Universality classes far from equilibrium of scalar and gauge theories

Ruprecht-Karls University Heidelberg

Kirill Boguslavski

In collaboration with:

INT thermalization workshop / week 2

Aug 14, 2015

Jürgen Berges Asier Piñeiro Orioli Sören Schlichting Raju Venugopalan

Talk based on:

J. Berges, KB, S. Schlichting, and R. Venugopalan, *arXiv: 1508.03073 ; PRL 114, 061601 (2015)*

A. Piñeiro Orioli, KB, and J. Berges, *PRD 92, 025041 (2015)*

Table of Contents

- *1. Introduction*
- *2. Universality class between expanding gauge and scalar theories*
- *3. Universality class of scalar theories in the infrared*

4. Conclusion

Introduction

Real-time systems far from equilibrium

NASA / WMAP

Inflationary cosmology Heavy-ion collisions at early stages Ultracold atoms

Relativistic O(N) scalars Longitudinally expanding

non-Abelian plasmas

Non-relativistic (Gross-Pitaevski) scalars

Very different field theories and energy scales!

For weak coupling limit: **Common properties? Universality classes?**

Introduction

Introduction

Typical initial conditions

Over-occupation IC

or for distribution function f

 $\langle \hat{\varphi} \rangle = \phi = 0$, $f \sim n_0/\lambda$

Weak couplings but highly correlated system

Weak coupling limit $\lambda \to 0$ while $\lambda f = const$

Fields follow *classical* evolution!

Observables averaged over (quantum) IC

Many examples:

Micha & Tkachev ; Smit & Tranberg; Nowak, Sexty & Gasenzer ; Berges, KB, Schlichting & Venugopalan; Kurkela & Moore; …

$$
\varphi_a(\mathbf{x}, t_0) = \phi_a(t_0) + \int_{\mathbf{p}} \sqrt{f(\mathbf{p}, t_0) + \frac{1}{2} (c_{a, \mathbf{p}} \xi(\mathbf{p}, (t_0)) e^{i \mathbf{p} \mathbf{x}} + c.c.)}
$$
\n(initialization example: O(N) symmetric scalar field theory)

\nComplex random numbers

Example:

 See also: \vert - Talk by S. Schlichting

- Contribution by A. Kurkela

High energy (weak coupling) limit of heavy-ion collisions at early times

Massless scalar field theory (O(N)) **Non-Abelian gauge** theory (SU(2))

In Bjorken coordinates:

Longitudinally expanding metric:

$$
\tau = \sqrt{t^2 - (x^3)^2}, \qquad \eta = \operatorname{artanh}\left(\frac{x^3}{t}\right)
$$

$$
g_{\mu\nu}(\tau) = \operatorname{diag}(1, -1, -1, -\tau^2)
$$

Distribution function:

$$
f(p_T, p_z, \tau) \sim \tau \sqrt{\langle \varphi \varphi \rangle \langle \partial_\tau \varphi \, \partial_\tau \varphi \rangle}
$$

for gauge theory in Coulomb gauge \rightarrow talk S. Schlichting

J. Berges, KB, S. Schlichting, and R. Venugopalan: *PRL 114, 061601 (2015) ; arXiv: 1508.03073 ; PRD 89, 074011 (2014) ; PRD 89, 114007 (2014)*

What we are after: Scaling regions and universality classes

Scaling region (close to a nonthermal fixed point)

- *Self-similar evolution* of distribution function f (\rightarrow slow dynamics, memory loss)

 $f(p_T, p_z, \tau) = \tau^{\alpha} f_S \left(\tau^{\beta} p_T, \tau^{\gamma} p_z \right)$

with scaling behavior of typical scales $f \sim \tau^{\alpha}$, $p_T \sim \tau^{-\beta}$, $p_z \sim \tau^{-\gamma}$

Classification: universality classes far from equilibrium

- Scaling regions, described by their exponents α, β, γ and the scaling function f_s(x), may be classified in universality classes

Universality classes: Classification of theories in classes intriguing; comparison of theories within same class gives insight into dynamics; benchmarks for microscopic / kinetic descriptions (especially because of , memory loss')

Longitudinal dynamics in scaling region ii)

- Scaling range ii) given by $\lambda f \sim \frac{\tau^{-2/3}}{p_T} e^{-p_z^2/2\sigma_z^2}$ with $\sigma_z^2 = \frac{\int dp_z p_z^2 f}{\int dp_z f} \sim \tau^{-2/3}$

Exponents and structure insensitive to initial conditions (memory loss)

J. Berges, KB, S. Schlichting, and R. Venugopalan: *PRD 89, 074011 + 114007 (2014) ; arXiv:1508.03073*

Universality class: expanding gauge and scalar theories P u z z l e s

Gauge theory:

 \checkmark Gauge theories for $p \gtrsim m_D$ and $f \gg 1/\alpha_S$ well described by

 $\textbf{effective kinetic theory (AMY) including} \begin{equation} \begin{bmatrix} \begin{matrix} \frac{2\sqrt{3}}{3} & \frac{2\sqrt{3}}{3} & \frac{2\sqrt{3}}{3} & \frac{2\sqrt{3}}{3} & \frac{2\sqrt{3}}{3} & \frac{2\sqrt{3}}{3} \\ \frac{2\sqrt{3}}{3} & \frac{2\sqrt{3}}{3} & \frac{2\sqrt{3}}{3} & \frac{2\sqrt{3}}{3} \end{matrix} \end{bmatrix} \end{equation}$

Arnold, Moore & Yaffe JHEP 0301, 030 (2003) Baier, Mueller, Schiff & Son, PLB 502, 51 (2001)

Berges, KB, Schlichting & Venugopalan, PRD 89, 074011 (2014)

Kurkela & Zhou, 1506.06647

BUT: Thermalization scenarios suggested influence from IR (plasma

instabilities, condensates, …) **no influence from IR? Why?**

Kurkela, Moore (KM), (2011)

1

Blaizot, Gelis, Liao, McLerran, Venugopalan (BGLMV), (2012)

P u z z l e s

Pressure ratio:

Discrepancies because of IR?

In scalar theory nontrivial IR dynamics!

Scalar theory:

How can region ii) be microscopically understood?

How important is soft region for it?

Scalars in the IR

Kinetic approach: Vertex-resummed kinetic theory

Scalar theory:

Condensation

BUT: IR dynamics may influence hard momentum evolution. Consistent kinetic description, even for $1/\lambda \gg f$, should need proper IR treatment.

Universality class of scalars in the infrared

Strategy: Dual description

1) It is important to know dynamics in IR \rightarrow classical simulations

2) It is important to understand dynamics in $IR \rightarrow$ vertex-resummed kinetic theory (VRKT)

Longitudinally expanding scalars: Berges, KB, Schlichting & Venugopalan,

arXiv:1508.03073

Nonexpanding scalars: (both relativistic and nonrelativistic) Piñerio Orioli, KB & Berges, *PRD 92, 025041 (2015)*

Scalar fields infrared scaling region: i)

Expanding

 p_z

 p_T

Self-similar evolution

Expanding

 p_z

 p_T

Physical picture: Inverse particle cascade to IR

Bose condensation far from equilibrium! J. Berges & D. Sexty,

PRL 108 (2012), 161601

Universal scaling function

Expanding

 p_z

 p_T

$$
\lambda f_S = \frac{a}{(|\mathbf{p}|/b)^{\kappa_<} + (|\mathbf{p}|/b)^{\kappa_>}
$$

$$
\quad\text{with}\quad \kappa_< \simeq 0.5\,,\; \kappa_> \simeq 4.5-5
$$

Same function for **nonexpanding**:

- *O(N) scalar theories* (N > 1)
- *Nonrelativistic scalars*

Nonexp.

Universality class in IR of **nonexpanding** scalars

Nonexp.

Vertex-resummed kinetic theory

Berges & Sexty, *PRD 83, 085004 (2011)*

Pinerio Orioli, KB & Berges,

(**Nonexp.**)
$$
\frac{\partial f(t; \mathbf{p})}{\partial t} = C^{NLO}[f](t; \mathbf{p})
$$
 Pinerio Orioli, KB & Berges

 $C^{\text{NLO}}(\mathbf{p}) = \int d\Omega^{2 \leftrightarrow 2} |M^{2 \leftrightarrow 2}[f]|^2 [(1+f_p)(1+f_l)f_qf_r - f_pf_l(1+f_q)(1+f_r)] + \cdots$

Usual phasespace integral

$$
\int d\Omega^{2\leftrightarrow 2}(p,l,q,r) = \int \frac{d^dl}{(2\pi)^d} \int \frac{d^dq}{(2\pi)^d} \int \frac{d^dr}{(2\pi)^d} \frac{(2\pi)^{d+1}}{16 \omega_p \omega_l \omega_q \omega_r} \delta^{(d+1)}(p+l-q-r)
$$

4-vectors!

Possible: generalization to off-shell processes ; $1 \leftrightarrow 3$, $0 \leftrightarrow 4$ scatterings ; also condensate

Self-similarity analysis

- Use kinetic equation $\partial_{\tau} f(\mathbf{p},\tau) - \frac{p_z}{\tau} \partial_{p_z} f(\mathbf{p},\tau) = C^{\text{NLO}}[f](\mathbf{p};\tau)$ for $f \gg 1$

- Plug in self-similarity ansatz $f(p, \tau) = \tau^{\alpha} f_S(\tau^{\beta} p)$

- Comparison of temporal exponents of both sides yields an equation for the exponents: $\alpha - 1 = \alpha - 2\beta + \sigma$ with mass evolution exponent $m(\tau) \sim \tau^{-\sigma}$

- Use particle number conservation: $n \sim \int d^3p f \sim 1/\tau \implies |\alpha - 3\beta = -1|$ (similar for nonexpanding: $\alpha - 3\beta = 0$)

- Exponents $\alpha = 1, \ \beta = 2/3$ for expanding and $\alpha = 3/2, \ \beta = 1/2$ for nonexpanding scalars (both relat. & nonrel.) same as in classical simulations!

Nonthermal fixed point of expanding scalars

Berges, KB, Schlichting & Venugopalan, *arXiv:1508.03073*

14.08.2015 | Institut for Theoretical Physics, Uni Heidelberg | Kirill Boguslavski | 24

Conclusion:

• Nonthermal scaling regions may be classified in universality classes; remarkable features of overoccupied field theories; useful tools to test microscopic descriptions

- Different theories in same univ. class may provide insight into their dynamics. Example: Expanding scalar and gauge theories
- Infrared region may alter dynamics at high momenta \rightarrow description of IR needed
- In scalar theories IR universality class; key features of scalars in different geometry can be understood from a vertex-resummed kinetic theory (VRKT)

Outlook:

- IR region needs to be better understood in gauge theories; in scalars further IR studies also need (how much influence on hard p; is VRKT consistent with scaling fs)
- How comes that exp. scalars show same scaling region as gauge theory?

Thank you for your attention!

BACKUP SLIDES

Longitudinally expanding systems

Scalars fields hard-momentum fixed-point: Inertial range 3)

It has a hyperbolic secant shape, which has a broader tail than the Gaussian function.

Sign for large angle scatterings?

Longitudinally expanding systems

Scalars fields hard-momentum fixed-point: Inertial range 3)

