partial t} + v\frac{\partial}{\partial z}\right)f = \frac{\hat{q}}{4}\frac{\partial}{\partial p}\left(\frac{\partial}{\partial p} + \frac{v}{T}\right)f, \quad f(t = 0, z, p) = \delta(z)\delta(p - p_0)
$$

$$
f(t, z, p > 0) = \frac{e^{-\frac{p_0 - p}{2} - \frac{t}{4}}}{2\sqrt{\pi t}} \left[e^{-\frac{(p - p_0)^2}{4t}} - e^{-\frac{(p + p_0)^2}{4t}} \right] \delta(t - z)
$$

$$
+\frac{e^{-\frac{(p+p_0-z)^2}{4t}-p}}{8\sqrt{\pi}t^{5/2}}\left[t(t+2)-(p+p_0-z)^2\right] \times \\ \times \text{erfc}\left(\frac{1}{2}\sqrt{t-\frac{z^2}{t}}\left(\frac{p+p_0}{t+z}-1\right)\right)
$$

$$
+\frac{(t+z)(p+p_0+t-z)}{4\pi t^2\sqrt{t^2-z^2}}e^{-\frac{(p+p_0)^2}{2(t+z)}+\frac{p_0-p}{2}-\frac{t}{4}}
$$

Limiting behaviors

Physics transparent at both small and large times: $t_{\rm coll}(p_0) = \frac{p_0}{T} \, t_{\rm rel}$

• small times: $t_{rel} \lesssim t \ll t_{coll}(p_0)$

$$
f(t, z, p) \propto e^{-\frac{(p - \langle p(t) \rangle)^2}{\hat{q}t}} \delta(t - z)
$$

$$
\langle p(t) \rangle = p_0 - \frac{t}{t_{\rm rel}}\,T
$$

- energy loss & diffusion
- large times: $t > t_{\text{coll}}(p_0) \gg t_{\text{rel}}$

$$
f \simeq e^{-\frac{|p|}{T}} \exp \left\{-\frac{\left(z - (p_0/T)t_{\text{rel}}\right)^2}{4tt_{\text{rel}}}\right\}
$$

equilibrium & spatial diffusion

• plots:
$$
p_0 = 5T
$$
, $t_1 = t_{rel}$, $t_2 = 20t_{rel}$