POINCARÉ ADS BLACK HOLE FORMATION TO MODEL HEAD-ON HEAVY ION COLLISION

Hans Bantilan

University of Colorado Boulder

August 18, 2015

OUTLINE

- Motivation
- Setup
- Global AdS black holes
- Poincaré AdS black holes
- Summary

Open Questions

Gravitational collapse in AdS: how generic is it?

Hairy AdS black holes: what is the dynamical endpoint of thermodynamically unstable black hole solutions?

Charged AdS black holes: what are the dynamical properties of holographic gauge theories at finite density and temperature?

Black hole collisions in AdS: what are the dynamical properties of holographic gauge theories far from equilibrium?

Within the context of $\mathcal{L} = \frac{1}{16\pi} \left[R - 2\Lambda - \frac{1}{2} g^{\alpha\beta} \partial_{\alpha} \varphi \partial_{\beta} \varphi - V(\varphi) - \frac{f(\varphi)}{4} F_{\mu\nu} F^{\mu\nu} \right]$

Quark gluon plasma

- a non-perturbative problem in QCD
- lattice QCD has no access to real-time dynamics
- experimental data are well described by hydro simulations
- but, hydro always needs initial conditions

Description in terms of classical gravity: AdS/CFT

 $\rm RHIC \rightarrow \rm CFT \rightarrow \rm AdS$

goal: a black hole merger model of heavy ion collisions, where $M_1, M_2, \gamma_1, \gamma_2, b$ are the only tunable parameters, the rest is determined by AdS dynamics

AdS/CFT correspondence

between an asymptotically anti-de Sitter (AdS) spacetime in (d+1)D and a conformal field theory (**CFT**) in (d)D

Proposed use

to find a gravity description of non-perturbative problems in $\ensuremath{\mathbf{QCD}}$

Major obstacle is the current lack of a gravity dual for QCD

Possible approach: try to capture some features of QCD with a CFT toy model for which there *is* a known gravity dual

• Previous work relating RHIC to AdS simulations

Gravitational shock waves in AdS (single horizon with planar topology) $^{1\ 2\ 3\ 4\ 5\ 6\ 7\ 8\ 9\ 10\ 11}$

Black hole collisions in AdS (merger of horizons with spherical topology) $^{12\ 13\ 14\ 15}$

- ¹*PRD* **78** (2008), S. Gubser, S. Pufu, A. Yarom
- ²*PRD* **82** (2010), P. Chesler, L. Yaffe
- ³*PRL* **106** (2011), P. Chesler, L. Yaffe
- ⁴PRL 108 (2012), M. Heller, R. Janik, P. Witaszczyk
- ⁵*PRD* **85** (2012), M. Heller, R. Janik, P. Witaszczyk
- ⁶PRL 111 (2013), W. v. d. Schee, P. Romatschke, S. Pratt
- ⁷*PRL* **111** (2013), J. Casalderrey-Solana, M. Heller, D. Mateos, W.v.d.S.
- ⁸*JHEP* **1507** (2015), D. Fernandez
- ⁹hep-th/1501.04644 (2015), P. Chesler, L. Yaffe
- ¹⁰hep-th/1506.02209 (2015), P. Chesler
- ¹¹hep-th/1507.08195 (2015), W. v. d. Schee, B. Schenke
- ¹² JHEP 04 (2007), J. Freiss, S. Gubser, G. Michalogiorgakis, S. Pufu
- ¹³JHEP **04** (2009), P. Figueras, V. Hubeny, M. Rangamani, S. Ross
- ¹⁴*PRD* **85** (2012), HB, F. Pretorius, S. Gubser
- ¹⁵*PRL* **114** (2014), HB, P. Romatschke

SETUP

FIGURE: Shaded region depicting the Poincaré patch, defined by $W(t, r, \chi, \theta, \phi) \equiv (1+r)/(\sqrt{L^2 + r^2}\cos(t/L) + r\sin\chi\cos\theta) > 0.$

asymptotically \mathbf{AdS}_5 spacetime

- $g_{\mu\nu}$ is a solution of Einstein field equations with negative $\Lambda = -6/L^2$
- $\circ~$ the bulk metric may deviate from the pure AdS metric $g^{AdS}_{\mu\nu}$
- $g_{\mu\nu}|_{\partial M}$ belongs to the same conformal class as $g_{\mu\nu}^{AdS}|_{\partial M}$
- $\circ~$ the boundary of global AdS is identified with $\mathbb{R}\times S^3$
- $\circ~$ the boundary of the Poincaré patch is identified with $\mathbb{R}^{3,1}$

Poincaré coordinates global coordinates

 (t', z', x_1, x_2, x_3) $(t, r, \chi, \theta, \phi)$

FIGURE: Shaded region depicting the Poincaré patch, defined by $W(t, r, \chi, \theta, \phi) \equiv (1 + r)/(\sqrt{L^2 + r^2} \cos(t/L) + r \sin \chi \cos \theta) > 0.$

Global AdS5: Scalar Field Variable $\bar{\varphi}$

FIGURE: Shaded region depicting the Poincaré patch, defined by $W(t, r, \chi, \theta, \phi) \equiv (1+r)/(\sqrt{L^2 + r^2} \cos(t/L) + r \sin \chi \cos \theta) > 0.$

A Poincaré Patch of AdS₅: $\bar{g}_{x_3x_3}$ on (z', x_3) -slice

A POINCARÉ PATCH OF ADS₅: $\bar{g}_{x_3x_3}$ on (x_2, x_3) -slice

Evolution Equations:

$$0 = -\frac{1}{2}g^{\alpha\beta}g_{\mu\nu,\alpha\beta} - g^{\alpha\beta}{}_{,(\mu}g_{\nu)\alpha,\beta}$$

$$-H_{(\mu,\nu)} + H_{\alpha}\Gamma^{\alpha}{}_{\mu\nu} - \Gamma^{\alpha}{}_{\beta\mu}\Gamma^{\beta}{}_{\alpha\nu}$$

$$-\kappa \left(2n_{(\mu}C_{\nu)} - (1+P)g_{\mu\nu}n^{\alpha}C_{\alpha}\right)$$

$$-\frac{2}{3}\Lambda_{5}g_{\mu\nu} - 8\pi \left(T_{\mu\nu} - \frac{1}{3}T^{\alpha}{}_{\alpha}g_{\mu\nu}\right)$$

$$\downarrow$$

$$0 = \mathcal{L}_{f}|^{n}_{ijkl} \qquad (15 \text{ such equations, one for each } \mu, \nu)$$

 $C^{\mu} \equiv H^{\mu} - \Box x^{\mu}$ (seek solutions for which $C^{\mu} = 0$)

Evolution Equations:

 $0 = \mathcal{L}_f|_{ijkl}^n$ (15 such equations, one for each $\mu\nu$)

Solve by a Newton-Gauss-Seidel iterative scheme:

- three-level scheme at time levels t^{n+1} , t^n , t^{n-1}
- $\circ\,$ knowns: $f_{ijkl}^n,\,f_{ijkl}^{n-1},$ unknowns: f_{ijkl}^{n+1}
- the f_{ijkl}^n are used as an initial guess for the f_{ijkl}^{n+1}
- one iteration step:

$$\tilde{f}_{ijkl}^{n+1} \to \tilde{f}_{ijkl}^{n+1} - \frac{\mathcal{R}_f|_{ijkl}^n}{\mathcal{J}_f|_{ijkl}^n} (\mathcal{R}_f|_{ijkl}^n = \mathcal{L}_{\tilde{f}}|_{ijkl}^n, \mathcal{J}_f|_{ijkl}^n = \frac{\partial \mathcal{L}_f|_{ijkl}^n}{\partial f_{ijkl}^{n+1}})$$
(letting \tilde{f}_{ijkl}^{n+1} be an approximate solution)
iterate until $\mathcal{R}_f|_{ijkl}^n$ becomes sufficiently small
this is done at each time step

Initial Data: need $g_{\mu\nu}|_{t=0}$, $\partial_t g_{\mu\nu}|_{t=0}$ on the spatial slice $\Sigma_{t=0}$

- The spatial components $g_{ijkl}|_{t=0}$, $\partial_t g_{ijkl}|_{t=0}$ are constrained by the field equations on $\Sigma_{t=0}$
- Other components are set by the choice of coordinates

Key Features:

- Direct discretization of 4+1 field equations
- Cauchy evolution scheme
- Spatially compactified coordinates
- Dynamical horizon tracking
- Adaptive mesh refinement
- Modified cartoon method

Single Deformed BH: Metric Variable $\bar{g}_{\chi\chi}$

QNM FREQUENCIES: DEPENDENCE ON BH SIZE

FIGURE: Fundamental qnm frequencies taken from $\bar{g}_{\chi\chi}$ by projecting onto $\mathbb{S}(200)$ near $r \to \infty$ then fitting to damped sinusoids $\sim e^{-i\omega t}$.

Energy Density ϵ on $\mathbb{R}^{3,1}$

$$\epsilon_{\mathbb{R}^{3,1}} = W^{-4} \epsilon_{\mathbb{R} \times S^3}$$

Loading ...

$$W = \sqrt{(t')^2 + (1 + x_1^2 + x_2^2 + x_3^2 - (t')^2)^2/4}$$

BH Collision: Scalar Field Variable $\bar{\varphi}$

BH Collision: Scalar Field Variable $\bar{\varphi}$

Comparison to Hydrodynamics on $\mathbb{R} \times S^3$: single deformed BH

Comparison to Hydrodynamics on $\mathbb{R} \times S^3$: BH collision

A POINCARÉ PATCH OF ADS_5

FIGURE: The Poincaré patch of AdS_5 drawn in coordinates adapted to the $\mathbb{R}^{3,1}$ boundary; constant- x_3 slices are copies of the hyperbolic plane H_3 .

Adapted from hep-th/0805.1551

A POINCARÉ PATCH OF ADS_5

FIGURE: The Poincaré patch of AdS_5 drawn in coordinates adapted to the $\mathbb{R}^{3,1}$ boundary; constant- x_3 slices are copies of the hyperbolic plane H_3 .

Adapted from hep-th/0805.1551

Planar BH: $\bar{\varphi}$ on (z', x_3) -slice

Planar BH: $\bar{g}_{x_3x_3}$ on (z', x_3) -slice

Spherical BH: $\bar{\varphi}$ on (z', x_3) -slice

Spherical BH: $\bar{\varphi}$ on (x_2, x_3) -slice

BH COLLISION: $\bar{\varphi}$ on (z', x_3) -slice

BH COLLISION: $\overline{\varphi}$ on (x_2, x_3) -slice

SUMMARY

What physics can we hope to extract from these simulations?

• dynamics of CFT far from equilibrium, relevant to head-on heavy ion collisions

What has been done?

- black hole collisions in global AdS
- control over imposed symmetries on the Poincaré patch

What remains to be done?

- stable merger of two black holes on the Poincaré patch
- $\circ~\langle T_{\mu\nu}\rangle_{CFT}$ calculations relevant to RHIC observables