

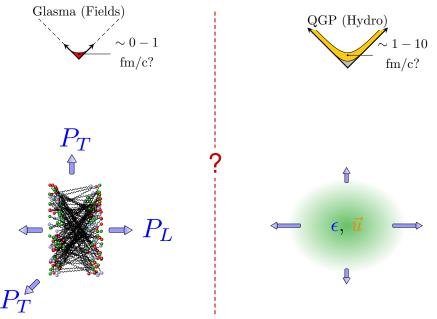
On the use of the classical approximation for the early stages of HIC

INT, Seattle, 24/08/15

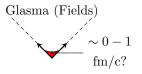
Thomas EPELBAUM

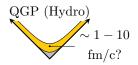
McGill

HOW TO MATCH THE PRE-EQUILIBRIUM STAGE WITH HYDRODYNAMICS?



HOW TO MATCH THE PRE-EQUILIBRIUM STAGE WITH HYDRODYNAMICS?



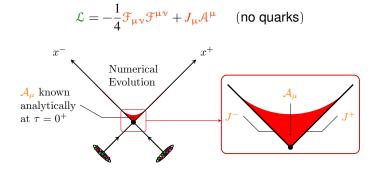


$$T^{\mu\nu} = T^{\mu\nu}_{ideal} + \Pi^{\mu\nu} \qquad u_{\mu}T^{\mu\nu} = \epsilon u^{\nu}$$
$$T^{\mu\nu}_{ideal} = \epsilon u^{\mu}u^{\nu} - p\Delta^{\mu\nu} \qquad \text{iff}$$

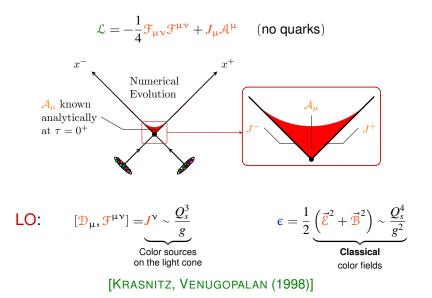
THE COLOR GLASS CONDENSATE [MCLERRAN, VENUGOPALAN (1993)]

$$\mathcal{L} = -\frac{1}{4} \mathcal{F}_{\mu\nu} \mathcal{F}^{\mu\nu} + J_{\mu} \mathcal{A}^{\mu} \quad \text{ (no quarks)}$$

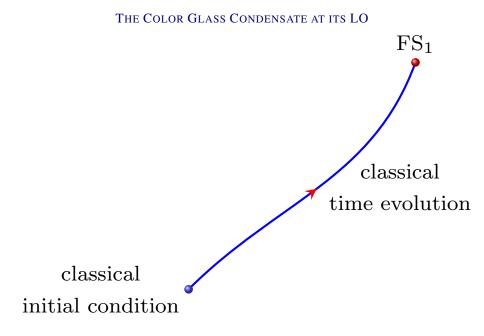
THE COLOR GLASS CONDENSATE [MCLERRAN, VENUGOPALAN (1993)]



THE COLOR GLASS CONDENSATE [MCLERRAN, VENUGOPALAN (1993)]

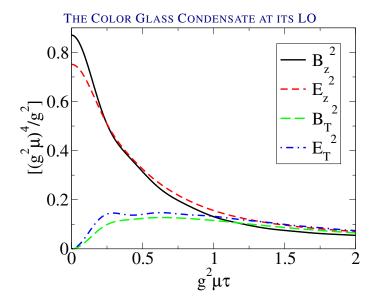


THOMAS EPELBAUM



THE COLOR GLASS CONDENSATE AT ITS LO

$$\boldsymbol{\epsilon} = \boldsymbol{\varepsilon}_{\perp}^2 + \boldsymbol{\beta}_{\perp}^2 + \boldsymbol{\varepsilon}_{L}^2 + \boldsymbol{\beta}_{L}^2$$
$$\boldsymbol{P}_T = \boldsymbol{\varepsilon}_{L}^2 + \boldsymbol{\beta}_{L}^2$$
$$\boldsymbol{P}_L = \boldsymbol{\varepsilon}_{\perp}^2 + \boldsymbol{\beta}_{\perp}^2 - \boldsymbol{\varepsilon}_{L}^2 - \boldsymbol{\beta}_{L}^2$$



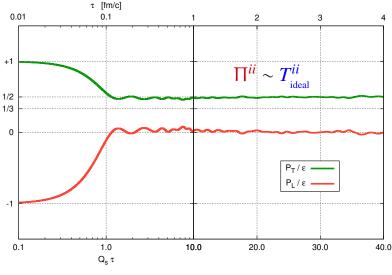
[LAPPI, MCLERRAN (2006)]

THE COLOR GLASS CONDENSATE AT ITS LO

$$\boldsymbol{\epsilon} = \underbrace{\boldsymbol{\xi}_{\perp}^{2}}_{0} + \underbrace{\boldsymbol{\mathfrak{B}}_{\perp}^{2}}_{0} + \boldsymbol{\xi}_{L}^{2} + \boldsymbol{\mathfrak{B}}_{L}^{2}$$
$$\boldsymbol{P}_{T} = \boldsymbol{\xi}_{L}^{2} + \boldsymbol{\mathfrak{B}}_{L}^{2}$$
$$\boldsymbol{P}_{L} = \underbrace{\boldsymbol{\xi}_{\perp}^{2}}_{0} + \underbrace{\boldsymbol{\mathfrak{B}}_{\perp}^{2}}_{0} - \boldsymbol{\xi}_{L}^{2} - \boldsymbol{\mathfrak{B}}_{L}^{2}$$

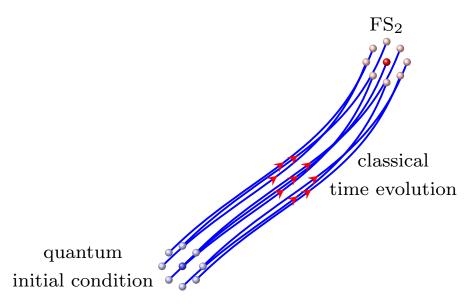
Initial $T^{\mu\nu}$ is $(\epsilon, \epsilon, \epsilon, -\epsilon)!$

THE COLOR GLASS CONDENSATE AT ITS LO Strong anisotropy at early time

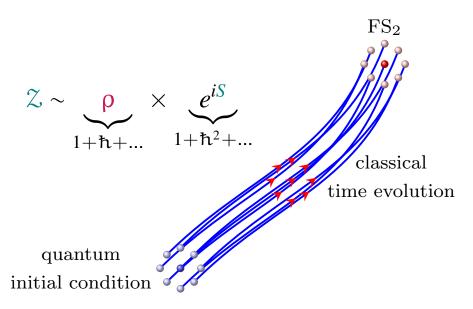


[LAPPI, MCLERRAN (2006), FUKUSHIMA, GELIS (2012)...]

THE CLASSICAL STATISTICAL APPROXIMATION (CSA)

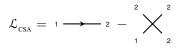


THE CLASSICAL STATISTICAL APPROXIMATION (CSA)

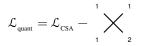


CSA: NON-RENORMALIZABLE [TE, GELIS, WU (2014)]

The classical Lagrangean reads



Differs from the full Lagrangean



APPLICATION OF THE CSA TO THE QGP

$$A_0^{\mu a}(\tau_0, \boldsymbol{x}_{\perp}, \boldsymbol{\eta}) = \mathcal{A}_0^{\mu a}(\tau_0, \boldsymbol{x}_{\perp}) + \int_{\boldsymbol{k}} c_{\boldsymbol{k}} \ a_{\boldsymbol{k}}^{\mu a}(\tau_0, \boldsymbol{x}_{\perp}, \boldsymbol{\eta})$$

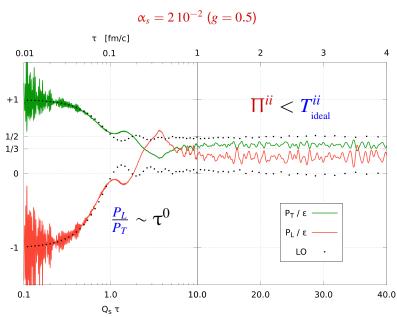
Time evolution ($I = x, y, \eta$) for each configuration

$$D_{\mu}F^{\mu} = 0 \qquad \Rightarrow \qquad \epsilon, P_T, P_L$$

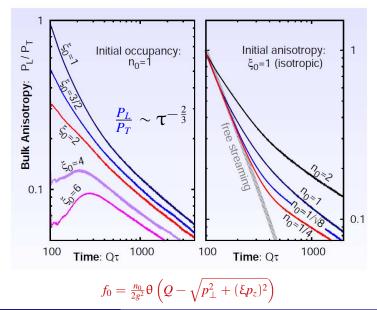
Cross checks: Gauss's law and Bjorken's law

$$D_{\mu}E^{\mu} = 0 \qquad \qquad \tau \partial_{\tau} \epsilon = -\epsilon - P_L$$

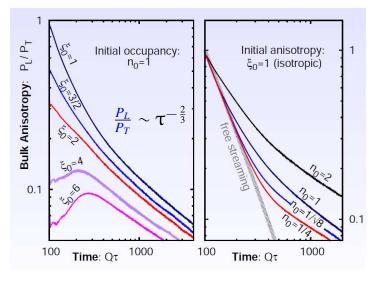
THOMAS EPELBAUM



TG VERSUS BBSV



TG VERSUS BBSV



Why is it so different??

TG VERSUS BBSV BBSV Scenario

- Start at $Q\tau \sim 100$ with $\mathcal{A} = 0$ and $a \sim \frac{1}{g} \rightarrow g$ scales out
- at $Q\tau \gtrsim 300$: $f(p_{\perp}, p_z) = (Q_s \tau)^{\alpha} f_0((Q_s \tau)^{\beta} p_{\perp}, (Q_s \tau)^{\gamma} p_z)$
- $\alpha, \beta, \gamma = (-\frac{2}{3}, 0, \frac{1}{3})$ "universals". deduced from

$$\epsilon = \operatorname{cst} \times \tau^{-1}$$
 $n = \operatorname{cst} \times \tau^{-1}$ $\partial_{\tau} f = \hat{q} \partial_z^2 f$

TG VERSUS BBSV BBSV Scenario

- Start at $Q\tau \sim 100$ with $\mathcal{A} = 0$ and $a \sim \frac{1}{g} \rightarrow g$ scales out
- at $Q\tau \gtrsim 300$: $f(p_{\perp}, p_z) = (Q_s \tau)^{\alpha} f_0((Q_s \tau)^{\beta} p_{\perp}, (Q_s \tau)^{\gamma} p_z)$
- α , β , $\gamma = (-\frac{2}{3}, 0, \frac{1}{3})$ "universals". deduced from

$$\epsilon = \operatorname{cst} \times \tau^{-1}$$
 $n = \operatorname{cst} \times \tau^{-1}$ $\partial_{\tau} f = \hat{q} \partial_z^2 f$

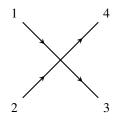
TG
$$\begin{vmatrix} \mathsf{LO} + \mathsf{NLO} & \mathsf{fully} \\ \mathcal{Q}_s \tau_{\mathsf{init}} \ll 1 \\ g \lesssim 0.5 \end{vmatrix}$$

upside: close to real situation

downside: Λ effects ? $Q_s \tau_{\text{init}} \gg 1$ not accessible $\begin{array}{c|c} \mathsf{BBSV} & \mathsf{not clear LO, not NLO} \\ \mathcal{Q}_s \tau_{_{\mathrm{init}}} \gg 1 \\ g \lesssim 10^{-6} \end{array}$

upside: Almost no Λ effects

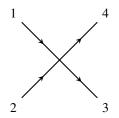
downside: Phenomenological relevance? Fixed point IC dependent? How to flow? CSA non renormalizable: How to really see the Λ effects?¹



Prerequisites $1 \ll f \ll g^{-2} (Qt \gg 1)$ *f* isotropic: $f(\mathbf{p}) \rightarrow f(|\mathbf{p}|)$

¹Gauge case: [ABRAAO, KURKELA, LU, MOORE (2014)]

CSA non renormalizable: How to really see the Λ effects?¹



Prerequisites $1 \ll f \ll g^{-2} (Qt \gg 1)$ *f* isotropic: $f(p) \rightarrow f(|p|)$

$$\partial_t f_1 = \frac{(2\pi)^4 g^4}{4E_1} \int_{2,3,4} \delta^4 (P_1 + P_2 - P_3 - P_4) \underbrace{\left[(1+f_1)(1+f_2)f_3f_4 - f_1f_2(1+f_3)(1+f_4) \right]}_{F[f]}$$

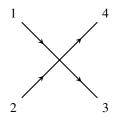
with

$$\int = \int \frac{\mathrm{d}^3 \boldsymbol{k}}{(2\pi)^3 2E_k}$$

$$E_k = \sqrt{|\boldsymbol{k}|^2 + m^2}$$

¹Gauge case: [ABRAAO, KURKELA, LU, MOORE (2014)]

CSA non renormalizable: How to really see the Λ effects?¹



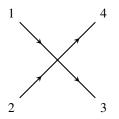
Prerequisites $1 \ll f \ll g^{-2} (Qt \gg 1)$ *f* isotropic: $f(p) \rightarrow f(|p|)$

Quantum theory Q: keep everything

 $F_{\Omega}[f] = (1+f_1)(1+f_2)f_3f_4 - f_1f_2(1+f_3)(1+f_4)$

¹Gauge case: [Abraao, Kurkela, Lu, Moore (2014)]

CSA non renormalizable: How to really see the Λ effects?¹



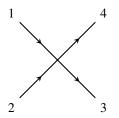
Prerequisites $1 \ll f \ll g^{-2} (Qt \gg 1)$ *f* isotropic: $f(\mathbf{p}) \rightarrow f(|\mathbf{p}|)$

Classical approximation $\mathcal{C}^0 \rightarrow f \gg 1$, keep the dominant term in $F_{o}[f]$

$$F_{e^0}[f] = (f_1 + f_2)f_3f_4 - f_1f_2(f_3 + f_4)$$

¹Gauge case: [ABRAAO, KURKELA, LU, MOORE (2014)]

CSA non renormalizable: How to really see the Λ effects?¹

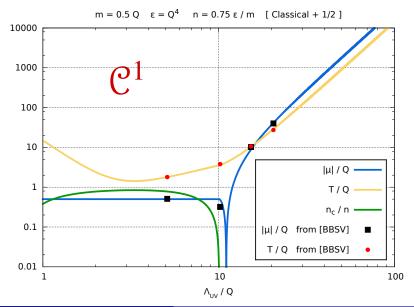


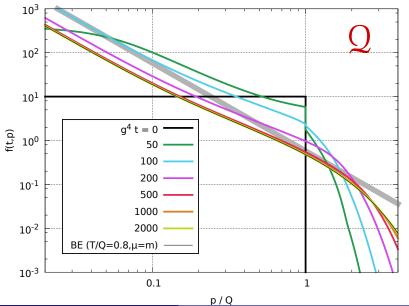
Prerequisites $1 \ll f \ll g^{-2} (Qt \gg 1)$ *f* isotropic: $f(p) \rightarrow f(|p|)$

Classical-Statistical approximation $C^1 \rightarrow C^0$ and then $f \rightarrow f + \frac{1}{2}$ [MUELLER, SON (2002)]

$$F_{e^1}[f] = F_{\Omega}[f] + \frac{1}{4}(f_3 + f_4 - f_1 - f_2)$$

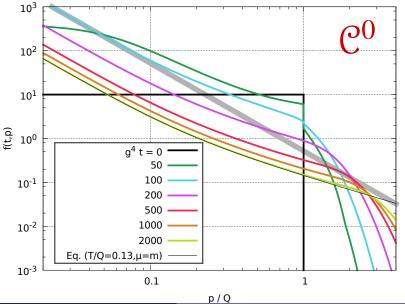
¹Gauge case: [ABRAAO, KURKELA, LU, MOORE (2014)]



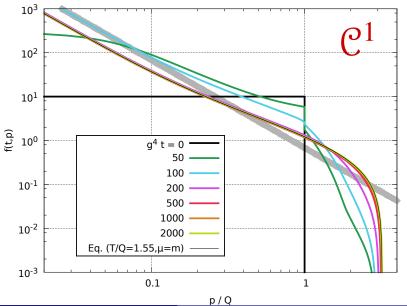


THOMAS EPELBAUM

On the use of the classical approximation for the early stages of HIC 10/1

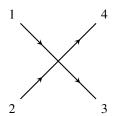


THOMAS EPELBAUM



THOMAS EPELBAUM

On the use of the classical approximation for the early stages of HIC



Prerequisites $1 \ll f \ll g^{-2} (Qt \gg 1)$ *f* anisotropic: $f(\mathbf{p}) \rightarrow f(|\mathbf{p}_1|, p_2)$

Boltzmann equation for $2 \leftrightarrow 2$ elastic scattering

$$\partial_t f_1 = \frac{(2\pi)^4 g^4}{4E_1} \int_{2,3,4} \delta^4 (P_1 + P_2 - P_3 - P_4) F[f]$$

Now suppose f very anisotropic initially

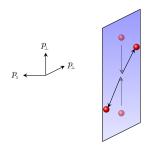
 $f_p \sim \delta(p_z) f_0(p_\perp)$

What can happen?

Now suppose *f* very anisotropic initially

 $f_p \sim \delta(p_z) f_0(p_\perp)$

What can happen?

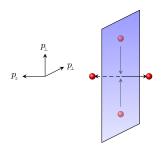


In plane collisions \rightarrow no isotropization

Now suppose *f* very anisotropic initially

 $f_p \sim \delta(p_z) f_0(p_\perp)$

What can happen?

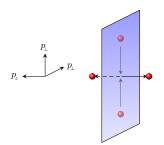


Out of plane collisions \rightarrow isotropization

Now suppose *f* very anisotropic initially

 $f_p \sim \delta(p_z) f_0(p_\perp)$

What can happen?



Out of plane collisions \rightarrow isotropization

Can these large angle collisions happen?

THOMAS EPELBAUM

Anisotropic f: problem with the \mathcal{C}^0 scheme

Remember

$$F_{e^0}[f] = (f_1 + f_2)f_3f_4 - f_1f_2(f_3 + f_4)$$

$$F_{\Omega}[f] = F_{e^0}[f] + f_3f_4 - f_1f_2$$

Now take initially $f_{p_{\perp},p_z} = 2\pi\delta(p_z)f_0(p_{\perp})$

Let us inspect the Boltzmann equation in both cases

Anisotropic f: problem with the \mathcal{C}^0 scheme

Remember

$$F_{e^0}[f] = (f_1 + f_2)f_3f_4 - f_1f_2(f_3 + f_4)$$

$$F_{\Omega}[f] = F_{e^0}[f] + f_3f_4 - f_1f_2$$

Now take initially $f_{p_{\perp},p_z} = 2\pi\delta(p_z)f_0(p_{\perp})$

Let us inspect the Boltzmann equation in both cases

 \mathcal{C}^0

$$\partial_{t} f_{1} = \delta(p_{1z}) \frac{(2\pi)^{4} g^{4}}{4E_{1}} \int_{2_{\perp}, 3_{\perp}, 4_{\perp}} \delta^{3}(P_{1\perp} + P_{2\perp} - P_{3\perp} - P_{4\perp}) F_{e^{0}}[f_{0}]$$

Remember

$$F_{e^0}[f] = (f_1 + f_2)f_3f_4 - f_1f_2(f_3 + f_4)$$

$$F_{\Omega}[f] = F_{e^0}[f] + f_3f_4 - f_1f_2$$

Now take initially $f_{p_{\perp},p_z} = 2\pi\delta(p_z)f_0(p_{\perp})$

Let us inspect the Boltzmann equation in both cases

Q

$$\begin{aligned} \partial_{t}f_{1} &= \delta(p_{1z}) \frac{(2\pi)^{4}g^{4}}{4E_{1}} \int_{2_{\perp},3_{\perp},4_{\perp}} \delta^{3}(P_{1\perp} + P_{2\perp} - P_{3\perp} - P_{4\perp})F_{e^{0}}[f_{0}] \\ &+ \frac{(2\pi)^{4}g^{4}}{4E_{1}} \int_{2,3_{\perp},4_{\perp}} \delta^{3}(P_{1\perp} + P_{2\perp} - P_{3\perp} - P_{4\perp})\delta(p_{1z} + p_{2z})f_{3}f_{4} \\ &- \delta(p_{1z}) \frac{(2\pi)^{4}g^{4}}{4E_{1}} \int_{2_{\perp},3,4} \delta^{3}(P_{1\perp} + P_{2\perp} - P_{3\perp} - P_{4\perp})\delta(p_{3z} + p_{4z})f_{1}f_{2} \end{aligned}$$

Remember

$$F_{e^0}[f] = (f_1 + f_2)f_3f_4 - f_1f_2(f_3 + f_4)$$

$$F_{\Omega}[f] = F_{e^0}[f] + f_3f_4 - f_1f_2$$

Now take initially $f_{p_{\perp},p_z} = 2\pi\delta(p_z)f_0(p_{\perp})$

Let us inspect the Boltzmann equation in both cases

Q

$$\begin{aligned} \partial_{t}f_{1} &= \delta(p_{1z})\frac{(2\pi)^{4}g^{4}}{4E_{1}} \int_{2_{\perp},3_{\perp},4_{\perp}} \delta^{3}(P_{1\perp} + P_{2\perp} - P_{3\perp} - P_{4\perp})F_{e^{0}}[f_{0}] \\ &+ \frac{(2\pi)^{4}g^{4}}{4E_{1}} \int_{2,3_{\perp},4_{\perp}} \delta^{3}(P_{1\perp} + P_{2\perp} - P_{3\perp} - P_{4\perp})\delta(p_{1z} + p_{2z})f_{3}f_{4} \\ &- \delta(p_{1z})\frac{(2\pi)^{4}g^{4}}{4E_{1}} \int_{2_{\perp},3,4} \delta^{3}(P_{1\perp} + P_{2\perp} - P_{3\perp} - P_{4\perp})\delta(p_{3z} + p_{4z})f_{1}f_{2} \end{aligned}$$

Remember

$$F_{e^0}[f] = (f_1 + f_2)f_3f_4 - f_1f_2(f_3 + f_4)$$

$$F_{\Omega}[f] = F_{e^0}[f] + f_3f_4 - f_1f_2$$

Now take initially $f_{p_{\perp},p_z} = 2\pi\delta(p_z)f_0(p_{\perp})$

Let us inspect the Boltzmann equation in both cases

 C^0 artificially supresses large angle collisions.

Remember

$$F_{e^0}[f] = (f_1 + f_2)f_3f_4 - f_1f_2(f_3 + f_4)$$

$$F_{\Omega}[f] = F_{e^0}[f] + f_3f_4 - f_1f_2$$

Now take initially $f_{p_{\perp},p_z} = 2\pi\delta(p_z)f_0(p_{\perp})$

Let us inspect the Boltzmann equation in both cases

 C^0 artificially supresses large angle collisions. C^0 artificially "traps" anistropic distributions.

ANISOTROPIC f: PROBLEM WITH THE C^0 SCHEME

Remember

$$F_{e^0}[f] = (f_1 + f_2)f_3f_4 - f_1f_2(f_3 + f_4)$$

$$F_{\Omega}[f] = F_{e^0}[f] + f_3f_4 - f_1f_2$$

Now take initially $f_{p_{\perp},p_z} = 2\pi\delta(p_z)f_0(p_{\perp})$

Let us inspect the Boltzmann equation in both cases

C⁰ artificially supresses large angle collisions.
C⁰ artificially "traps" anistropic distributions.
None of this happens with Q or C¹.

ANISOTROPIC f: PROBLEM WITH THE C^0 SCHEME

Remember

$$F_{e^0}[f] = (f_1 + f_2)f_3f_4 - f_1f_2(f_3 + f_4)$$

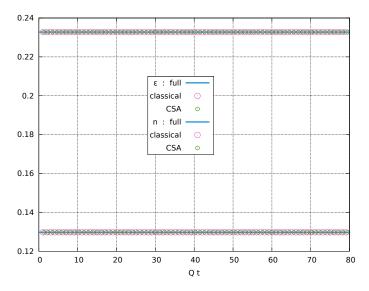
$$F_{\Omega}[f] = F_{e^0}[f] + f_3f_4 - f_1f_2$$

Now take initially $f_{p_{\perp},p_z} = 2\pi\delta(p_z)f_0(p_{\perp})$

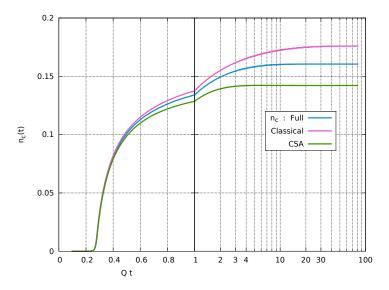
Let us inspect the Boltzmann equation in both cases

C⁰ artificially supresses large angle collisions.
C⁰ artificially "traps" anistropic distributions.
None of this happens with Q or C¹.
Could it be the reason why C⁰ so slow to isotropize?

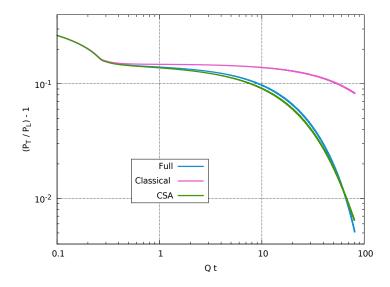
ANISOTROPIC f: Illustration of the problem with the C^0 scheme [TE, Gelis, Jeon, Moore, Wu (2015)]



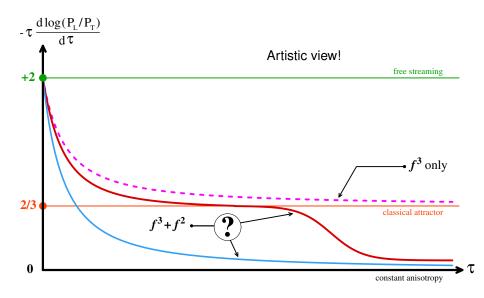
ANISOTROPIC f: Illustration of the problem with the C^0 scheme [TE, Gelis, Jeon, Moore, Wu (2015)]



ANISOTROPIC f: ILLUSTRATION OF THE PROBLEM WITH THE C^0 SCHEME [TE, GELIS, JEON, MOORE, WU (2015)]



EXPANDING CASE, WHAT TO EXPECT?



EXPANDING CASE, EQUATIONS AND SUBTLETIES

Boltzmann equation, expanding case, presence of a condensate

$$\begin{bmatrix} \partial_{\tau} - \frac{p_{1z}^2}{\tau E_1} \partial_{E_1} - \frac{p_{1z}}{\tau} \partial_{p_{1z}} \end{bmatrix} f_1 = C_{\rm nc}[f_1] + C_{\rm c}^{1c\leftrightarrow 34}[f_1] + C_{\rm c}^{12\leftrightarrow c4}[f_1] \\ \frac{1}{\tau} \partial_{\tau} (\tau n_c) = C_{\rm c}^{c2\leftrightarrow 34}[f_1] \end{bmatrix}$$

Conservation laws

$$\partial_{\tau}(\tau N) = 0$$
. $\partial_{\tau}(\tau \varepsilon) = -P_L$. $\tau \partial_{\tau} \rho_z = -2\rho_z$

Collision kernel properties

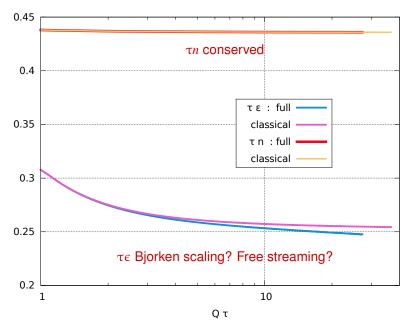
$$\int E_p \, \mathrm{d}E_p \, \mathrm{d}p_z \, C[f_p] = 0 \, . \qquad \int E_p^2 \, \mathrm{d}E_p \, \mathrm{d}p_z \, C[f_p] = 0 \, . \qquad \int E_p \, p_z^2 \, \mathrm{d}E_p \, \mathrm{d}p_z \, C[f_p] = 0$$

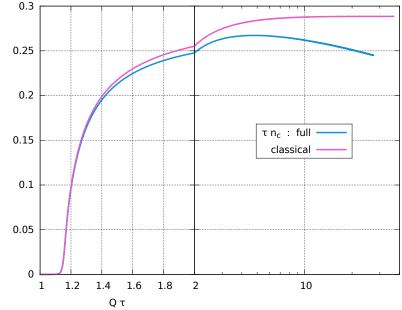
Initial condition

.

$$f_p = \underbrace{f_0}_{\gg 1} \exp\left[-\frac{\alpha E_p^2 + \beta p_z^2}{Q^2}\right]$$

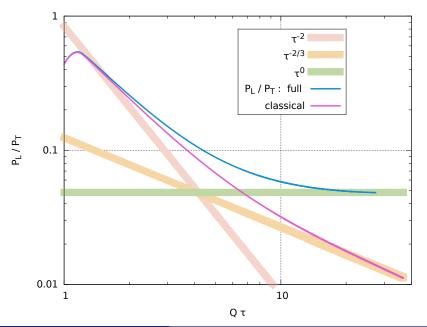
$$g^4 = 50$$

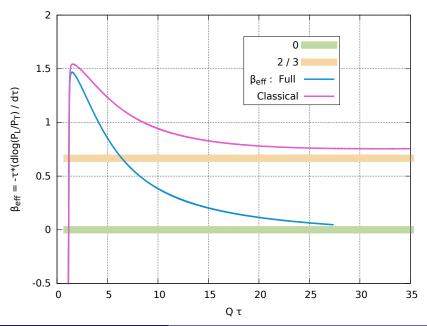


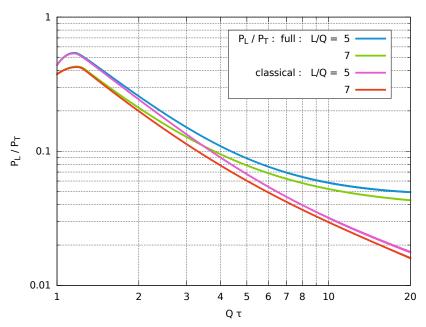


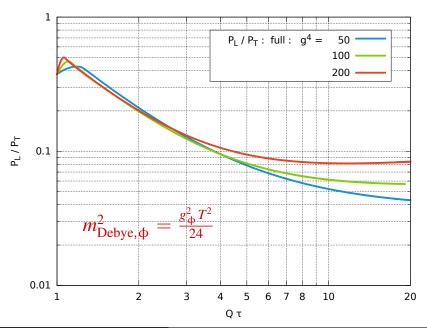
n_c(τ)

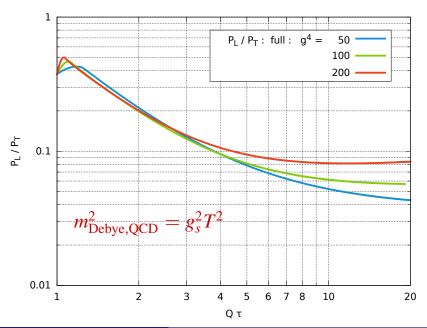
NUMERICAL RESULTS [TE, GELIS, JEON, MOORE, WU (2015)]

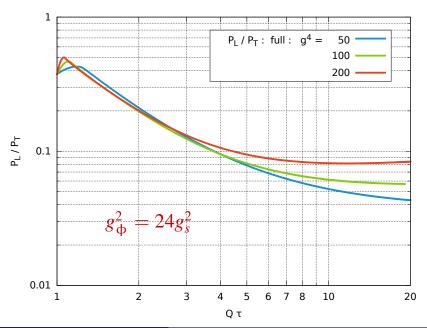


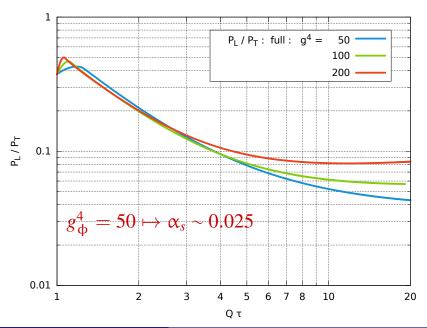


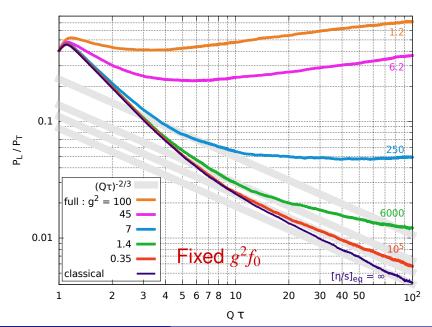












Why no C^1 results?

$$p_z \sim \frac{\nu}{\tau}$$

Constant p_z cutoff means v increases!

 ${\mathcal C}^1 \text{ non-renormalizable} \to \text{ no limit when } \nu \mapsto \infty \\ \text{Recall isotropic case.}$

 ν -fixed calculations for \mathbb{C}^1 would be interesting...

ARE THE POSTULATES OF HYDRODYNAMICS SATISFIED DURING THE EARLY STAGES OF A HEAVY-ION COLLISION?

Conclusion

- Yang-Mills: Evidences for an early hydrodynamical onset
- Hydrodynamization already happens at weak coupling
- CSA non-renormalizable \Rightarrow isotropic Boltzmann OK
- Anisotropic Boltzmann \Rightarrow Classical attractors ruled out?

ARE THE POSTULATES OF HYDRODYNAMICS SATISFIED DURING THE EARLY STAGES OF A HEAVY-ION COLLISION?

Perspectives

- Boltzmann treatment for the C^1 expanding case?
- Boltzmann treatment for the gauge expanding case?
- Renormalization in the YM case?
- Going beyond the CSA \Rightarrow Quantum evolution?

