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HOW TO MATCH THE PRE-EQUILIBRIUM STAGE WITH HYDRODYNAMICS?
Glasma (Fields)

∼ 0− 1

fm/c?

QGP (Hydro)

∼ 1− 10

fm/c?

PL

PT

PT

ε, ~u

?
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HOW TO MATCH THE PRE-EQUILIBRIUM STAGE WITH HYDRODYNAMICS?
Glasma (Fields)

∼ 0− 1

fm/c?

QGP (Hydro)

∼ 1− 10

fm/c?

PL

PT

PT

ε, ~u

Tµν = Tµν
ideal

+ Πµν uµTµν = εuν

ΠµνTµν
ideal

= εuµuν − p∆µν
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THE COLOR GLASS CONDENSATE [MCLERRAN, VENUGOPALAN (1993)]

L = −
1
4
FµνF

µν + JµAµ (no quarks)

x+x−

Numerical
Evolution

Aµ known
analytically
at τ = 0+ J− J+

Aµ

LO: [Dµ,Fµν] =Jν ∼
Q3

s

g︸ ︷︷ ︸
Color sources

on the light cone

ε =
1
2

(
~E

2
+ ~B

2
)
∼

Q4
s

g2︸ ︷︷ ︸
Classical
color fields

[KRASNITZ, VENUGOPALAN (1998)]
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L = −
1
4
FµνF

µν + JµAµ (no quarks)

x+x−

Numerical
Evolution

Aµ known
analytically
at τ = 0+ J− J+

Aµ

LO: [Dµ,Fµν] =Jν ∼
Q3

s

g︸ ︷︷ ︸
Color sources

on the light cone

ε =
1
2

(
~E

2
+ ~B

2
)
∼

Q4
s

g2︸ ︷︷ ︸
Classical
color fields

[KRASNITZ, VENUGOPALAN (1998)]
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THE COLOR GLASS CONDENSATE [MCLERRAN, VENUGOPALAN (1993)]

L = −
1
4
FµνF

µν + JµAµ (no quarks)

x+x−

Numerical
Evolution

Aµ known
analytically
at τ = 0+ J− J+

Aµ

LO: [Dµ,Fµν] =Jν ∼
Q3

s

g︸ ︷︷ ︸
Color sources

on the light cone

ε =
1
2

(
~E

2
+ ~B

2
)
∼

Q4
s

g2︸ ︷︷ ︸
Classical
color fields

[KRASNITZ, VENUGOPALAN (1998)]
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THE COLOR GLASS CONDENSATE AT ITS LO

classical

time evolution

classical

initial condition

FS1
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THE COLOR GLASS CONDENSATE AT ITS LO

ε = E2
⊥ +B2

⊥ + E2
L +B2

L

PT = E2
L +B2

L

PL = E2
⊥ +B2

⊥ − E2
L −B2

L
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THE COLOR GLASS CONDENSATE AT ITS LO

0 0.5 1 1.5 2

g
2
µτ

0

0.2

0.4

0.6

0.8

[(
g
2
µ

)4
/g

2
]

B
z

2

E
z

2

B
T

2

E
T

2

[LAPPI, MCLERRAN (2006)]
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THE COLOR GLASS CONDENSATE AT ITS LO

ε = E2
⊥︸︷︷︸
0

+ B2
⊥︸︷︷︸

0

+E2
L +B2

L

PT = E2
L +B2

L

PL = E2
⊥︸︷︷︸
0

+ B2
⊥︸︷︷︸

0

−E2
L −B2

L

Initial Tµν is (ε, ε, ε,−ε)!

THOMAS EPELBAUM On the use of the classical approximation for the early stages of HIC 3 / 17



THE COLOR GLASS CONDENSATE AT ITS LO
Strong anisotropy at early time

-1

0

1/3

1/2

+1

0.1 1.0 10.0

1

Qs τ

τ   [fm/c]

0.01                                0.1

10.0 20.0 30.0 40.0

2 3 4

  

PT / ε

PL / ε

Πii ∼ T ii
ideal

[LAPPI, MCLERRAN (2006), FUKUSHIMA, GELIS (2012)...]
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THE CLASSICAL STATISTICAL APPROXIMATION (CSA)

classical

time evolution

quantum

initial condition

FS2
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THE CLASSICAL STATISTICAL APPROXIMATION (CSA)

Z ∼ ρ︸︷︷︸
1+ h+...

× eiS︸︷︷︸
1+ h2+...

classical

time evolution

quantum

initial condition

FS2
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CSA: NON-RENORMALIZABLE [TE, GELIS, WU (2014)]

The classical Lagrangean reads

LCSA = 1 2 −
1

22

2

Differs from the full Lagrangean

Lquant = LCSA −
1

11

2
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APPLICATION OF THE CSA TO THE QGP

classical

time evolution

quantum

initial condition

FS2

Initial condition

η = cst
τ = cst

τ0

x+x−

A0
µa(τ0, x⊥,η) = A0

µa(τ0, x⊥) +
∫

k
ck aµa

k (τ0, x⊥,η)

Time evolution (I = x, y,η) for each configuration

DµFµI = 0 ⇒ ε, PT , PL

Cross checks: Gauss’s law and Bjorken’s law

DµEµ = 0 τ∂τε = − ε− PL

THOMAS EPELBAUM On the use of the classical approximation for the early stages of HIC 6 / 17



NUMERICAL RESULTS [TE,GELIS (2013)]

αs = 2 10−2 (g = 0.5)

Πii < T ii
ideal

PL
PT

∼ τ0
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TG VERSUS BBSV

PL
PT

∼ τ−
2
3

f0 = n0
2g2 θ

(
Q −

√
p2
⊥ + (ξpz)2

)
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TG VERSUS BBSV

PL
PT

∼ τ−
2
3

Why is it so different??
THOMAS EPELBAUM On the use of the classical approximation for the early stages of HIC 8 / 17



TG VERSUS BBSV
BBSV Scenario

• Start at Qτ ∼ 100 with A = 0 and a ∼ 1
g → g scales out

• at Qτ & 300: f (p⊥, pz) = (Qsτ)
αf 0((Qsτ)

βp⊥, (Qsτ)
γpz)

• α,β,γ = (− 2
3 , 0, 1

3 ) "universals". deduced from

ε = cst× τ−1 n = cst× τ−1 ∂τf = q̂∂2
z f
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TG VERSUS BBSV
BBSV Scenario

• Start at Qτ ∼ 100 with A = 0 and a ∼ 1
g → g scales out

• at Qτ & 300: f (p⊥, pz) = (Qsτ)
αf 0((Qsτ)

βp⊥, (Qsτ)
γpz)

• α,β,γ = (− 2
3 , 0, 1

3 ) "universals". deduced from

ε = cst× τ−1 n = cst× τ−1 ∂τf = q̂∂2
z f

TG

LO+NLO fully

Qsτinit � 1

g . 0.5

BBSV

not clear LO, not NLO

Qsτinit � 1

g . 10−6

upside: close to real situation

downside: Λ effects ?
Qsτinit � 1 not accessible

upside: Almost no Λ effects

downside: Phenomenological relevance?
Fixed point IC dependent?
How to flow?
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KINETIC TREATMENT WITH ELASTIC SCATTERING

CSA non renormalizable: How to really see the Λ effects?1

1

32

4

Prerequisites
1� f � g−2 (Qt� 1)
f isotropic: f (p)→ f (|p|)

1Gauge case: [ABRAAO, KURKELA, LU, MOORE (2014)]
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KINETIC TREATMENT WITH ELASTIC SCATTERING

CSA non renormalizable: How to really see the Λ effects?1

1

32

4

Prerequisites
1� f � g−2 (Qt� 1)
f isotropic: f (p)→ f (|p|)

∂tf1 =
(2π)4g4

4E1

∫
2,3,4

δ4(P1 + P2 − P3 − P4) [(1 + f1)(1 + f2)f3f4 − f1f2(1 + f3)(1 + f4)]︸ ︷︷ ︸
F[f ]

with∫
k

=

∫
d3k

(2π)32Ek
Ek =

√
|k|2 + m2

1Gauge case: [ABRAAO, KURKELA, LU, MOORE (2014)]
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KINETIC TREATMENT WITH ELASTIC SCATTERING

CSA non renormalizable: How to really see the Λ effects?1

1

32

4

Prerequisites
1� f � g−2 (Qt� 1)
f isotropic: f (p)→ f (|p|)

Quantum theory Q: keep everything

F
Q
[f ] = (1 + f1)(1 + f2)f3f4 − f1f2(1 + f3)(1 + f4)

1Gauge case: [ABRAAO, KURKELA, LU, MOORE (2014)]
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KINETIC TREATMENT WITH ELASTIC SCATTERING

CSA non renormalizable: How to really see the Λ effects?1

1

32

4

Prerequisites
1� f � g−2 (Qt� 1)
f isotropic: f (p)→ f (|p|)

Classical approximation C0 → f � 1, keep the dominant term in F
Q
[f ]

F
C0 [f ] = (f1 + f2)f3f4 − f1f2(f3 + f4)

1Gauge case: [ABRAAO, KURKELA, LU, MOORE (2014)]
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KINETIC TREATMENT WITH ELASTIC SCATTERING

CSA non renormalizable: How to really see the Λ effects?1

1

32

4

Prerequisites
1� f � g−2 (Qt� 1)
f isotropic: f (p)→ f (|p|)

Classical-Statistical approximation C1 → C0 and then f → f + 1
2

[MUELLER, SON (2002)]

F
C1 [f ] = F

Q
[f ] +

1
4
(f3 + f4 − f1 − f2)

1Gauge case: [ABRAAO, KURKELA, LU, MOORE (2014)]
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KINETIC TREATMENT: NUMERICAL RESULTS FOR ISOTROPIC f
[TE, GELIS, TANJI, WU (2014)]

C1

 0.01

 0.1

 1

 10

 100

 1000

 10000

 1  10  100

Λ
UV

 / Q

m = 0.5 Q    ε = Q4     n = 0.75 ε / m    [ Classical + 1/2 ]

|µ| / Q

T / Q

nc / n

|µ| / Q   from [BBSV]

T / Q   from [BBSV]
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KINETIC TREATMENT: NUMERICAL RESULTS FOR ISOTROPIC f
[TE, GELIS, TANJI, WU (2014)]

Q

10-3

10-2

10-1

100

101

102

103

 0.1  1

f(
t,

p
)

p / Q

g4 t = 0

50

100

200

500

1000

2000

BE (T/Q=0.8,µ=m)
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KINETIC TREATMENT: NUMERICAL RESULTS FOR ISOTROPIC f
[TE, GELIS, TANJI, WU (2014)]

C0

10-3

10-2

10-1

100

101

102

103

 0.1  1

f(
t,

p
)

p / Q

g4 t = 0
50

100

200

500

1000

2000

Eq. (T/Q=0.13,µ=m)
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KINETIC TREATMENT: NUMERICAL RESULTS FOR ISOTROPIC f
[TE, GELIS, TANJI, WU (2014)]

C1

10-3

10-2

10-1

100

101

102

103

 0.1  1

f(
t,

p
)

p / Q

g4 t = 0
50

100

200

500

1000

2000

Eq. (T/Q=1.55,µ=m)
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KINETIC TREATMENT: WHAT TO EXPECT FOR ANISOTROPIC f ?

1

32

4

Prerequisites
1� f � g−2 (Qt� 1)
f anisotropic: f (p)→ f (|p |, pz)

Boltzmann equation for 2↔ 2 elastic scattering

∂tf1 =
(2π)4g4

4E1

∫
2,3,4

δ4(P1 + P2 − P3 − P4)F[f ]
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KINETIC TREATMENT: WHAT TO EXPECT FOR ANISOTROPIC f ?

Now suppose f very anisotropic initially

fp ∼ δ(pz)f0(p )

What can happen?
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KINETIC TREATMENT: WHAT TO EXPECT FOR ANISOTROPIC f ?

Now suppose f very anisotropic initially

fp ∼ δ(pz)f0(p )

What can happen?

p⊥

p⊥

pz

In plane collisions→ no isotropization

THOMAS EPELBAUM On the use of the classical approximation for the early stages of HIC 11 / 17



KINETIC TREATMENT: WHAT TO EXPECT FOR ANISOTROPIC f ?

Now suppose f very anisotropic initially

fp ∼ δ(pz)f0(p )

What can happen?

p⊥

p⊥

pz

Out of plane collisions→ isotropization
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KINETIC TREATMENT: WHAT TO EXPECT FOR ANISOTROPIC f ?

Now suppose f very anisotropic initially

fp ∼ δ(pz)f0(p )

What can happen?

p⊥

p⊥

pz

Out of plane collisions→ isotropization

Can these large angle collisions happen?

THOMAS EPELBAUM On the use of the classical approximation for the early stages of HIC 11 / 17



ANISOTROPIC f : PROBLEM WITH THE C0 SCHEME

Remember

F
C0 [f ] = (f1 + f2)f3 f4 − f1 f2(f3 + f4)

F
Q
[f ] =F

C0 [f ] + f3 f4 − f1 f2

Now take initially fp⊥ , pz
= 2πδ(pz)f0(p⊥)

Let us inspect the Boltzmann equation in both cases
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ANISOTROPIC f : PROBLEM WITH THE C0 SCHEME

Remember

F
C0 [f ] = (f1 + f2)f3 f4 − f1 f2(f3 + f4)

F
Q
[f ] =F

C0 [f ] + f3 f4 − f1 f2

Now take initially fp⊥ , pz
= 2πδ(pz)f0(p⊥)

Let us inspect the Boltzmann equation in both cases

C0

∂tf1 = δ(p1z)
(2π)4g4

4E1

∫
2⊥,3⊥,4⊥

δ3(P1⊥ + P2⊥ − P3⊥ − P4⊥)F
C0 [f0]
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ANISOTROPIC f : PROBLEM WITH THE C0 SCHEME

Remember

F
C0 [f ] = (f1 + f2)f3 f4 − f1 f2(f3 + f4)

F
Q
[f ] =F

C0 [f ] + f3 f4 − f1 f2

Now take initially fp⊥ , pz
= 2πδ(pz)f0(p⊥)

Let us inspect the Boltzmann equation in both cases

Q

∂tf1 = δ(p1z)
(2π)4g4

4E1

∫
2⊥,3⊥,4⊥

δ3(P1⊥ + P2⊥ − P3⊥ − P4⊥)F
C0 [f0]

+
(2π)4g4

4E1

∫
2,3⊥,4⊥

δ3(P1⊥ + P2⊥ − P3⊥ − P4⊥)δ(p1z + p2z)f3 f4

− δ(p1z)
(2π)4g4

4E1

∫
2⊥,3,4

δ3(P1⊥ + P2⊥ − P3⊥ − P4⊥)δ(p3z + p4z)f1 f2

THOMAS EPELBAUM On the use of the classical approximation for the early stages of HIC 12 / 17



ANISOTROPIC f : PROBLEM WITH THE C0 SCHEME

Remember

F
C0 [f ] = (f1 + f2)f3 f4 − f1 f2(f3 + f4)

F
Q
[f ] =F

C0 [f ] + f3 f4 − f1 f2

Now take initially fp⊥ , pz
= 2πδ(pz)f0(p⊥)

Let us inspect the Boltzmann equation in both cases

Q

∂tf1 = δ(p1z)
(2π)4g4

4E1

∫
2⊥,3⊥,4⊥

δ3(P1⊥ + P2⊥ − P3⊥ − P4⊥)F
C0 [f0]

+
(2π)4g4

4E1

∫
2,3⊥,4⊥

δ3(P1⊥ + P2⊥ − P3⊥ − P4⊥)δ(p1z + p2z)f3 f4

−δ(p1z)
(2π)4g4

4E1

∫
2⊥,3,4

δ3(P1⊥ + P2⊥ − P3⊥ − P4⊥)δ(p3z + p4z)f1 f2
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ANISOTROPIC f : PROBLEM WITH THE C0 SCHEME

Remember

F
C0 [f ] = (f1 + f2)f3 f4 − f1 f2(f3 + f4)

F
Q
[f ] =F

C0 [f ] + f3 f4 − f1 f2

Now take initially fp⊥ , pz
= 2πδ(pz)f0(p⊥)

Let us inspect the Boltzmann equation in both cases

C0 artificially supresses large angle collisions.
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ANISOTROPIC f : PROBLEM WITH THE C0 SCHEME

Remember

F
C0 [f ] = (f1 + f2)f3 f4 − f1 f2(f3 + f4)

F
Q
[f ] =F

C0 [f ] + f3 f4 − f1 f2

Now take initially fp⊥ , pz
= 2πδ(pz)f0(p⊥)

Let us inspect the Boltzmann equation in both cases

C0 artificially supresses large angle collisions.

C0 artificially "traps" anistropic distributions.
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ANISOTROPIC f : PROBLEM WITH THE C0 SCHEME

Remember

F
C0 [f ] = (f1 + f2)f3 f4 − f1 f2(f3 + f4)

F
Q
[f ] =F

C0 [f ] + f3 f4 − f1 f2

Now take initially fp⊥ , pz
= 2πδ(pz)f0(p⊥)

Let us inspect the Boltzmann equation in both cases

C0 artificially supresses large angle collisions.

C0 artificially "traps" anistropic distributions.

None of this happens with Q or C1.
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ANISOTROPIC f : PROBLEM WITH THE C0 SCHEME

Remember

F
C0 [f ] = (f1 + f2)f3 f4 − f1 f2(f3 + f4)

F
Q
[f ] =F

C0 [f ] + f3 f4 − f1 f2

Now take initially fp⊥ , pz
= 2πδ(pz)f0(p⊥)

Let us inspect the Boltzmann equation in both cases

C0 artificially supresses large angle collisions.

C0 artificially "traps" anistropic distributions.

None of this happens with Q or C1.

Could it be the reason why C0 so slow to isotropize?
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ANISOTROPIC f : ILLUSTRATION OF THE PROBLEM WITH THE C0 SCHEME
[TE, GELIS, JEON, MOORE, WU (2015)]
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ANISOTROPIC f : ILLUSTRATION OF THE PROBLEM WITH THE C0 SCHEME
[TE, GELIS, JEON, MOORE, WU (2015)]
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ANISOTROPIC f : ILLUSTRATION OF THE PROBLEM WITH THE C0 SCHEME
[TE, GELIS, JEON, MOORE, WU (2015)]
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EXPANDING CASE, WHAT TO EXPECT?

Artistic view!

2/3
classical attractor

τ0
constant anisotropy

d log(P
L
/P

T
)

dτ
- τ

+2
free streaming

f 3
 + f 2

 ?

f 3 only
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EXPANDING CASE, EQUATIONS AND SUBTLETIES

Boltzmann equation, expanding case, presence of a condensate[
∂τ −

p2
1z

τE1
∂E1 −

p1z

τ
∂p1z

]
f1 = Cnc[f1] + C1c↔34

c [f1] + C12↔c4
c [f1]

1
τ
∂τ (τnc) = Cc2↔34

c [f1]

Conservation laws

∂τ(τN) = 0 . ∂τ(τε) = − PL . τ∂τρz = − 2ρz

Collision kernel properties∫
Ep dEpdpz C[fp] = 0 .

∫
E2

p dEpdpz C[fp] = 0 .
∫

Ep p2
z dEpdpz C[fp] = 0

Initial condition

fp = f0︸︷︷︸
�1

exp

[
−
αE2

p + βp2
z

Q2

]
. g4 = 50

THOMAS EPELBAUM On the use of the classical approximation for the early stages of HIC 15 / 17



NUMERICAL RESULTS [TE, GELIS, JEON, MOORE, WU (2015)]

τn conserved

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 1  10

Q τ

τ ε  :  full

classical

τ n  : full

classical

τε Bjorken scaling? Free streaming?
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NUMERICAL RESULTS [TE, GELIS, JEON, MOORE, WU (2015)]
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Why no C1 results?

pz ∼
ν

τ

Constant pz cutoff means ν increases!

C1 non-renormalizable→ no limit when ν 7→∞
Recall isotropic case..

ν-fixed calculations for C1 would be interesting...

THOMAS EPELBAUM On the use of the classical approximation for the early stages of HIC 16 / 17



ARE THE POSTULATES OF HYDRODYNAMICS
SATISFIED DURING THE EARLY STAGES

OF A HEAVY-ION COLLISION?

Conclusion

• Yang-Mills: Evidences for an early hydrodynamical onset

• Hydrodynamization already happens at weak coupling

• CSA non-renormalizable⇒ isotropic Boltzmann OK

• Anisotropic Boltzmann⇒ Classical attractors ruled out?
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ARE THE POSTULATES OF HYDRODYNAMICS
SATISFIED DURING THE EARLY STAGES

OF A HEAVY-ION COLLISION?

Perspectives

• Boltzmann treatment for the C1 expanding case?

• Boltzmann treatment for the gauge expanding case?

• Renormalization in the YM case?

• Going beyond the CSA⇒ Quantum evolution?
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Heavy Ion
Collider

Two heavy ions

= partons
(mostly gluons)

heavy ion collision

αs

Qs

Plasma of quark and gluons
far from equilibrium
= partons

(mostly gluons)

Field description
Quantum-Chromodynamics

?

Plasma of quark and gluons
close to equilibrium

Fluid description
Hydrodynamics

?

Interacting hadron gas
at equilibrium

Particle description
Kinetic theory

= Hadrons
(pions, kaons...)
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classical

time evolution

quantum

initial condition

FS2

Thank you!
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