Improved hydrodynamic approximations for the early stages of heavy-ion collisions

Ulrich Heinz

The Ohio State University

In collaboration with D. Bazow, G. Denicol, M. Martinez, J. Noronha, M. Strickland

References:

D. Bazow, UH, M. Strickland, PRC 90 (2014) 054910; G. Denicol, UH, M. Martinez, J. Noronha, M. Strickland, PRL 113 (2014) 202301; G. Denicol, UH, M. Martinez, J. Noronha, M. Strickland, PRD 90 (2014) 125026; D. Bazow, UH, M. Martinez, PRC 91 (2015) 064903; UH, M. Martinez, arXiv:1506.07500; M. Nopoush, M. Strickland, R. Ryblewski, D. Bazow, UH, M. Martinez, arXiv:1506.05278.

INT-15-2c: Equilibration Mechanisms in Weakly and Strongly Coupled Quantum Field Theory INT, 8/10/15

Ulrich Heinz (Ohio State)

Improved hydrodynamic approximations

INT, 8/10/15 1 / 26

Motivation	Kinetic theory vs. hydrodynamics	Exact BE solutions	Results 0000000000	Conclusions
Overview	1			

- 2 Kinetic theory vs. hydrodynamics
- 3 Exact solutions of the Boltzmann equation
 - Systems undergoing Bjorken flow
 - Systems undergoing Gubser flow
 - Hydrodynamics of Gubser flow
- 4 Results: Comparison of hydrodynamic approximations with exact BE
 - Bjorken flow
 - Gubser flow
 - Unphysical behavior at negative de Sitter times
- 5 Conclusions

Motivation	Kinetic theory vs. hydrodynamics	Exact BE solutions	Results 0000000000	Conclusions
Motivati	on			

Relativistic viscous hydrodynamics has become the workhorse of dynamical modeling of ultra-relativistic heavy-ion collisions

Motivation	Kinetic theory vs. hydrodynamics	Exact BE solutions	Results 000000000	Conclusions

- Relativistic viscous hydrodynamics has become the workhorse of dynamical modeling of ultra-relativistic heavy-ion collisions
- It is an effective macroscopic description based on coarse-graining (gradient expansion) of the microscopic dynamics

- N/I	otr	vati	on
	00	vau	

- Relativistic viscous hydrodynamics has become the workhorse of dynamical modeling of ultra-relativistic heavy-ion collisions
- It is an effective macroscopic description based on coarse-graining (gradient expansion) of the microscopic dynamics
- Its systematic construction is still a matter of debate, complicated by the existence of a complex hierarchy of micro- and macroscopic time scales that are not well separated in relativistic heavy-ion collisions

Motivation				
	on	(0±)	oti	ъл
wouvation		au	ou	1.41

- Relativistic viscous hydrodynamics has become the workhorse of dynamical modeling of ultra-relativistic heavy-ion collisions
- It is an effective macroscopic description based on coarse-graining (gradient expansion) of the microscopic dynamics
- Its systematic construction is still a matter of debate, complicated by the existence of a complex hierarchy of micro- and macroscopic time scales that are not well separated in relativistic heavy-ion collisions
- Exact solutions of the highly nonlinear microscopic dynamics can serve as a testbed for macroscopic hydrodynamic approximation schemes, but are hard to come by.

Motivation				
	on	(0±)	oti	ъл
wouvation		au	ou	1.41

- Relativistic viscous hydrodynamics has become the workhorse of dynamical modeling of ultra-relativistic heavy-ion collisions
- It is an effective macroscopic description based on coarse-graining (gradient expansion) of the microscopic dynamics
- Its systematic construction is still a matter of debate, complicated by the existence of a complex hierarchy of micro- and macroscopic time scales that are not well separated in relativistic heavy-ion collisions
- Exact solutions of the highly nonlinear microscopic dynamics can serve as a testbed for macroscopic hydrodynamic approximation schemes, but are hard to come by.
- Exact solutions have been found for weakly interacting systems with highly symmetric flow patterns and density distributions:
 Bjorken and Gubser flow

• • •	otivation	
111	OLIVATION	

- Relativistic viscous hydrodynamics has become the workhorse of dynamical modeling of ultra-relativistic heavy-ion collisions
- It is an effective macroscopic description based on coarse-graining (gradient expansion) of the microscopic dynamics
- Its systematic construction is still a matter of debate, complicated by the existence of a complex hierarchy of micro- and macroscopic time scales that are not well separated in relativistic heavy-ion collisions
- Exact solutions of the highly nonlinear microscopic dynamics can serve as a testbed for macroscopic hydrodynamic approximation schemes, but are hard to come by.
- Exact solutions have been found for weakly interacting systems with highly symmetric flow patterns and density distributions:
 Bjorken and Gubser flow
- Can be used to test different hydrodynamic expansion schemes for the Boltzmann equation in the Relaxation Time Approximation (RTA)

Ulrich Heinz (Ohio State)

Motivation	Kinetic theory vs. hydrodynamics	Exact BE solutions	Results 0000000000	Conclusions
Overviev	V			

2 Kinetic theory vs. hydrodynamics

- 3 Exact solutions of the Boltzmann equation
 - Systems undergoing Bjorken flow
 - Systems undergoing Gubser flow
 - Hydrodynamics of Gubser flow
- 4 Results: Comparison of hydrodynamic approximations with exact BE
 - Bjorken flow
 - Gubser flow
 - Unphysical behavior at negative de Sitter times
- 5 Conclusions

A D A D A D A

Both simultaneously valid if weakly coupled and small pressure gradients.

(日) (同) (三) (三)

Both simultaneously valid if weakly coupled and small pressure gradients. Form of hydro equations remains unchanged for strongly coupled systems.

Both simultaneously valid if weakly coupled and small pressure gradients. Form of hydro equations remains unchanged for strongly coupled systems.

Boltzmann Equation in Relaxation Time Approximation (RTA):

$$p^{\mu}\partial_{\mu}f(x,p) = C(x,p) = rac{p\cdot u(x)}{ au_{\mathrm{rel}}(x)} \Big(f_{\mathrm{eq}}(x,p) - f(x,p)\Big)$$

For conformal systems $\tau_{\rm rel}(x) = c/T(x) = 5\eta/(\mathcal{S}T) \equiv 5\bar{\eta}/T(x)$.

Both simultaneously valid if weakly coupled and small pressure gradients. Form of hydro equations remains unchanged for strongly coupled systems.

Boltzmann Equation in Relaxation Time Approximation (RTA):

$$p^{\mu}\partial_{\mu}f(x,p) = C(x,p) = rac{p\cdot u(x)}{ au_{\mathrm{rel}}(x)} \Big(f_{\mathrm{eq}}(x,p) - f(x,p)\Big)$$

For conformal systems $\tau_{\rm rel}(x) = c/T(x) = 5\eta/(\mathcal{S}T) \equiv 5\bar{\eta}/T(x)$.

Macroscopic currents:

$$j^{\mu}(x) = \int_{p} p^{\mu} f(x,p) \equiv \langle p^{\mu} \rangle; \quad T^{\mu\nu}(x) = \int_{p} p^{\mu} p^{\nu} f(x,p) \equiv \langle p^{\mu} p^{\nu} \rangle$$

where
$$\int_{p} \cdots \equiv \frac{g}{(2\pi)^3} \int \frac{d^3p}{E_p} \cdots \equiv \langle \dots \rangle$$

Conclusions

Hydrodynamics from kinetic theory (I):

Expand the solution f(x, p) of the Boltzmann equation as

$$f(x, p) = f_0(x, p) + \delta f(x, p) \qquad \left(\left| \delta f / f_0 \right| \ll 1 \right)$$

where f_0 is parametrized through macroscopic observables as

$$f_0(x,p) = f_0\left(\frac{\sqrt{p_{\mu}\Xi^{\mu\nu}(x)p_{\nu}} - \tilde{\mu}(x)}{\tilde{T}(x)}\right)$$

where $\Xi^{\mu\nu}(x) = u^{\mu}(x)u^{\nu}(x) - \Phi(x)\Delta^{\mu\nu}(x) + \xi^{\mu\nu}(x).$

 $u^{\mu}(x)$ defines the local fluid rest frame (LRF). $\Delta^{\mu\nu} = g^{\mu\nu} - u^{\mu}u^{\nu}$ is the spatial projector in the LRF. $\tilde{T}(x), \tilde{\mu}(x)$ are the effective temperature and chem. potential in the LRF. $\Phi(x)$ partially accounts for bulk viscous effects in expanding systems. $\xi^{\mu\nu}(x)$ describes deviations from local momentum isotropy in anisotropically expanding systems due to shear viscosity.

Ulrich Heinz (Ohio State)

Improved hydrodynamic approximations

INT, 8/10/15 6 / 26

Conclusions

Hydrodynamics from kinetic theory (II):

 $u^{\mu}(x), \ \tilde{\mathcal{T}}(x), \ \tilde{\mu}(x)$ are fixed by the Landau matching conditions:

$$T^{\mu}_{\nu}u^{\nu} = \mathcal{E}(\tilde{T}, \tilde{\mu}; \xi, \Phi)u^{\mu}; \qquad \left\langle u \cdot p \right\rangle_{\delta f} = \left\langle (u \cdot p)^2 \right\rangle_{\delta f} = 0$$

 \mathcal{E} is the LRF energy density. We introduce the true local temperature $\mathcal{T}(\tilde{T}, \tilde{\mu}; \xi, \Phi)$ and chemical potential $\mu(\tilde{T}, \tilde{\mu}; \xi, \Phi)$ by demanding $\mathcal{E}(\tilde{T}, \tilde{\mu}; \xi, \Phi) = \mathcal{E}_{eq}(T, \mu)$ and $\mathcal{N}(\tilde{T}, \tilde{\mu}; \xi, \Phi) \equiv \langle u \cdot p \rangle_{f_0} = \mathcal{R}_0(\xi, \Phi) \mathcal{N}_{eq}(T, \mu)$ (see cited literature for \mathcal{R} functions). Writing

$$T^{\mu\nu} = T_0^{\mu\nu} + \delta T^{\mu\nu} \equiv T_0^{\mu\nu} + \Pi^{\mu\nu}, \qquad j^{\mu} = j_0^{\mu} + \delta j^{\mu} \equiv j_0^{\mu} + V^{\mu},$$

the conservation laws

$$\partial_{\mu}T^{\mu\nu}(x) = 0, \qquad \partial_{\mu}j^{\mu}(x) = rac{\mathcal{N}(x) - \mathcal{N}_{\mathrm{eq}}(x)}{\tau_{\mathrm{rel}}(x)}$$

are sufficient to determine $u^{\mu}(x)$, T(x), $\mu(x)$, but not the dissipative corrections $\xi^{\mu\nu}$, Φ , $\Pi^{\mu\nu}$, and V^{μ} whose evolution is controlled by microscopic physics.

Ulrich Heinz (Ohio State)

INT, 8/10/15 7 / 26

Hydrodynamics from kinetic theory (III):

Different hydrodynamic approaches can be characterized by the different assumptions they make about the dissipative corrections and/or the different approximations they use to derive their dynamics from the underlying Boltzmann equation:

• Ideal hydro: local momentum isotropy $(\xi^{\mu\nu} = 0)$, $\Phi = \Pi^{\mu\nu} = V^{\mu} = 0$.

イロト 不得下 イヨト イヨト 二日

R<mark>esults</mark> 00000000000 Conclusions

Hydrodynamics from kinetic theory (III):

Different hydrodynamic approaches can be characterized by the different assumptions they make about the dissipative corrections and/or the different approximations they use to derive their dynamics from the underlying Boltzmann equation:

- Ideal hydro: local momentum isotropy $(\xi^{\mu\nu} = 0)$, $\Phi = \Pi^{\mu\nu} = V^{\mu} = 0$.
- Navier-Stokes (NS) theory: local momentum isotropy ($\xi^{\mu\nu} = 0$), $\Phi = 0$, ignores microscopic relaxation time by postulating instantaneous constituent relations for $\Pi^{\mu\nu}$, V^{μ} .

イロト 不得 トイヨト イヨト 二日

Hydrodynamics from kinetic theory (III):

Different hydrodynamic approaches can be characterized by the different assumptions they make about the dissipative corrections and/or the different approximations they use to derive their dynamics from the underlying Boltzmann equation:

- Ideal hydro: local momentum isotropy $(\xi^{\mu\nu} = 0)$, $\Phi = \Pi^{\mu\nu} = V^{\mu} = 0$.
- Navier-Stokes (NS) theory: local momentum isotropy ($\xi^{\mu\nu} = 0$), $\Phi = 0$, ignores microscopic relaxation time by postulating instantaneous constituent relations for $\Pi^{\mu\nu}$, V^{μ} .
- Israel-Stewart (IS) theory: local momentum isotropy ($\xi^{\mu\nu} = 0$), $\Phi = 0$, evolves $\Pi^{\mu\nu}$, V^{μ} dynamically, keeping only terms linear in $\text{Kn} = \lambda_{\text{mfp}}/\lambda_{\text{macro}}$

Hydrodynamics from kinetic theory (III):

Different hydrodynamic approaches can be characterized by the different assumptions they make about the dissipative corrections and/or the different approximations they use to derive their dynamics from the underlying Boltzmann equation:

- Ideal hydro: local momentum isotropy $(\xi^{\mu\nu} = 0)$, $\Phi = \Pi^{\mu\nu} = V^{\mu} = 0$.
- Navier-Stokes (NS) theory: local momentum isotropy ($\xi^{\mu\nu} = 0$), $\Phi = 0$, ignores microscopic relaxation time by postulating instantaneous constituent relations for $\Pi^{\mu\nu}$, V^{μ} .
- Israel-Stewart (IS) theory: local momentum isotropy ($\xi^{\mu\nu} = 0$), $\Phi = 0$, evolves $\Pi^{\mu\nu}$, V^{μ} dynamically, keeping only terms linear in $\text{Kn} = \lambda_{\text{mfp}}/\lambda_{\text{macro}}$
- Denicol-Niemi-Molnar-Rischke (DNMR) theory: improved IS theory that keeps nonlinear terms up to order Kn^2 , $\text{Kn} \cdot \text{Re}^{-1}$ when evolving $\Pi^{\mu\nu}$, V^{μ} .

Hydrodynamics from kinetic theory (III):

Different hydrodynamic approaches can be characterized by the different assumptions they make about the dissipative corrections and/or the different approximations they use to derive their dynamics from the underlying Boltzmann equation:

- Ideal hydro: local momentum isotropy $(\xi^{\mu\nu} = 0)$, $\Phi = \Pi^{\mu\nu} = V^{\mu} = 0$.
- Navier-Stokes (NS) theory: local momentum isotropy ($\xi^{\mu\nu} = 0$), $\Phi = 0$, ignores microscopic relaxation time by postulating instantaneous constituent relations for $\Pi^{\mu\nu}$, V^{μ} .
- Israel-Stewart (IS) theory: local momentum isotropy ($\xi^{\mu\nu} = 0$), $\Phi = 0$, evolves $\Pi^{\mu\nu}$, V^{μ} dynamically, keeping only terms linear in $\text{Kn} = \lambda_{\text{mfp}}/\lambda_{\text{macro}}$
- Denicol-Niemi-Molnar-Rischke (DNMR) theory: improved IS theory that keeps nonlinear terms up to order Kn^2 , $\text{Kn} \cdot \text{Re}^{-1}$ when evolving $\Pi^{\mu\nu}$, V^{μ} .
- Anisotropic hydrodynamics (aHydro): allows for leading-order local momentum anisotropy (ξ^{μν}, Φ ≠ 0), evolved according to equations obtained from low-order moments of BE, but ignores residual dissipative flows: Π^{μν} = V^μ = 0.

Hydrodynamics from kinetic theory (III):

Different hydrodynamic approaches can be characterized by the different assumptions they make about the dissipative corrections and/or the different approximations they use to derive their dynamics from the underlying Boltzmann equation:

- Ideal hydro: local momentum isotropy ($\xi^{\mu\nu} = 0$), $\Phi = \Pi^{\mu\nu} = V^{\mu} = 0$.
- Navier-Stokes (NS) theory: local momentum isotropy ($\xi^{\mu\nu} = 0$), $\Phi = 0$, ignores microscopic relaxation time by postulating instantaneous constituent relations for $\Pi^{\mu\nu}$, V^{μ} .
- Israel-Stewart (IS) theory: local momentum isotropy ($\xi^{\mu\nu} = 0$), $\Phi = 0$, evolves $\Pi^{\mu\nu}$, V^{μ} dynamically, keeping only terms linear in $\text{Kn} = \lambda_{\text{mfp}}/\lambda_{\text{macro}}$
- Denicol-Niemi-Molnar-Rischke (DNMR) theory: improved IS theory that keeps nonlinear terms up to order Kn^2 , $\text{Kn} \cdot \text{Re}^{-1}$ when evolving $\Pi^{\mu\nu}$, V^{μ} .
- Anisotropic hydrodynamics (aHydro): allows for leading-order local momentum anisotropy (ξ^{μν}, Φ ≠ 0), evolved according to equations obtained from low-order moments of BE, but ignores residual dissipative flows: Π^{μν} = V^μ = 0.
- Viscous anisotropic hydrodynamics (vaHydro): improved aHydro that additionally evolves residual dissipative flows $\Pi^{\mu\nu}$, V^{μ} with IS or DNMR theory.

Motivation	Kinetic theory vs. hydrodynamics	Exact BE solutions	Results 0000000000	Conc

Overview

1 Motivation

- 2 Kinetic theory vs. hydrodynamics
- 3 Exact solutions of the Boltzmann equation
 - Systems undergoing Bjorken flow
 - Systems undergoing Gubser flow
 - Hydrodynamics of Gubser flow
- 4 Results: Comparison of hydrodynamic approximations with exact BE
 - Bjorken flow
 - Gubser flow
 - Unphysical behavior at negative de Sitter times
- 5 Conclusions

► < Ξ ►</p>

Motivation	Kinetic theory vs. hydr	rodynamics	Exact BE solutions	Results 0000000000	Conclusions
Biorken flow					

BE for systems with highly symmetric flows: I. Bjorken flow

• Longitudinal boost invariance, transverse homogeneity ("physics on the light cone", no transverse flow) $\Longrightarrow u^{\mu} = (1, 0, 0, 0)$ in Milne coordinates (τ, r, ϕ, η) where $\tau = (t^2 - z^2)^{1/2}$ and $\eta = \frac{1}{2} \ln[(t-z)/(t+z)] \Longrightarrow v_z = z/t$

Motivation Kinetic theory vs. hydrodynamics Exact BE solutions Ococococo

Bjorken flow

BE for systems with highly symmetric flows: I. Bjorken flow

- Longitudinal boost invariance, transverse homogeneity ("physics on the light cone", no transverse flow) $\Rightarrow u^{\mu} = (1, 0, 0, 0)$ in Milne coordinates (τ, r, ϕ, η) where $\tau = (t^2 z^2)^{1/2}$ and $\eta = \frac{1}{2} \ln[(t-z)/(t+z)] \Rightarrow v_z = z/t$
- Metric: $ds^2 = d\tau^2 dr^2 r^2 d\phi^2 \tau^2 d\eta^2$, $g_{\mu\nu} = \text{diag}(1, -1, -r^2, -\tau^2)$

イロト イポト イヨト イヨト 二日

Motivation Kinetic theory vs. hydrodynamics Exact BE solutions Results Conclusions

Bjorken flow

BE for systems with highly symmetric flows: I. Bjorken flow

- Longitudinal boost invariance, transverse homogeneity ("physics on the light cone", no transverse flow) $\Rightarrow u^{\mu} = (1, 0, 0, 0)$ in Milne coordinates (τ, r, ϕ, η) where $\tau = (t^2 z^2)^{1/2}$ and $\eta = \frac{1}{2} \ln[(t-z)/(t+z)] \Rightarrow v_z = z/t$
- Metric: $ds^2 = d\tau^2 dr^2 r^2 d\phi^2 \tau^2 d\eta^2$, $g_{\mu\nu} = \text{diag}(1, -1, -r^2, -\tau^2)$
- Symmetry restricts possible dependence of distribution function f(x, p) (Baym '84, Florkowski et al. '13, '14):

 $f(x, p) = f(\tau; p_{\perp}, w)$ where $w = tp_z - zE = \tau m_{\perp} \sinh(y-\eta)$.

Motivation Kinetic theory vs. hydrodynamics Exact BE solutions Results Conclusions • 00 000000000

Bjorken flow

BE for systems with highly symmetric flows: I. Bjorken flow

- Longitudinal boost invariance, transverse homogeneity ("physics on the light cone", no transverse flow) $\Rightarrow u^{\mu} = (1, 0, 0, 0)$ in Milne coordinates (τ, r, ϕ, η) where $\tau = (t^2 z^2)^{1/2}$ and $\eta = \frac{1}{2} \ln[(t-z)/(t+z)] \Rightarrow v_z = z/t$
- Metric: $ds^2 = d\tau^2 dr^2 r^2 d\phi^2 \tau^2 d\eta^2$, $g_{\mu\nu} = \text{diag}(1, -1, -r^2, -\tau^2)$
- Symmetry restricts possible dependence of distribution function f(x, p) (Baym '84, Florkowski et al. '13, '14):

 $f(x, p) = f(\tau; p_{\perp}, w)$ where $w = tp_z - zE = \tau m_{\perp} \sinh(y-\eta)$.

RTA BE simplifies to ordinary differential equation

$$\partial_{\tau} f(\tau; \mathbf{p}_{\perp}, \mathbf{w}) = -rac{f(\tau; \mathbf{p}_{\perp}, \mathbf{w}) - f_{\mathrm{eq}}(\tau; \mathbf{p}_{\perp}, \mathbf{w})}{ au_{\mathrm{rel}}(au)}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

Motivation Kinetic theory vs. hydrodynamics Exact BE solutions Results Conclusion

Bjorken flow

BE for systems with highly symmetric flows: I. Bjorken flow

- Longitudinal boost invariance, transverse homogeneity ("physics on the light cone", no transverse flow) $\Rightarrow u^{\mu} = (1, 0, 0, 0)$ in Milne coordinates (τ, r, ϕ, η) where $\tau = (t^2 z^2)^{1/2}$ and $\eta = \frac{1}{2} \ln[(t-z)/(t+z)] \Rightarrow v_z = z/t$
- Metric: $ds^2 = d\tau^2 dr^2 r^2 d\phi^2 \tau^2 d\eta^2$, $g_{\mu\nu} = \text{diag}(1, -1, -r^2, -\tau^2)$
- Symmetry restricts possible dependence of distribution function f(x, p) (Baym '84, Florkowski et al. '13, '14):

 $f(x, p) = f(\tau; p_{\perp}, w)$ where $w = tp_z - zE = \tau m_{\perp} \sinh(y-\eta)$.

RTA BE simplifies to ordinary differential equation

 $D(\tau_2,\tau_1) = \exp\left(-\int_{\tau_1}^{\tau_2} \frac{d\tau}{\tau_{\rm rel}(\tau'')}\right).$

$$\partial_{\tau}f(\tau; \mathbf{p}_{\perp}, \mathbf{w}) = -rac{f(\tau; \mathbf{p}_{\perp}, \mathbf{w}) - f_{\mathrm{eq}}(\tau; \mathbf{p}_{\perp}, \mathbf{w})}{\tau_{\mathrm{rel}}(\tau)}.$$

Solution:

$$f(\tau; \boldsymbol{p}_{\perp}, \boldsymbol{w}) = D(\tau, \tau_0) f_0(\boldsymbol{p}_{\perp}, \boldsymbol{w}) + \int_{\tau_0}^{\tau} \frac{d\tau'}{\tau_{\rm rel}(\tau')} D(\tau, \tau') f_{\rm eq}(\tau'; \boldsymbol{p}_{\perp}, \boldsymbol{w})$$

where

・ロン ・四 ・ ・ ヨン ・ ヨン

Kinetic theory vs. hydrodynamics

Exact BE solutions

Results

Conclusions

Gubser flow

BE for systems with highly symmetric flows: II. Gubser flow

• Longitudinal boost invariance, azimuthally symmetric radial dependence ("physics on the light cone" with azimuthally symmetric transverse flow) (Gubser '10, Gubser & Yarom '11) $\Rightarrow u^{\mu} = (1, 0, 0, 0)$ in de Sitter coordinates $(\rho, \theta, \phi, \eta)$ where $\rho(\tau, r) = -\sinh^{-1}\left(\frac{1-q^2\tau^2+q^2r^2}{2q\tau}\right)$ and $\theta(\tau, r) = \tan^{-1}\left(\frac{2qr}{1+q^2\tau^2-q^2r^2}\right)$. $\Rightarrow v_z = z/t$ and $v_r = \frac{2q^2\tau r}{1+q^2\tau^2+q^2r^2}$ where q is an arbitrary scale parameter.

超す イヨト イヨト ニヨ

Kinetic theory vs. hydrodynamics

Exact BE solutions $\circ \bullet \circ$

Results

Conclusions

Gubser flow

BE for systems with highly symmetric flows: II. Gubser flow

Longitudinal boost invariance, azimuthally symmetric radial dependence ("physics on the light cone" with azimuthally symmetric transverse flow) (Gubser '10, Gubser & Yarom '11)
 ⇒ u^μ = (1,0,0,0) in de Sitter coordinates (ρ, θ, φ, η) where ρ(τ, r) = -sinh⁻¹ (1-q²τ²+q²r²/2ητ) and θ(τ, r) = tan⁻¹ (2qr/(1+q²τ²-q²r²)).
 ⇒ v_z = z/t and v_r = 2q²τr/(1+q²τ²+q²r²) where q is an arbitrary scale parameter.
 Metric: ds² = ds²/τ² = dρ² - cosh²ρ (dθ² + sin² θ dφ²) - dη², g_{μν} = diag(1, - cosh² ρ, - cosh² ρ sin² θ, -1)

・ 何 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Kinetic theory vs. hydrodynamics

Exact BE solutions

Results

Conclusions

Gubser flow

BE for systems with highly symmetric flows: II. Gubser flow

- Longitudinal boost invariance, azimuthally symmetric radial dependence ("physics on the light cone" with azimuthally symmetric transverse flow) (Gubser '10, Gubser & Yarom '11)
 ⇒ u^μ = (1,0,0,0) in de Sitter coordinates (ρ, θ, φ, η) where ρ(τ, r) = sinh⁻¹ ((1-q²τ²+q²r²)/(2qτ) and θ(τ, r) = tan⁻¹ ((2qr)/(1+q²τ²-q²r²)).
 ⇒ v_z = z/t and v_r = (2q²τr)/(1+q²τ²+q²r²)/(1+q²τ²+q²r²) where q is an arbitrary scale parameter.
 Metric: ds² = ds²/τ² = dρ² cosh²ρ (dθ² + sin² θ dφ²) dη², g_{μν} = diag(1, cosh² ρ, cosh² ρ sin² θ, -1)
- Symmetry restricts possible dependence of distribution function f(x, p)

$$f(x,p) = f(\rho; \hat{p}_{\Omega}^2, \hat{p}_{\eta})$$
 where $\hat{p}_{\Omega}^2 = \hat{p}_{\theta}^2 + \frac{\hat{p}_{\phi}^2}{\sin^2 \theta}$ and $\hat{p}_{\eta} = w$.

・何・ ・ヨ・ ・ヨ・ ・ヨ

Kinetic theory vs. hydrodynamics

Exact BE solutions

Results 00000000000 Conclusions

Gubser flow

BE for systems with highly symmetric flows: II. Gubser flow

- Longitudinal boost invariance, azimuthally symmetric radial dependence ("physics on the light cone" with azimuthally symmetric transverse flow) (Gubser '10, Gubser & Yarom '11) $\implies u^{\mu} = (1,0,0,0) \text{ in de Sitter coordinates } (\rho, \theta, \phi, \eta) \text{ where } \rho(\tau, r) = -\sinh^{-1}\left(\frac{1-q^2\tau^2+q^2r^2}{2q\tau}\right) \text{ and } \theta(\tau, r) = \tan^{-1}\left(\frac{2qr}{1+q^2\tau^2-q^2r^2}\right).$ $\implies v_z = z/t \text{ and } v_r = \frac{2q^2rr}{1+q^2\tau^2+q^2r^2} \text{ where } q \text{ is an arbitrary scale parameter.}$ Metric: $d\hat{s}^2 = ds^2/\tau^2 = d\rho^2 \cosh^2\rho (d\theta^2 + \sin^2\theta d\phi^2) d\eta^2, g_{\mu\nu} = \operatorname{diag}(1, -\cosh^2\rho, -\cosh^2\rho \sin^2\theta, -1)$
- Symmetry restricts possible dependence of distribution function f(x, p)

 $f(x,p) = f(\rho; \hat{p}_{\Omega}^2, \hat{p}_{\eta})$ where $\hat{p}_{\Omega}^2 = \hat{p}_{\theta}^2 + \frac{\hat{p}_{\phi}^2}{\sin^2 \theta}$ and $\hat{p}_{\eta} = w$.

• With $T(\tau, r) = \hat{T}(\rho(\tau, r))/\tau$ RTA BE simplifies to the ODE

$$\frac{\partial}{\partial \rho} f(\rho; \hat{p}_{\Omega}^{2}, \hat{\rho}_{\varsigma}) = -\frac{\hat{T}(\rho)}{c} \left[f\left(\rho; \hat{p}_{\Omega}^{2}, \hat{\rho}_{\varsigma}\right) - f_{\mathrm{eq}}\left(\hat{p}^{\rho}/\hat{T}(\rho)\right) \right].$$

Kinetic theory vs. hydrodynamics

Exact BE solutions

Results 00000000000 Conclusions

Gubser flow

BE for systems with highly symmetric flows: II. Gubser flow

- Longitudinal boost invariance, azimuthally symmetric radial dependence ("physics on the light cone" with azimuthally symmetric transverse flow) (Gubser '10, Gubser & Yarom '11) $\implies u^{\mu} = (1, 0, 0, 0) \text{ in de Sitter coordinates } (\rho, \theta, \phi, \eta) \text{ where}$ $\rho(\tau, r) = -\sinh^{-1}\left(\frac{1-q^2\tau^2+q^2r^2}{2q\tau}\right) \text{ and } \theta(\tau, r) = \tan^{-1}\left(\frac{2qr}{1+q^2\tau^2-q^2r^2}\right).$ $\implies v_z = z/t \text{ and } v_r = \frac{2q^2rr}{1+q^2\tau^2+q^2r^2} \text{ where } q \text{ is an arbitrary scale parameter.}$ $= \text{Metric: } d\hat{s}^2 = ds^2/\tau^2 = d\rho^2 \cosh^2\rho (d\theta^2 + \sin^2\theta d\phi^2) d\eta^2,$ $g_{\mu\nu} = \text{diag}(1, -\cosh^2\rho, -\cosh^2\rho, -1)$
- Symmetry restricts possible dependence of distribution function f(x, p)

$$f(x,p) = f(\rho; \hat{p}_{\Omega}^2, \hat{p}_{\eta})$$
 where $\hat{p}_{\Omega}^2 = \hat{p}_{\theta}^2 + \frac{\hat{p}_{\phi}^2}{\sin^2 \theta}$ and $\hat{p}_{\eta} = w$.

• With $T(\tau, r) = \hat{T}(\rho(\tau, r))/\tau$ RTA BE simplifies to the ODE

$$rac{\partial}{\partial
ho} f(
ho; \hat{
ho}_{\Omega}^2, \hat{
ho}_{\varsigma}) = -rac{\hat{T}(
ho)}{c} \left[f\left(
ho; \hat{
ho}_{\Omega}^2, \hat{
ho}_{\varsigma}
ight) - f_{
m eq} \Big(\hat{
ho}^{
ho} / \hat{T}(
ho) \Big)
ight].$$

Solution:

 $f(\rho; \hat{\rho}_{\Omega}^{2}, w) = D(\rho, \rho_{0}) f_{0}(\hat{\rho}_{\Omega}^{2}, w) + \frac{1}{c} \int_{\rho_{0}}^{\rho} d\rho' \hat{T}(\rho') D(\rho, \rho') f_{eq}(\rho'; \hat{\rho}_{\Omega}^{2}, w)$

Gubser hydro

Hydrodynamic equations for systems with Gubser flow*:

The exact solution for f can be worked out for any "initial" condition $f_0(\hat{\rho}_{\Omega}^2, w) \equiv f(\rho_0; \hat{\rho}_{\Omega}^2, w)$. We here use equilibrium initial conditions, $f_0 = f_{eq}$.

*For Bjorken flow, including (0+1)-d vaHydro, see UH@QM14

Gubser hydro

Hydrodynamic equations for systems with Gubser flow*:

- The exact solution for f can be worked out for any "initial" condition $f_0(\hat{\rho}_{\Omega}^2, w) \equiv f(\rho_0; \hat{\rho}_{\Omega}^2, w)$. We here use equilibrium initial conditions, $f_0 = f_{eq}$.
- By taking hydrodynamic moments, the exact f yields the exact evolution of all components of $T^{\mu\nu}$. Here, $\Pi^{\mu\nu}$ has only one independent component, $\pi^{\eta\eta}$.

*For Bjorken flow, including (0+1)-d vaHydro, see UH@QM14

Gubser hydro

Hydrodynamic equations for systems with Gubser flow*:

- The exact solution for f can be worked out for any "initial" condition $f_0(\hat{\rho}_{\Omega}^2, w) \equiv f(\rho_0; \hat{\rho}_{\Omega}^2, w)$. We here use equilibrium initial conditions, $f_0 = f_{eq}$.
- By taking hydrodynamic moments, the exact f yields the exact evolution of all components of $T^{\mu\nu}$. Here, $\Pi^{\mu\nu}$ has only one independent component, $\pi^{\eta\eta}$.
- This exact solution of the BE can be compared to solutions of the various hydrodynamic equations in de Sitter coordinates, using identical initial conditions.
 - Ideal: $\hat{T}_{ideal}(\rho) = \frac{\hat{T}_0}{\cosh^{2/3}(\rho)}$
 - **NS:** $\frac{1}{\hat{T}} \frac{d\hat{T}}{d\rho} + \frac{2}{3} \tanh \rho = \frac{1}{3} \bar{\pi}_{\eta}^{\eta}(\rho) \tanh \rho$ (viscous *T*-evolution) with $\bar{\pi}_{\eta}^{\eta} \equiv \hat{\pi}_{\eta}^{\eta}/(\hat{T}\hat{S})$ and $\hat{\pi}_{NS}^{\eta\eta} = \frac{4}{3}\hat{\eta} \tanh \rho$ where $\frac{\hat{\eta}}{\hat{S}} \equiv \bar{\eta} = \frac{1}{5}\hat{T}\hat{\tau}_{rel}$
 - **IS:** $\frac{d\bar{\pi}_{\eta}^{\eta}}{d\rho} + \frac{4}{3} \left(\bar{\pi}_{\eta}^{\eta}\right)^{2} \tanh \rho + \frac{\bar{\pi}_{\eta}^{\eta}}{\hat{\tau}_{\text{rel}}} = \frac{4}{15} \tanh \rho$
 - **DNMR:** $\frac{d\bar{\pi}^{\eta}_{\eta}}{d\rho} + \frac{4}{3} \left(\bar{\pi}^{\eta}_{\eta}\right)^2 \tanh \rho + \frac{\bar{\pi}^{\eta}_{\eta}}{\hat{\tau}_{rel}} = \frac{4}{15} \tanh \rho + \frac{10}{21} \bar{\pi}^{\eta}_{\eta} \tanh \rho$
 - aHydro: see M. Nopoush et al., PRD 91 (2015) 045007
 - vaHydro: not yet available

*For Bjorken flow, including (0+1)-d vaHydro, see UH@QM14

Motivation	Kinetic theory vs. hydrodynamics	Exact BE solutions	Results	Conclusions
Overview	1			

- 2 Kinetic theory vs. hydrodynamics
- 3 Exact solutions of the Boltzmann equation
 - Systems undergoing Bjorken flow
 - Systems undergoing Gubser flow
 - Hydrodynamics of Gubser flow
- 4 Results: Comparison of hydrodynamic approximations with exact BE
 - Bjorken flow
 - Gubser flow
 - Unphysical behavior at negative de Sitter times
- 5 Conclusions

Exact BE solutions

Results

000000000

Bjorken flow

Bjorken flow (II)

vaHydro agrees within a few % with exact result, even for very large $\eta/S!$

 Motivation
 Kinetic theory vs. hydrodynamics
 Exact BE solutions
 Results
 Conclusions

 Bjorken flow

 Bjorken flow (III)

 Total entropy (particle) production
 $n(\tau_f) \cdot \tau_f$ 1

INT, 8/10/15 16 / 26

Improved hydrodynamic approximations

INT, 8/10/15 17 / 26

Gubser flow

Gubser flow II: ρ -evolution of temperature and shear stress

Ulrich Heinz (Ohio State)

Improved hydrodynamic approximations

INT, 8/10/15 18 / 26

Gubser flow

Gubser flow III: temperature evolution in de Sitter time ρ

Ulrich Heinz (Ohio State)

Improved hydrodynamic approximations

INT, 8/10/15 19 / 26

Gubser flow

Gubser flow IV: shear stress evolution in de Sitter time ρ

Ulrich Heinz (Ohio State)

Improved hydrodynamic approximations

INT, 8/10/15 20 / 26

 Motivation
 Kinetic theory vs. hydrodynamics
 Exact BE solutions 000
 Results 000
 Cor

 Gubser flow
 Cor
 Cor
 Cor
 Cor

Gubser flow V: temperature evolution in Minkowski space

IS seems to work better than DNMR (!?) Both seem to have problems at large $r\leftrightarrow$ large negative ho

Ulrich Heinz (Ohio State)

Improved hydrodynamic approximations

INT, 8/10/15 21 / 26

Kinetic theory vs. hydrodynamics Exact BE solutions Results 000000000000 Gubser flow

Gubser flow in aHydro: ρ -evolution of T and shear stress

Thermal equil. initial conditions at $\rho_0 \rightarrow -\infty$. aHydro works better than IS & DNMR

Ulrich Heinz (Ohio State)

Improved hydrodynamic approximations

INT, 8/10/15 22 / 26

otivation Kinetic theory vs. hydrodynamics Exact BE solutions Results Composition 000

Unphysical behavior at negative de Sitter times

Exact BE solution w/ Gubser flow: problems at $\rho - \rho_0 < 0$

At fixed $(\hat{\rho}_{\Omega}, w)$, $f(\rho; \hat{\rho}_{\Omega}^{2}, w)$ increases monotonically with ρ near $\rho_{0} \implies$ With thermal initial conditions at finite ρ_{0} , for some points in momentum space f eventually becomes negative for large enough negative $\rho - \rho_{0}$:

Ulrich Heinz (Ohio State)

Improved hydrodynamic approximations

INT, 8/10/15 23 / 26

Motivation	Kinetic theory vs. hydrodynamics	Exact BE solutions	Results 000000000	Conclusions
Overvie	ew			

- 2 Kinetic theory vs. hydrodynamics
- 3 Exact solutions of the Boltzmann equation
 - Systems undergoing Bjorken flow
 - Systems undergoing Gubser flow
 - Hydrodynamics of Gubser flow
- 4 Results: Comparison of hydrodynamic approximations with exact BE
 - Bjorken flow
 - Gubser flow
 - Unphysical behavior at negative de Sitter times

5 Conclusions

► < Ξ ►</p>

Motivation	Kinetic theory vs. hydrodynamics	Exact BE solutions	Results 0000000000	Conclusions
Conclus	ions			

- A new exact solution of the Boltzmann equation with a relaxation time collision term for systems undergoing Gubser flow enables tests of hydrodynamic approximation schemes in situations that resemble heavy-ion collisions where the created matter undergoes simultaneous longitudinal and transverse expansion.
- When compared with the exact solution, second-order viscous hydrodynamics (IS and DNMR) works better than NS theory, anisotropic hydrodynamics (aHydro) works better than hydrodynamic schemes based on an expansion around local mometum isotropy (IS and DNMR), and viscous anisotropic hydrodynamic (vaHydro) (which treats small viscous corrections as IS or DNMR but resums the largest viscous terms) outperforms aHydro.

Performance hierarchy: vaHydro > aHydro > DNMR \sim IS > NS > ideal fluid.

When using the exact solution for such hydrodynamic tests, care must be taken to avoid the region of large negative de Sitter times (measured from the time of initialization) where the exact solution features negative distribution functions in part of momentum space.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

ΝЛ.	ь.		2		
		v			

Exact BE solutions

R<mark>esults</mark> 20000000000 Conclusions

Conclus

The End

Ulrich Heinz (Ohio State)

Improved hydrodynamic approximations

INT, 8/10/15

æ

<ロ> (日) (日) (日) (日) (日)

26 / 26