CONSISTENT KINETIC EQUATIONS FOR LEPTOGENESIS?

Andreas Hohenegger

University of Stavanger

Equilibration Mechanisms in Weakly and Strongly Coupled Quantum Field Theory INT, August 19, 2015

Andreas Hohenegger, Equilibration Mechanisms 2015

BARYON ASYMMETRY

$$\eta_{B} = \frac{n_{b} - n_{\bar{b}}}{n_{\gamma}} \simeq 10^{-9}$$

CP-VIOLATION IN MESON DECAYS

CP-violation through

direct contribution (Penguin)

indirect contribution (Box)

interference with Tree

CP-violating observables

$$\frac{\Gamma_{P \to f} - \Gamma_{\bar{P} \to \bar{f}}}{\Gamma_{P \to f} + \Gamma_{\bar{P} \to \bar{f}}} \simeq \epsilon + \epsilon' \neq \mathbf{0}$$

Unitarity triangle and Jarlskog invariant (determinant)

CP-VIOLATION IN MESON DECAYS

- Idea: Use it to explain matter-antimatter asymmetry
 - Meson decays do not work (no B; freeze-out too late)
- New heavy particles *N_i*, weakly interacting through Yukawa coupling
 - CP-violation in N_i decays at 1-loop level through interference with tree graph

RHN EXTENSIONS OF STANDARD MODEL

- Standard Model L_{SM} shortcomings
 - neutrino oscillations, dark matter, couple of 'anomalies', baryon asymmetry
 - hierarchy between weak and Planck scale, strong CP problem, flavor structure ...
- Standard Model + 3RHN

$$\mathcal{L}_{\mathcal{SM}} + rac{1}{2} ar{N}_i (i \partial - M_i) N_i \ - h_{lpha i} ar{\ell}_{lpha} ar{\phi} P_R N_i - h_{i lpha}^{\dagger} ar{N}_i ar{\phi}^{\dagger} P_L \ell_{lpha}$$

neutrino masses, dark matter possible, multiple *CP*-violating phases in weak sector characterized by invariants *J*

RHN EXTENSIONS OF STANDARD MODEL

possible thermal history of the universe

BARYON ASYMMETRY

$$\eta_{B} \simeq \frac{a_{Sphaleron}}{f} \frac{n_{\ell} - n_{\bar{\ell}}}{n_{\gamma}}$$
$$\frac{n_{\ell} - n_{\bar{\ell}}}{n_{\gamma}} \simeq \kappa \epsilon_{1}$$
$$\epsilon_{i} = \left(\left| - \mathbf{O}_{\chi}^{\prime} \right|^{2} - \left| - \mathbf{O}_{\chi}^{\prime} \right|^{2} \right) / \left(\left| - \mathbf{O}_{\chi}^{\prime} \right|^{2} + \left| - \mathbf{O}_{\chi}^{\prime} \right|^{2} \right)$$

CONSISTENT KINETIC EQUATIONS

Need

- Non-negative number-densities/distribution functions
- Conserved currents
- Conserved energy-momentum
- Approach to equilibrium (H-theorem)
- No asymmetry without CP-violation in Lagrangian (Second Sakharov condition)
- No asymmetry in equilibrium (Third Sakharov condition)

Want/May need

- CP-violating phases in amplitudes
- Off-shell quantum effects
- Mixing of heavy N_i
- · Flavour and their mixing

TEXTBOOK KINETIC THEORY

$$(n_{\ell} - n_{\bar{\ell}}) = \int \frac{d^3k}{(2\pi)^3 E_k^{\ell}} \left[C^{\ell\phi\leftrightarrow N_i}(k) - C^{\bar{\ell}\bar{\phi}\leftrightarrow N_i}(k) \right]$$
$$C^{\ell\phi\leftrightarrow N_i}(k) = \frac{1}{2} \int d\Pi_p^{\phi} d\Pi_q^{N_i} (2\pi)^4 \delta(k+p-q) \left[\bullet \bullet \bullet \bullet \bullet \right]$$

$$\mathbf{C}^{\bar{\ell}\bar{\phi}\leftrightarrow N_i}(k) = \frac{1}{2} \int d\Pi_p^{\phi} d\Pi_q^{N_i} (2\pi)^4 \delta(k+p-q) \left[\mathbf{C}^{\bar{\ell}\bar{\phi}\leftrightarrow N_i}(k) - \mathbf{C}^{\bar{\ell}\bar{\phi}} - \mathbf{C}^{\bar{\ell}\bar{\phi}} \right]^2$$

Advances made in non-equilibrium QFT

W. Buchmüller and S. Fredenhagen, [hep-ph/0004145]; A. De Simone and A. Riotto, [hep-ph/0703175]; A. De Simone and A. Riotto, [hep-ph/0705.2183]; V. Cirigliano, A. De Simone, G. Isidori, I. Masina and A. Riotto, [hep-ph/0711.0778]; A. Anisimov, W. Buchmüller, M. Drewes and S. Mendizabal, [hep-th/0812.1934]: M. Garny, A. Hohenegger, A. Kartavtsev and M. Lindner, [0909.1559]: M. Garny, A. Hohenegger, A. Kartavtsev and M. Lindner, [hep-ph/0911.4122]: V. Cirigliano, C. Lee, M. J. Ramsev-Musolf and S. Tulin. [hep-ph/0912.3523]: A. Anisimov, W. Buchmüller, M. Drewes and S. Mendizabal, [hep-ph/1001.3856]; M. Garny, A. Hohenegger and A. Kartavtsey, [hep-ph/1002.0331]; M. Beneke, B. Garbrecht, M. Herranen and P. Schwaller, [hep-ph/1002.1326]; M. Beneke, B. Garbrecht, C. Fidler, M. Herranen and P. Schwaller, [hep-ph/1007.4783]; B. Garbrecht, [hep-ph/1011.3122]; A. Anisimov, W. Buchmüller, M. Drewes and S. Mendizabal, [hep-ph/1012.5821]; B. Garbrecht and M. Herranen, [hep-ph/1112.5954]; M. Garny, A. Kartavtsev and A. Hohenegger, [hep-ph/1112.6428]; M. Drewes and B. Garbrecht, [hep-ph/1206.5537]; B. Garbrecht, [hep-ph/1210.0553]; T. Frossard, M. Garny, A. Hohenegger, A. Kartavtsev and D. Mitrouskas. [hep-ph/1211.2140]; B. Garbrecht and M. J. Ramsey-Musolf, [hep-ph/1307.0524]; A. Hohenegger and A. Kartavtsev, [hep-ph/1309.1385]; S. Iso, K. Shimada and M. Yamanaka, [hep-ph/1312.7680]; S. Iso and K. Shimada, [hep-ph/1404.4816]; A. Hohenegger and A. Kartavtsev, [hep-ph/1404.5309]; B. Garbrecht, F. Gautier and J. Klaric, [hep-ph/1406.4190]; T. Frossard, A. Kartavtsev and D. Mitrouskas, [hep-ph/1304.1719].

- Gradient expansion (slow scales are H and Γ_i)
- Kadanoff-Baym ansatz and quasi-particle approximation for ℓ (and ϕ)

$$D_{
ho}(\rho) = (2\pi) \operatorname{sign}(\rho_0) \delta(\rho^2 - m^2),$$

 $D_F(\rho) = [1 \pm f^{\ell}(\rho)] D_{\rho}(\rho)$

• quasi-particle approximation for N_i problematic

diagonal approximation

$$G^{ij}_{
ho}(t,q) = \delta^{ij}(2\pi)\operatorname{sign}(p^0)\delta(p^2 - M_i^2)$$

neglects crucial cross-correlations

• overlap due to finite width neglected

3-loop contributions

■ vertex *CP*-violating parameter

• ($s \times t$) and ($t \times u$) contributions to $\ell \phi \leftrightarrow \bar{\ell} \phi$, $\ell \ell \leftrightarrow \phi \phi$ scattering

2-loop contributions

self-energy CP-violating parameter (need off-diagonal elements G^{ij})

• $(s \times s)$ and $(t \times t)$ contributions to $\ell \phi \leftrightarrow \bar{\ell} \phi$, $\ell \ell \leftrightarrow \bar{\phi} \phi$ scattering (needs extended quasi-particle approximation of G^{ii})

RESONANT LEPTOGENESIS

• vertex contributions problematic since not $\propto J = 2M_1M_2(M_2^2 - M_1^2) \text{Im}\{(h^{\dagger}h)_{12}^2\}$

$$\epsilon_{i}^{V,vac} = \frac{1}{8\pi} \frac{\ln\{(h^{\dagger}h)_{ij}^{2}\}}{(h^{\dagger}h)_{ii}} \frac{M_{j}}{M_{i}} \left[1 - \left(1 + \frac{M_{j}^{2}}{M_{i}^{2}}\right) \ln\left(1 + \frac{M_{i}^{2}}{M_{j}^{2}}\right)\right]$$

self-energy contributions

$$\epsilon_i^{S,\text{vac}} = -\frac{\text{Im}\left\{(hh^{\dagger})_{ij}^2\right\}}{(hh^{\dagger})_{ii}(hh^{\dagger})_{jj}} \frac{R}{R^2 + A^2}, \quad \text{with } R \equiv \frac{M_j^2 - M_i^2}{M_j \Gamma_j}$$

■ form due to internal propagator of N_j

$$\epsilon_i^{S,\text{vac}} = 4 \frac{\text{Im}\{(hh^{\dagger})_{ij}^2\}}{(hh^{\dagger})_{ii}M_i} \text{Im}\left\{ \underbrace{-} \underbrace{\langle * \times -} \underbrace{\langle * \times -}$$

- What happens if the spectral functions G^{ij} have a sizeable width?
- What happens if parameters in J are subject to changes due to medium effects?

RESONANT LEPTOGENESIS

• spectral functions for R = 10, $T = 0.1M_1$, $1M_1$

SIMPLIFICATIONS

- idea: attempt exact analytic solution for similar idealized problem
 simplifications
 - toy model (complex scalar field and two mixing real scalars)

$$\begin{split} \mathcal{L} &= \frac{1}{2} \partial^{\mu} \psi_{i} \partial_{\mu} \psi_{i} + \partial^{\mu} \bar{b} \partial_{\mu} b - m^{2} \bar{b} b \\ &- \frac{1}{2} M_{ij}^{2} \psi_{i} \psi_{j} - \frac{h_{i}}{2!} \psi_{i} b b - \frac{h_{i}^{*}}{2!} \psi_{i} \bar{b} \bar{b} , \quad i, j = 1, 2 \\ &\left(N_{i} \rightarrow \ell \phi, \ N_{i} \rightarrow \bar{\ell} \bar{\phi} \right) \Longleftrightarrow \left(\psi_{i} \rightarrow b b, \ \psi_{i} \rightarrow \bar{b} \bar{b} \right) \end{split}$$

- · drop expansion of universe
- light scalars b form thermal bath
- 2-loop truncation of 2PI-functional
- only source terms (≡ part that does not vanish for *CP*-symmetric state)
- CP-properties
 - transformation simplifies to $CPb(x)CP^{-1} = \bar{b}(-x)$
 - invariance if $\textit{CP}\mathcal{L}\textit{CP}^{-1}\sim\mathcal{L}$
 - *CP*-odd basis invariant ($H = hh^{\dagger}$)

 $J \equiv \text{Im Tr}(HM^3H^TM) = 2 \text{ Im } H_{12}\text{Re } H_{12}M_1M_2(M_2^2 - M_1^2)$

NON-EQUILIBRIUM QFT

divergence of current

$$j^b_\mu(x) = 2i \langle \left[\, ar b(x) \partial_\mu b(x) - b(x) \partial_\mu ar b(x)
ight]
angle$$

$$\longrightarrow \partial^{\mu} j^{b}_{\mu}(x) = \frac{dq^{b}}{dt} = i \lim_{y \to x} (\Box_{x} - \Box_{y}) D_{F}(x, y)$$

■ propagators $D_F(x, y) \equiv \frac{1}{2} \langle \{b(x), \bar{b}(y)\} \rangle$ and $D_{\rho}(x, y) \equiv i \langle [b(x), \bar{b}(y)] \rangle$ governed by Kadanoff-Baym equation

$$[\Box_x + m^2] D_F(x,y) = \int_{t_0}^{y^0} d^4 z \, \Sigma_F(x,z) D_\rho(z,y) - \int_{t_0}^{x^0} d^4 z \, \Sigma_\rho(x,z) D_F(z,y) \, ,$$

$$[\Box_x + m^2]D_\rho(x,y) = \int_{x^0}^{y^0} d^4 z \,\Sigma_\rho(x,z)D_\rho(z,y)\,,$$

self-energy Σ

NON-EQUILIBRIUM QFT

• $G_F^{ij}(x,y) = \frac{1}{2} \langle \{\psi_i(x), \psi_j(y)\} \rangle$ and $G_\rho^{ij}(x,y) = i \langle [\psi_i(x), \psi_j(y)] \rangle$ governed by

$$\begin{split} [\Box_x + M_{ik}^2] G_F^{kj}(x,y) &= \int\limits_{t_0}^{y^0} d^4 z \, \Pi_F^{ik}(x,z) G_\rho^{kj}(z,y) - \int\limits_{t_0}^{x^0} d^4 z \, \Pi_\rho^{ik}(x,z) G_F^{kj}(z,y) \,, \\ [\Box_x + M_{ik}^2] G_\rho^{kj}(x,y) &= \int\limits_{x^0}^{y^0} d^4 z \, \Pi_\rho^{ik}(x,z) G_\rho^{kj}(z,y) \end{split}$$

self-energy П

equilibrium solution

$$G_{F(\rho)}^{ij}(x,y) = -\int_{t_0}^{\infty} d^4 u \int_{t_0}^{\infty} d^4 v \ G_R^{ik}(x,u) \Pi_{F(\rho)}^{kl}(u,v) G_A^{lj}(v,y)$$
$$G_{R(A)}(q) = \Omega_{R(A)}^{-1} \equiv (q^2 - M^2 - \Pi_{R(A)})^{-1}$$

deviation from equilibrium through weak solution

$$\Delta G^{ij}_{\rho}(x,y) = 0,$$

$$\Delta G^{ij}_{F}(x,y) = -\int d^{3}u \int d^{3}v G^{ik}_{F}(x^{0},\mathbf{x}-\mathbf{u}) \underbrace{\Delta^{ki}_{F}(\mathbf{u}-\mathbf{v})}_{\text{initial conditions}} G^{ij}_{A}(-y^{0},\mathbf{v}-\mathbf{y})$$

■ initial conditions $\Delta_F^{kl} = \delta^{kl} \Delta_F$ should respect *CP*-properties of Lagrangian

$$q_{S}^{L}(t)=\intrac{d^{3}q}{(2\pi)^{3}}\Delta_{F}(\mathbf{q})\, extsf{Tr}\eta(t,\mathbf{q})$$

$$\begin{aligned} \text{Tr}\,\eta(t,\mathbf{q}) &= -\frac{2J}{\det M} \, \int_0^\infty \frac{dq_0}{2\pi} \int_0^\infty \frac{dp_0}{2\pi} \int_0^\infty \frac{dk_0}{2\pi} \, \Pi_\rho(q_0,\mathbf{q}) \\ &\times \text{Im}\Big(\frac{\Pi_R(p_0,\mathbf{q})F(q_0,p_0,k_0,t)}{\det \Omega_R(p_0,\mathbf{q})\det \Omega_A(k_0,\mathbf{q})} - \frac{\Pi_R(p_0,\mathbf{q})F(-q_0,p_0,k_0,t)}{\det \Omega_R(p_0,\mathbf{q})\det \Omega_A(k_0,\mathbf{q})} \\ &+ \frac{\Pi_R(p_0,\mathbf{q})F(q_0,p_0,-k_0,t)}{\det \Omega_R(p_0,\mathbf{q})\det \Omega_R(k_0,\mathbf{q})} - \frac{\Pi_R(p_0,\mathbf{q})F(-q_0,p_0,-k_0,t)}{\det \Omega_R(p_0,\mathbf{q})\det \Omega_R(k_0,\mathbf{q})} \end{aligned}$$

$$\det \Omega_R^{-1} = \det [q^2 - M^2 - \Pi_R], \quad \det \Omega_A = \det \Omega_R^*$$

$$F(q_0, p_0, k_0, t) = \frac{1 - e^{i(q_0 - p_0)t}}{q_0 - p_0} \frac{1 - e^{-i(q_0 - k_0)t}}{q_0 - k_0}$$

• effective masses and widths from analysis of poles of det Ω_R^{-1}

approximation

$$\det \Omega_R^{-1}(q_0, \mathbf{q}) \approx \frac{Z}{(q_0^2 - q_{0,1}^2)(q_0^2 - q_{0,2}^2)}$$

with

Andreas Hohenegger, Equilibration Mechanisms 2015

 comparison between hierarchical Boltzmann (red) and quasi-degenerate approximation (blue)

spurious enhancement for Boltzmann approximation

\blacksquare relative importance of remaining terms for $t \to \infty$

corrections due to Breit-Wigner shaped approximation also small

CONCLUSIONS

- NEQFT helps to understand leptogenesis
- quantum kinetic equations with off-shell dynamics in degenerate case
- kinetic equations reflect CP-properties of Lagrangian (∝ J)
- basis invariant treatment favourable
- many different effects enter phenomenological treatment
- elaborate quantitative (numerical) computations needed for precise statements (1% level)