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HOW TO MATCH THE PRE-EQUILIBRIUM STAGE WITH HYDRODYNAMICS?

Glasma (Fields) QGP (Hydro)
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HOW TO MATCH THE PRE-EQUILIBRIUM STAGE WITH HYDRODYNAMICS?
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THE COLOR GLASS CONDENSATE [MCLERRAN, VENUGOPALAN (1993)]

1
L= —Z?M?‘“ +J, A" (no quarks)
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THE COLOR GLASS CONDENSATE [MCLERRAN, VENUGOPALAN (1993)]

1
L= —Z?m?‘” +J, A" (no quarks)

z~ xt

Numerical
Evolution

A, known
analytically
at 7=07"
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THE COLOR GLASS CONDENSATE [MCLERRAN, VENUGOPALAN (1993)]

1
L= —Zﬁﬂwrf‘” +J, A" (no quarks)

s
Numerical
Evolution

A, known

analytically

at 7=07"

3 1 /22 =2 4
LO: . =r -2 e=1 (2 + )&
8
SN—— —
Color sources Classical
on the light cone

color fields
[KRASNITZ, VENUGOPALAN (1998)]
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THE COLOR GLASS CONDENSATE AT ITS LO

F'S1

classical

time evolution

classical

initial condition
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THE COLOR GLASS CONDENSATE AT ITS LO

e=8& +B3 +& +B]
Pr=2¢&7 +B7
P =8 +B% —& —B?
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THE COLOR GLASS CONDENSATE AT ITS LO
; ‘ ; ‘ ; ‘ ;

—0.6

(g’we

[LAPPI, MCLERRAN (2006)]
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THE COLOR GLASS CONDENSATE AT ITS LO

e= & + B +& +B]
—~ O~
0 0
Pr=2¢E+B]

PL= & 4+ B —& —B;
~— =~
0 0

Initial 7" is (e, €, €,—€)!
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THE COLOR GLASS CONDENSATE AT ITS LO
Strong anisotropy at early time

T [fm/c]
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+1 o o
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Qg1

[LAPPI, MCLERRAN (2006), FUKUSHIMA, GELIS (2012)...]
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THE CLASSICAL STATISTICAL APPROXIMATION (CSA)

FSo

classical

time evolution

quantum

initial condition
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THE CLASSICAL STATISTICAL APPROXIMATION (CSA)

FSo

classical

time evolution

quantum

initial condition
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CSA: NON-RENORMALIZABLE [TE, GELIS, WU (2014)]

The classical Lagrangean reads
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APPLICATION OF THE CSA TO THE QGP

FSy

quantum

initial condition

Initial condition
Ao (T, x1,m) = Ao (T0,x 1) +J ¢ ap(to,x1,m)
k

Time evolution (I = x, y,n) for each configuration

D F*M =0 = e,Pr,Pr

Cross checks: Gauss’s law and Bjorken’s law

D EM =0 T0e = —€e—P;
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NUMERICAL RESULTS [TE,GELIS (2013)]

o =21072 (g =0.5)

T [fm/c]
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TG VERSUS BBSV

1 T T
— e .
= 8‘“ Initial occupancy: 3 [nitial anisotropy: A 1
o &p=1 (isotropic)
5
o
=
S
&
=
<
=
S
7]
0.1

100 Time: Qt 1000

fozz%9<Q*
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TG VERSUS BBSV

1 T T
— e .
= 8‘“ Initial occupancy: 3 [nitial anisotropy: A 1
o &p=1 (isotropic)
5
o
=
S
&
=
<
=
S
7]
0.1

100 Time: Qt 1000 100

Why is it so different??
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TG VERSUS BBSV
BBSV Scenario

e Start at Ot ~ 100 with A =0and a ~ i — g scales out

e at 0t > 300: f(p1,p.) = (OT)*fo((QsT)Pp L, (057) ;)

e o, B,y =(—3%,0, 1) "universals". deduced from

e=cstxT ! n=cstxt! df = §o%f
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TG VERSUS BBSV
BBSV Scenario

e Start at Ot ~ 100 with A =0 and a ~ i — g scales out

e at Ot > 300: f(pi,p.) = (

QST) OLfO( (QST) BPL, (QsT)ypz)

e o, B,y =(—%,0, 1) "universals". deduced from

e=cstx T !

LO+NLO fully
TG | O, <1

gs05

upside: close to real situation

downside: A effects ?
0,71, > 1 not accessible

THOMAS EPELBAUM

n=cstxt! 0 = E/a?f

not clear LO, not NLO
BBSV | Ot > 1

g<107°¢
upside: Almost no A effects

downside: Phenomenological relevance?
Fixed point IC dependent?
How to flow?
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KINETIC TREATMENT WITH ELASTIC SCATTERING

CSA non renormalizable: How to really see the A effects?’

1 4
Prerequisites
l<f<g?(0r>1)
fisotropic: f(p) — f(lp])
2 3

'Gauge case: [ABRAAO, KURKELA, LU, MOORE (2014)]
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KINETIC TREATMENT WITH ELASTIC SCATTERING

CSA non renormalizable: How to really see the A effects?’

1 4
Prerequisites
l<f<g?(0r>1)
fisotropic: f(p) — f(lp])

2 3

2n)*g* [ 4
o = 2 J 54(Py + Py — Py — Py) [(1+ /) (1 +)fofs — a1 +£5)(1 +£i)]
! 23,4 Flf]
with

&k
|= oo B = R+ m?

'Gauge case: [ABRAAO, KURKELA, LU, MOORE (2014)]
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KINETIC TREATMENT WITH ELASTIC SCATTERING

CSA non renormalizable: How to really see the A effects?’

1 4
Prerequisites
l<f<g?(0r>1)
fisotropic: f(p) — f(lp])
2 3

Quantum theory Q: keep everything

F If1 = (1 +A)(1+ L) — 00+ ) (1 +£)

'Gauge case: [ABRAAO, KURKELA, LU, MOORE (2014)]
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KINETIC TREATMENT WITH ELASTIC SCATTERING

CSA non renormalizable: How to really see the A effects?’

1 4
Prerequisites
l<f<g?(0r>1)
fisotropic: f(p) — f(lp])
2 3

Classical approximation €° — f >> 1, keep the dominant term in F [f]

F,[f1 = (fi +L)fafs —fifa(fs + /1)

'Gauge case: [ABRAAO, KURKELA, LU, MOORE (2014)]
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KINETIC TREATMENT WITH ELASTIC SCATTERING

CSA non renormalizable: How to really see the A effects?’

1 4
Prerequisites
l<f<g?(0r>1)
fisotropic: f(p) — f(lp])
2 3

Classical-Statistical approximation €' — €° and then f — £ + 1
[MUELLER, SON (2002)]

Fo,[f1=F,[f1+ %(}‘3 +fa—fi—f)

'Gauge case: [ABRAAO, KURKELA, LU, MOORE (2014)]
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KINETIC TREATMENT: NUMERICAL RESULTS FOR ISOTROPIC f
[TE, GELIS, TANJI, WU (2014)]

m=05Q £€=Q* n=0.75¢/m [Classical +1/2]
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KINETIC TREATMENT: NUMERICAL RESULTS FOR ISOTROPIC f
[TE, GELIS, TANJI, WU (2014)]
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KINETIC TREATMENT: NUMERICAL RESULTS FOR ISOTROPIC f
[TE, GELIS, TANJI, WU (2014)]
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KINETIC TREATMENT: NUMERICAL RESULTS FOR ISOTROPIC f
[TE, GELIS, TANJI, WU (2014)]
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KINETIC TREATMENT: WHAT TO EXPECT FOR ANISOTROPIC f?

1 4
Prerequisites
l<f<g?(Qr>1)
f anisotropic: f(p) — f(lp.|,p.)
2 3

Boltzmann equation for 2 « 2 elastic scattering

4.4
0,1 = (2;'215' J 8*(Py + Py — P3 — P4)Ff]

2,34
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KINETIC TREATMENT: WHAT TO EXPECT FOR ANISOTROPIC f?

Now suppose f very anisotropic initially

f}) ~ 5(Pz) 0(p4.)
What can happen?
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KINETIC TREATMENT: WHAT TO EXPECT FOR ANISOTROPIC f?

Now suppose f very anisotropic initially

Jp ~ 3 )o(p.)
What can happen?

L |
/

In plane collisions — no isotropization
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KINETIC TREATMENT: WHAT TO EXPECT FOR ANISOTROPIC f?

Now suppose f very anisotropic initially

Jp ~ 3 )o(p.)
What can happen?

P

e .e--%_a,

Out of plane collisions — isotropization
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KINETIC TREATMENT: WHAT TO EXPECT FOR ANISOTROPIC f?

Now suppose f very anisotropic initially

Jp ~ 3 )o(p.)
What can happen?

P

e .e--%_a,

Out of plane collisions — isotropization

Can these large angle collisions happen?
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ANISOTROPIC f: PROBLEM WITH THE €° SCHEME
Remember
F 1= +HL)6hA—NAG+ 1)
F 1 =F {1+ —fif
Now take initially f, = 278(p,)fo(p1)

Let us inspect the Boltzmann equation in both cases
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ANISOTROPIC f: PROBLEM WITH THE €° SCHEME
Remember
F 1= +HL)6hA—NAG+ 1)
F 1 =F {1+ —fif
Now take initiallyf,,w =2718(p.)fo(pL)

Let us inspect the Boltzmann equation in both cases

60

J 8 (PiL+ Pyl — P31 — P4y )F,[f)]

2,341
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ANISOTROPIC f: PROBLEM WITH THE €° SCHEME
Remember
F 1= +HL)6hA—NAG+ 1)
F 1 =F {1+ —fif
Now take initiallyfuvp\_ =2718(p.)fo(pL)

Let us inspect the Boltzmann equation in both cases

Q
27 4 4
01 = 5(p1z)% J 5*(Pyy + Po — Py — Pyy)F [l
! 21,3141
27 4 4
+ ( 41)3 g J 8 (P11 + Pai — P31 — Py )8(pi, + pa)fs fu
Yogslal
27 4 4
_6(1712)( 4])51g J 8 (P11 + Pyy — P31 — Py )8(ps. + pa)fi o

2,.,34
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ANISOTROPIC f: PROBLEM WITH THE €° SCHEME
Remember
F 1= +HL)6hA—NAG+ 1)
F 1 =F {1+ —fif
Now take initiallyf,,w =2718(p.)fo(pL)

Let us inspect the Boltzmann equation in both cases

Q

01 =

(2m)*g*
4E,

+ J 8 (P11 + Py — P3y — Py )d(pi. +pa)fsfo

23141
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ANISOTROPIC f: PROBLEM WITH THE €° SCHEME
Remember
F 1= +HL)6hA—NAG+ 1)
F 1 =F {1+ —fif
Now take initially f, = 278(p,)fo(p1)

Let us inspect the Boltzmann equation in both cases

Y artificially supresses large angle collisions.
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ANISOTROPIC f: PROBLEM WITH THE €° SCHEME
Remember
F 1= +HL)6hA—NAG+ 1)
F 1 =F {1+ —fif
Now take initially f, = 278(p,)fo(p1)

Let us inspect the Boltzmann equation in both cases

Y artificially supresses large angle collisions.
€0 artificially "traps" anistropic distributions.
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ANISOTROPIC f: PROBLEM WITH THE €° SCHEME
Remember
F 1= +HL)6hA—NAG+ 1)
F 1 =F {1+ —fif
Now take initially f, = 278(p,)fo(p1)

Let us inspect the Boltzmann equation in both cases

Y artificially supresses large angle collisions.
€0 artificially "traps" anistropic distributions.
None of this happens with Q or @!.
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ANISOTROPIC f: PROBLEM WITH THE €° SCHEME
Remember
F 1= +HL)6hA—NAG+ 1)
F 1 =F {1+ —fif
Now take initially f, = 278(p,)fo(p1)

Let us inspect the Boltzmann equation in both cases

Y artificially supresses large angle collisions.
€0 artificially "traps" anistropic distributions.
None of this happens with Q or C!.
Could it be the reason why €° so slow to isotropize?
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ANISOTROPIC f: ILLUSTRATION OF THE PROBLEM WITH THE C° SCHEME
[TE, GELIS, JEON, MOORE, WU (2015)]

0.24
0.22
€ @ full
0.2 classical O
CSA o
n : full
0.18 classical
CSA o
0.16
0.14
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ANISOTROPIC f: ILLUSTRATION OF THE PROBLEM WITH THE C° SCHEME
[TE, GELIS, JEON, MOORE, WU (2015)]

0.2
e
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T
0.15 //
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QU 0.1 / Classical
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0
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ANISOTROPIC f: ILLUSTRATION OF THE PROBLEM WITH THE C° SCHEME
[TE, GELIS, JEON, MOORE, WU (2015)]

. 7 \
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<
<
Full
Classical
102 CSA \
0.1 1 10 100
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EXPANDING CASE, WHAT TO EXPECT?

dlog(P,/P,)
Tt

Artistic view!

free streaming

+2

2/3 ¢

classical attractor

constant anisotropy
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EXPANDING CASE, EQUATIONS AND SUBTLETIES
Boltzmann equation, expanding case, presence of a condensate

p

2
0~ Doy, 23, | i = Cuelfi) + G + €9
1

1 . .
_a"l' (Tnc) = Cé2<_>34 [fl]
T
Conservation laws
0-(TN) =0. O0c(te) = — Py . TP, = —2p;

Collision kernel properties

JE,, dE,dp, C[f,] = 0. JE; dE,dp, C[f,] = 0. JE,, p2dE,dp. C[f,] =0

Initial condition

E2 6p2
& P z
f) — ex 7 - =
i \fg-/ P [ Q2

>1

gt =50
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NUMERICAL RESULTS [TE, GELIS, JEON, MOORE, WU (2015)]

0.45
Tn conserved
0.4
Te : full
0.35 classical
TN full —
classical
0.3 D\
0.25
Te Bjorken scaling? Free streaming?
0.2 : : S ‘ ‘
1 10
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NUMERICAL RESULTS [TE, GELIS, JEON, MOORE, WU (2015)]

0.3 ;
. /\7\
0.2 ,/
E; 0.15 Tne : full ———
< classical
0.1
0.05
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NUMERICAL RESULTS [TE, GELIS, JEON, MOORE, WU (2015)]

1 -

P/ Py full 1
classical

PL/Pr

/

0.01 : e : :
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NUMERICAL RESULTS [TE, GELIS, JEON, MOORE, WU (2015)]

2

0
2/3

1.5
\ Besr : Full
Classical

0.5 \

Besf = -T*(dlog(P /P7) / dT)

T~
\
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NUMERICAL RESULTS [TE, GELIS, JEON, MOORE, WU (2015)]

1 I I I I T

P/Pr: full: LUQ=5

7
r"‘\\ classical : L/Q = 3

\
S §\
o Ny
\\
N
N e —
\\\
\
0.01
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NUMERICAL RESULTS [TE, GELIS, JEON, MOORE, WU (2015)]

1

0.1

PL/Pr
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I

P /Pr: full: g*= 50
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NUMERICAL RESULTS [TE, GELIS, JEON, MOORE, WU (2015)]

1

0.1

PL/Pr

0.01

I
P /Pr: full: g*= 50
100 — |
P 200
S ——
» :\‘
T —
. i 22
""Debye,QCD — &5 %
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NUMERICAL RESULTS [TE, GELIS, JEON, MOORE, WU (2015)]

1 T

P /Pr: full: g*= 50
100 = |.....]

S ]

0.1 N ——
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NUMERICAL RESULTS [TE, GELIS, JEON, MOORE, WU (2015)]

1 T

P /Pr: full: g*= 50
100 = |.....]

S ]

&
= 0.1 N ——
o
— ——
\\‘ 1
e ——————
PV 70 | R 0.NDE
Sd)—JU'_/U\,s U.uLo
0.01
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NUMERICAL RESULTS [TE, GELIS, JEON, MOORE, WU (2015)]

; PR 1
0. Z
0.1 e N ::::\_
- i Y N \
e [ b, S 2
o o ~—
[l (QT)'2/3
Hfull : g2 = 100 === _
45 6000
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NUMERICAL RESULTS [TE, GELIS, JEON, MOORE, WU (2015)]
Why no C! results?
v
Pz~ ;
Constant p. cutoff means v increases!

C! non-renormalizable — no limit when v — oo
Recall isotropic case..

v-fixed calculations for C! would be interesting...
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ARE THE POSTULATES OF HYDRODYNAMICS
SATISFIED DURING THE EARLY STAGES
OF A HEAVY-ION COLLISION?

Conclusion
o Yang-Mills: Evidences for an early hydrodynamical onset
° Hydrodynamization already happens at weak coupling
o CSA non-renormalizable = isotropic Boltzmann OK
o Anisotropic Boltzmann =- Classical attractors ruled out?
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ARE THE POSTULATES OF HYDRODYNAMICS
SATISFIED DURING THE EARLY STAGES
OF A HEAVY-ION COLLISION?

Perspectives
o Boltzmann treatment for the ¢! expanding case?
o Boltzmann treatment for the gauge expanding case?
o Renormalization in the YM case?
o Going beyond the CSA = Quantum evolution?
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classical

""""""" - o , time evolution

quantum

initial condition
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