Quark Loops and Photons with CGC in pA

STRAD, STRAD

Kenji Fukushima The University of Tokyo ongoing work with Sanjin Benic

Four Steps in HIC

Color Glass Condensate (CGC) $\tau \lesssim 1/Q_s \sim 0.1 {\rm fm/c}$

Color Glass + Plasma = Glasma $\tau \lesssim \tau_0 \sim 1 {\rm fm/c}$

(s) Quark-Gluon Plasma $\tau \lesssim \tau_f \sim 10 {\rm fm/c}$

Hadronization (quarks → hadrons) Lattice EoS ~ HRG

Three Keywords in Early Dynamics

Isotropization Gelis, Epelbaum, Berges, Venugopalan, Schlichting

Complete isotropization is not necessary. Stability of a certain isotropization (< 50%?) is required.

Hydronization Chesler, Yaffe, Janik, Strickland, Heinz

Hydrodynamics would be a better description with more and more dissipative terms.

Anisotropic viscous hydro may work better?

Thermalization Blaizot, McLerran, Liao, Gelis, Berges, Kurkela, Moore

What is seen in experiment is a thermal p_t distribution of hadrons — thermal gluons? Turbulence? BEC? Photons?

Issues on Isotropization

ŔĨŢŖŴĿŔĬĨŢŖŴĿŔĬĬŢŖŴĿŔĬĬŢŖŴĿŔĬĬŢŖŴĿŔĬĬŢŖŴĿŔĬĬŢŖŴĿŔĬĬŢŖŴĿŔĬĬŢŖŴĿŔĬĬŢŖŴĿŔĬĬŢŖŴĿŔĬĬŢŖ

Q: Is the CSA good to give fast isotropization if the system is NOT expanding?

Issues on Thermalization

NEDAL NEDAL NEDAL NEDAL NEDAL NED NEDAL NEDAL NEDAL NEDAL NEDAL NEDAL NEDAL NEDAL NEDA

RHIC / PHENIX

- * photon puzzle
 - baryons-antibaryons
 - pion Bremsstrahlung (Ralf Rapp)
- * photon elliptic flow

Four Steps in HIC

Hadronization (quarks \rightarrow hadrons)

Classical Picture for B

R

Point-particle approximation:

$$eB_0 = (47.6 \text{ MeV})^2 \left(\frac{1 \text{ fm}}{b}\right)^2 Z \sinh Y$$
 $t_0 = \frac{b}{2 \sinh Y}$
"strongest magnetic field in the Universe"
August 25, 2015 @ INT in Seattle

What I want to do...

HERAL HERAL HERAL HERAL HERAL HERAL HER HERAL HERAL HERAL HERAL HERAL HERAL HERAL HERAL

Initial State in High-Energy AA Collisions

Magnetic Fields

Photon Production

Quark Pair Production

Anomalous Transport (more direct relevance than hydro/phase diagram)

Expanding CGC

ĦĨŢŎĸĨĿŢŔĬŢŎĸĨĿŢŔĬŢŎĸĨĿŢŔĬŢŎĸĨĿŢŔĬŢŎŢŔĬŢŎĸĨĿŢŔĬŢŎĸĨĿŢŔĬŢŎĸĨĿŢŔĬŢŎĸĨĿŢŔĬŢŎĸĨĿŢŔĬŢŎ

Longitudinal Fields (Local Parity Violation)

Simulation starts with "negative" pressure: $P_L < 0$

Remark on CGC

"Saturation" is not needed, but just "Scaling"

Scaling variable: $\tau = Q^2/Q_s^2(x)$

Saturation momentum: $Q_s^2(x) = Q_0^2 (x/x_0)^{-\lambda}$

Golec-Biernat, Kwiecinski, Stasto, Wuesthoff

"Geometric Scaling"

B-CGC

ĦĨŎĸĿĿŔĬŎĸĿĔĬĬŎĸĿĔĬĬŎĸĿĔĬĬŎĸĿĔĬĬŎĔĬĬŎĔĬĬŎĸĿĔĬĬŎĸĿĔĬĬŎĸĿĔĬĬŎĸĿĔĬĬŎĸĿĔĬĬŎĸĿĔĬĬŎ

B-CGC

ĦĨŢŎŴĿŔĬĨŢŎŴĿŔĬĬŢŎŴĿŔĬĨŢŎŴĿŔĬĨŢŎŔĬĬŢŎŔĬŢŎŴĿŔĬĬŢŎŴĿŔĬĬŢŎŴĿŔĬĬŢŎŴĿŔĬĬŢŎŴĿŔĬĬŢŎ

Analytical calculation for uniform fields Current = CP-breaking Schwinger Mechanism

What is new with fields *inhomogeneous* in space/time?

B-induced Photons

ĦĨŢŎĿĿĿĦĨŢŎĿĿĦĨŢŎĿĿĦĨŢŎĿĿĦĨŢŎĿĿĦĨŢŎĔĬŢŎĿĿĦĨŢŎĿĿĦĨŢŎĿĿĦĨŢŎĿĿĦĨŢŎĿĿĦĨŢŎĿĿĦĨŢŎ

Inhomogeneous B / μ_5 carries energy/momentum

Reversed Primakoff Effect

Fukushima-Mameda (2012)

cf. Basar-Kharzeev-Skokov (2012)

B-induced Photons

Inhomogeneous B / μ_5 carries energy/momentum

Non-perturbative Formulation Gelis-Kajantie-Lappi (2005)

$$M_{\tau}(p,q) \equiv \int \frac{\tau \mathrm{d}z \mathrm{d}^2 \mathbf{x}_T}{\sqrt{\tau^2 + z^2}} \,\phi_{\mathbf{p}}^{\dagger}(\tau,\mathbf{x}) \gamma^0 \gamma^{\tau} \psi_{\mathbf{q}}(\tau,\mathbf{x})$$

$$\frac{dN}{dy} = \int \frac{\mathrm{d}y_p \mathrm{d}^2 \mathbf{p}_T}{2\left(2\pi\right)^3} \frac{\mathrm{d}y_q \mathrm{d}^2 \mathbf{q}_T}{2\left(2\pi\right)^3} \delta\left(y - y_p\right) \left|M_\tau(p,q)\right|^2$$

$$\psi_{\mathbf{q}}(t \to -\infty, \mathbf{x}) = e^{iq \cdot x} v(q)$$
$$\phi_{\mathbf{p}}(x) = e^{-ip \cdot x} u(p)$$

Very early ($\tau < 0.1$ fm/c)

Simple Example

Schwinger mechanism in scalar QED

August 25, 2015 @ INT in Seattle

Consistency Check

Q: Is it possible to reproduce the real-time CME for uniform fields using the GKL formalism? $y_{B^{y}\uparrow,j^{y}}$

A : of course yes!

But, unclear whether it is technically feasible?

Numerical test with uniform fields without expansion

Consistency Check

philose.philose.philose.philose.philose.philophilose.philose.philose.philose.philose.philos

August 25, 2015 @ INT in Seattle

Toward B-CGC Simulations

ĦĨŢŎĿĿŎĬĨŢŎĿĿŎĬĨŢŎĿĿŎĬĨŢŎĿĿŎĬĨŢŎĿŎĬĨŢŎĔĬŢŎĿŎĬĬŢŎĿĿŎĬĨŢŎĿĿŎĬĬŢŎĿĿŎĬĬŢŎĿĿŎĬĬŢŎĿĿŎĬĬŢŎ

CGC Background Fields (Glasma instability is not needed for the moment)

Bogoliubov Coefficients (GKL formalism) 🖌

Initial Conditions at $\tau = 0^+$?

Toward B-CGC Simulations

ĦĨŢŎĿĿĿĦĨŢŎĿĿĦĨŢŎĿĿĦĨŢŎĿĿĦĨŢŎĿĿĦĨŢŎĔĬŢŎĿĿĦĨŢŎĿĿĦĨŢŎĿĿĦĨŢŎĿĿĦĨŢŎĿĿĦĨŢŎĿĿĦĨŢŎĿĿĦĨŢŎ

CGC Background Fields (Glasma instability is not needed for the moment)

Bogoliubov Coefficients (GKL formalism) 🖌

Initial Conditions at $\tau = 0^+$ \checkmark Gelis-Tanji (2015)

August 25, 2015 @ INT in Seattle

What I want to do...

Initial State in High-Energy AA Collisions

Magnetic Fields

Photon Production

Quark Pair Production

Anomalous Transport (more direct relevance than hydro/phase diagram)

What I can do... so far... ನಿ ಸೇಳಿದವು. ಸೇಳಿದವು, ಸೇಳಿದ ಸೇಳಿದವು, ಸೇಳಿದವು, ಸೇಳಿದವು, ಸೇ Initial State in High-Energy AA Collisions рA **Magnetic Fields Photon Production Quark Pair Production Photons from quark loops (for technical simplicity)**

Conventional Photons

SERVELSERVELSERVELSERVELSERVELSERVELSERVELSERVELSERVELSERVELSERVELSERVELSERVELSERVELSERVE

Compton Scattering

 $q \xrightarrow{\gamma }$

Annihilation

$$\propto \alpha_e \alpha_s n_q (1 - n_q) n_g \qquad \propto \alpha_e \alpha_s n_q n_{\bar{q}} (1 + n_g)$$
$$(qg \rightarrow q\gamma) \qquad \qquad (q\bar{q} \rightarrow g\gamma)$$

Conventional Photons

PÉRAR, PÉRA

Compton Scattering

Annihilation

$$\propto \alpha_e \alpha_s n_q (1 - n_q) n_g \qquad \propto \alpha_e \alpha_s n_q n_{\bar{q}} (1 + n_g)$$
$$(qg \rightarrow q\gamma) \qquad \qquad (q\bar{q} \rightarrow g\gamma)$$

Diagrams involving CGC **Compton Scattering Annihilation** CGC CGC $\propto \alpha_e \alpha_s n_q (1 - n_q) \alpha_s^{-1}$ $\propto \alpha_e \alpha_s n_q n_{\bar{q}} \alpha_s^{-1}$ $\sim \alpha_e n_q (1 - n_q)$ $\sim \alpha_e n_q n_{\bar{q}}$

Multiple Scattering

ĦĨŢŎĸĨĿŢŔĬŢŎĸĨĿŢŔĬŢŎĸĨĿŢŔĬŢŎĸĨĿŢŔĬŢŎŢŔĬŢŎĸĨĿŢŔĬŢŎĸĨĿŢŔĬŢŎĸĨĿŢŔĬŢŎĸĨĿŢŔĬŢŎĸĨĿŢŔĬŢŎ

In a certain gauge: $A \sim \rho_A \sim \delta(x^+)$

Leading-order Processes

Multiple Scattering with CGC

Leading-order Processes

Multiple Scattering with CGC

GJ Formula

HERAL HERAL HERAL HERAL HERAL HERAL HER HERAL HERAL HERAL HERAL HERAL HERAL HERAL HERAL HERAL

$$\frac{1}{A_{\perp}} \frac{d\sigma^{q \to q\gamma}}{d^2 \mathbf{k}_{\perp}} = \frac{2\alpha_e}{(2\pi)^4 \mathbf{k}_{\perp}^2} \int_0^1 dz \frac{1 + (1 - z)^2}{z} \int d^2 \mathbf{l}_{\perp} \frac{\mathbf{l}_{\perp}^2 C(\mathbf{l}_{\perp})}{(\mathbf{l}_{\perp} - \mathbf{k}_{\perp}/z)^2}$$

$$C(\boldsymbol{l}_{\perp}) \equiv \int d^2 \boldsymbol{x}_{\perp} e^{i\boldsymbol{l}_{\perp} \cdot \boldsymbol{x}_{\perp}} e^{-B_2(\boldsymbol{x}_{\perp})} = \int d^2 \boldsymbol{x}_{\perp} e^{i\boldsymbol{l}_{\perp} \cdot \boldsymbol{x}_{\perp}} \left\langle U(0)U^{\dagger}(\boldsymbol{x}_{\perp})\right\rangle_{\rho}$$
$$B_2(\boldsymbol{x}_{\perp} - \boldsymbol{y}_{\perp}) \equiv Q_s^2 \int d^2 \boldsymbol{z}_{\perp} [G_0(\boldsymbol{x}_{\perp} - \boldsymbol{z}_{\perp}) - G_0(\boldsymbol{y}_{\perp} - \boldsymbol{z}_{\perp})]^2$$

Per one massless quark with p = 00.3 0.25 k 0.2 C(k) 0.15 qΘ ⁰0 0.1 °°°°° q+k*l~p* 0.05 + crossed diagram 0 (photon emitted first) 10 15 20 0 5 25 30 ρ_{p} $\rho_{\!A}$ k/Λ_{OCD} Gelis-Jalilian-Marian (2002) 30 August 25, 2015 @ INT in Seattle

Higher-order Processes

ĦĨŢŎĸĨĿŢŔĨŢŎĸĨĿŢŔĨŢŎĸĨĿŢŔĨŢŎĸĨĿŢŔĨŢŎŢŔĬŢŎĸĨĿŢŔĬŢŎĸĨĿŢŔĬŢŎĸĨĿŢŔĬŢŎĸĨĿŢŔĬŢŎĸĨĿŢŔĬŢŎ

Higher-order Processes

ĦĔŖĸĿĸĔĔŖĸĿĸĔĔŖĸĿĸĔĔŖĸĿĸĔĔŖĸĿĸĔĔŖĔĿĔĔŖĸĿĸĔĔŖĸĿĸĔĔŖĸĿĸĔĔŖĸĿĸĔĔŖĸĿĸĔĔŖĸĿĸĔĔŖ

Should be more and more important as approaching AA

 $\sim \alpha_e \langle (g\rho_{\rm p})^2 \rangle \langle UU^{\dagger}UU^{\dagger} \rangle$

 $\sim \alpha_e \langle (g\rho_{\rm p})^4 \rangle \langle UU^{\dagger}UU^{\dagger} \rangle$

Interested Regime

ĦĨŎĿĿĿĔĬŎĿĿĿĔĬŎĿĿĿĔĬŎĿĿĿĔĬŎĿĿĔĬŎĿĔĬŎĿĔĬŎĿĿĔĬŎĿĿĔĬŎĿĿĔĬŎĿĿĔĬŎĿĿĔĬŎĿĿĔĬŎĿĿĔĬŎĿ

$$(g\rho_{\rm p})^2 < g\rho_{\rm p} \sim n_q^{\rm (p)}$$

Benic-Fukushima (2015)

August 25, 2015 @ INT in Seattle

Interested Regime

 $(g\rho_{\rm p})^2 < g\rho_{\rm p} \sim n_q^{(\rm p)}$

Lowest-order vanishes due to Furry's theorem

Anomaly sensitive?

Odderon needed?

Benic-Fukushima (2015)

Amplitude (preliminary)

ĦĨŎĿĿĿŔĨŎĿĿĿŔĨŎĿĿĿŔĨŎĿĿĿŔĨŎĿĿĿŔĨŎĿŔĬŎĿĔĬŎĿĿĿŔĨŎĿĿĿŔĬŎĿĿĿŔĬŎĿĿĿŔĬŎĿĿĿŔĬŎĿĿĿŔĬŎĿ

Same approximation as GJ \sim massless with p = 0

$$\langle \boldsymbol{k}, \lambda | pA \rangle = 2\sqrt{\alpha_e} \sqrt{\alpha_s} \int \frac{d^2 \boldsymbol{p}_{\perp} d^2 (\boldsymbol{l}_{\perp} - \boldsymbol{l}'_{\perp})}{(2\pi)^4} \frac{\mathcal{T}(\boldsymbol{k}_{\perp}, \boldsymbol{p}_{\perp}, \boldsymbol{l}_{\perp} - \boldsymbol{l}'_{\perp})}{\boldsymbol{p}_{\perp}^2} \int \frac{d^2 (\boldsymbol{l}_{\perp} + \boldsymbol{l}'_{\perp})}{(2\pi)^2} \int_0^1 dx \frac{x \boldsymbol{k}_{\perp} - \boldsymbol{l}'_{\perp}}{(x \boldsymbol{k}_{\perp} - \boldsymbol{l}'_{\perp})^2 + \boldsymbol{l}_{\perp}^2 - \boldsymbol{l}'_{\perp}^2}$$

Color matrix "Calculable" part requiring some gauge inv. regularization

$$\mathcal{T}(\boldsymbol{k}_{\perp},\boldsymbol{p}_{\perp},\boldsymbol{l}_{\perp}-\boldsymbol{l}_{\perp}') \equiv \mathrm{tr}\big[U(-\boldsymbol{p}_{\perp}-\boldsymbol{l}_{\perp}+\boldsymbol{l}_{\perp}')\rho_{\mathrm{p}}(\boldsymbol{p}_{\perp})U^{\dagger}(-\boldsymbol{l}_{\perp}+\boldsymbol{l}_{\perp}'-\boldsymbol{k}_{\perp})\big]$$

Color Average (MV Model)

$$\begin{split} \langle \mathcal{T}(\boldsymbol{k}_{\perp},\boldsymbol{p}_{\perp},\boldsymbol{\Delta}_{\perp})\mathcal{T}(\boldsymbol{k}_{\perp},\boldsymbol{p}_{\perp}',\boldsymbol{\Delta}_{\perp}')\rangle \\ &= \langle \rho_{\rm p}^{a}(\boldsymbol{p}_{\perp})\rho_{\rm p}^{b}(\boldsymbol{p}_{\perp}')\rangle \langle \mathrm{tr}[U(-\boldsymbol{p}_{\perp}-\boldsymbol{\Delta}_{\perp})t^{a}U^{\dagger}(-\boldsymbol{\Delta}_{\perp}-\boldsymbol{k}_{\perp})]\mathrm{tr}[U(-\boldsymbol{p}_{\perp}'-\boldsymbol{\Delta}_{\perp}')t^{b}U^{\dagger}(-\boldsymbol{\Delta}_{\perp}'-\boldsymbol{k}_{\perp})\rangle \end{split}$$

Average on p : trivial

$$\langle \rho_{\mathrm{p}}^{a}(\boldsymbol{p}_{\perp})\rho_{\mathrm{p}}^{b*}(\boldsymbol{p}_{\perp}')\rangle = \delta^{ab} g^{2} \mu_{\mathrm{p}}^{2} (2\pi)^{2} \delta^{(2)}(\boldsymbol{p}_{\perp}-\boldsymbol{p}_{\perp}')$$

Average on A : MV model (singlet extracted)

$$\langle \operatorname{tr}[U(\boldsymbol{x}_{1})t^{a}U^{\dagger}(\boldsymbol{x}_{2})]\operatorname{tr}[U(\boldsymbol{x}_{3})t^{b}U^{\dagger}(\boldsymbol{x}_{4})] \rangle$$

$$= \frac{\delta^{ab}}{2N_{c}} \cdot \frac{B_{2}(\boldsymbol{x}_{1} - \boldsymbol{x}_{4}) + B_{2}(\boldsymbol{x}_{2} - \boldsymbol{x}_{3}) - B_{2}(\boldsymbol{x}_{1} - \boldsymbol{x}_{3}) - B_{2}(\boldsymbol{x}_{2} - \boldsymbol{x}_{4})}{B_{2}(\boldsymbol{x}_{1} - \boldsymbol{x}_{4}) + B_{2}(\boldsymbol{x}_{2} - \boldsymbol{x}_{3}) - B_{2}(\boldsymbol{x}_{1} - \boldsymbol{x}_{2}) - B_{2}(\boldsymbol{x}_{3} - \boldsymbol{x}_{4})} \\ \times \left(e^{-B_{2}(\boldsymbol{x}_{1} - \boldsymbol{x}_{4}) - B_{2}(\boldsymbol{x}_{2} - \boldsymbol{x}_{3})} - e^{-B_{2}(\boldsymbol{x}_{1} - \boldsymbol{x}_{2}) - B_{2}(\boldsymbol{x}_{3} - \boldsymbol{x}_{4})}\right).$$

Numerical calculations to be performed...

Technical Remark

HERAL HERAL HERAL HERAL HERAL HERAL HER HERAL HERAL HERAL HERAL HERAL HERAL HERAL HERAL

$$\left\langle U(\boldsymbol{x}_{1\perp})_{\beta_1\alpha_1}U(\boldsymbol{x}_{2\perp})_{\beta_2\alpha_2}\cdots U(\boldsymbol{x}_{n\perp})_{\beta_n\alpha_n}\right\rangle$$

$$U(\boldsymbol{x}_{\perp}) = \mathcal{P} \exp\left[-\mathrm{i}g^2 \int_{-\infty}^{+\infty} \mathrm{d}x^- \mathrm{d}^2 \boldsymbol{z}_{\perp} G_0(\boldsymbol{x}_{\perp} - \boldsymbol{z}_{\perp}) \rho_a(x^-, \boldsymbol{z}_{\perp}) t^a\right]$$
$$\omega(\rho) = \exp\left[-\int_{-\infty}^{+\infty} \mathrm{d}x^- \mathrm{d}\boldsymbol{x}_{\perp} \frac{\rho_a^2(x^-, \boldsymbol{x}_{\perp})}{2\mu^2(x^-)}\right]$$

 $\rho_a(x^-, \boldsymbol{x}_\perp) \rightarrow \delta(x^-)\rho_a^{(t)}(\boldsymbol{x}_\perp)$ Very delicate limit Fukushima (2007)

Summary

Early-time dynamics Glasma (longitudinal chromo-*E/B*) + U(1) *B*

Particle production

Quark pair production on P- and CP-odd *E/B* leading to the CME current

Photons in pA~AA

Loop diagrams become more important

One loop diagram evaluated

Structure looks quite similar to Bremsstrahlung

- * Introduction of U(1) B
- * Color average in a different way?