Chiral Anomaly Induced Phenomena in QGP: How to Test Them in AA and pA?

Ho-Ung Yee

University of Illinois at Chicago and RIKEN-BNL Research Center

July 17, 2015

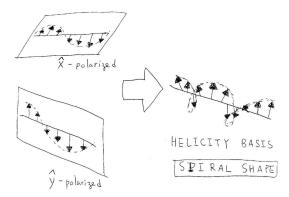
Correlations and Fluctuations in pA and AA Collisions INT, Seattle, July, 2015

A (10) A (10) A (10)

Summary of Chiral Anomaly Induced Transports in QGP

<i>B</i> = 0	B eq 0
Chiral Shear Wave $(\mu \neq 0)$	Chiral Magnetic Effect $(\mu \neq 0)$
Chiral Vortical Effect $(\mu = 0)$	Chiral Magnetic Wave $(\mu = 0)$

Chiral Shear Wave (Sahoo-HUY)

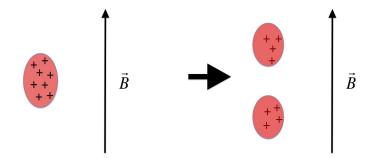


Shear velocity fluctuations δu^i decay as

$$\omega \approx -i rac{\eta}{4\rho} k^2 \pm i rac{\lambda_1}{16\rho} k^3 + \cdots$$

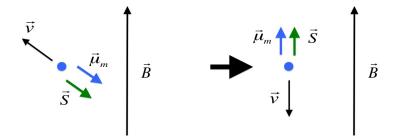
where $T^{\mu
u}_{(2)} \sim \lambda_1 \Pi^{\mu
u}_{lphaeta} \mathcal{D}^{lpha} \omega^{eta}$ (Kharzeev-HUY)

Chiral Magnetic Wave (CMW) on Electric Charges

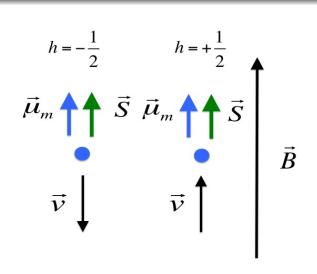


A peculiar motion of electric charges under a magnetic field !!!

Quantum Picture of Fermionic Charge Carriers in a Magnetic Field (Kharzeev-Warringa)



Helicity : $\vec{S} = h_{|\vec{v}|}^{\vec{v}}$, $h = \pm \frac{1}{2}$ (Chirality) Wigner-Eckart Theorem : $\vec{\mu}_m \propto q\vec{S}$, q = charge Spin Magnetic Moment Interaction : $H = -\vec{\mu}_m \cdot \vec{B}$



A motion along the direction of the magnetic field is induced. Some go up, others go down, depending on their helicity

An intricate interplay of

- Quantum Spin
- Charge and Magnetic Moment
- Helicity (Chirality)

Theoretical Description of CMW (Kharzeev-HUY)

CMW arises from the interplay of

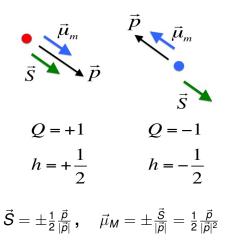
- Chiral Magnetic Effect : $\vec{J}_V = \frac{e\mu_A}{2\pi^2}\vec{B}$ (Fukushima-McLerran-Kharzeev-Warringa)
- Chiral Separation Effect : $\vec{J}_A = \frac{e_{\mu_V}}{2\pi^2}\vec{B}$ (Son-Zhitnitsky)

The velocity is

$$v_{\chi} = rac{eB}{2\pi^2}rac{1}{\chi}, \quad \chi = ext{susceptibility}$$

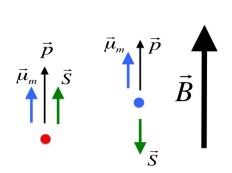
Quasi-particle picture of CME

Quantized Weyl particles (p) and anti-particles (\bar{p})



- ロ ト - (同 ト - (回 ト -) 回 ト -) 回

Quasi-particle picture of CME



Energy shift in a magnetic field: $\Delta E = -\vec{\mu}_M \cdot \vec{B} = -\frac{1}{2} \frac{\vec{p} \cdot B}{|\vec{p}|^2}$ It gives rise to a tendency to align the momentum along the magnetic field direction

Quantitative Understanding of CME

The energy shift $\Delta E = -\frac{1}{2} \frac{\vec{p} \cdot \vec{B}}{|\vec{p}|^2}$ will modify the equilibrium distribution of particles (f_+^{eq}) and anti-particles (f_-^{eq})

from

$$f_{\pm}^{(0)} \equiv \left(\exp[eta(|ec{
ho}|\mp\mu)]+1
ight)^{-1}$$

to

$$\begin{split} f^{\rm eq}_{\pm} &= \left(\exp[\beta(|\vec{p}| - \frac{1}{2} \frac{\vec{p} \cdot \vec{B}}{|\vec{p}|^2} \mp \mu)] + 1 \right)^{-1} \\ &\approx f^{(0)}_{\pm} + \beta f^{(0)}_{\pm} (1 - f^{(0)}_{\pm}) \frac{\vec{p} \cdot \vec{B}}{2|\vec{p}|^2} + \mathcal{O}(B^2) \end{split}$$

The net current is

$$\begin{split} \vec{J} &= \int \frac{d^{3}\vec{p}}{(2\pi)^{3}} \dot{\vec{x}} \left(f_{+}^{\mathrm{eq}} - f_{-}^{\mathrm{eq}} \right) = \int \frac{d^{3}\vec{p}}{(2\pi)^{3}} \frac{\vec{p}}{|\vec{p}|} \left(f_{+}^{\mathrm{eq}} - f_{-}^{\mathrm{eq}} \right) \\ &= \frac{\beta}{2} \int \frac{d^{3}\vec{p}}{(2\pi)^{3}} \frac{\vec{p}}{|\vec{p}|} \frac{\vec{p} \cdot \vec{B}}{|\vec{p}|^{2}} \left(f_{+}^{(0)} (1 - f_{+}^{(0)}) - f_{-}^{(0)} (1 - f_{-}^{(0)}) \right) \\ &= \frac{1}{3} \cdot \frac{1}{4\pi^{2}} \vec{B} \times \beta \int_{0}^{\infty} dp \ p \left(f_{+}^{(0)} (1 - f_{+}^{(0)}) - f_{-}^{(0)} (1 - f_{-}^{(0)}) \right) \\ &= \frac{1}{3} \cdot \frac{\mu}{4\pi^{2}} \vec{B} \end{split}$$

where

$$\beta \int_0^\infty dp \ p\left(f_+^{(0)}(1-f_+^{(0)})-f_-^{(0)}(1-f_-^{(0)})\right) = \mu$$

independent of temperature

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

This contribution from the energy shift explains only $\frac{1}{3}$ of the full result

Identifying the remaining $\frac{2}{3}$ contribution to the CME needs a complete picture of microscopic motions of fermions under a magnetic field

Motion of Weyl Particle in a Magnetic Field

Using the relativistic energy

$$\mathcal{E} = |\vec{p}| - rac{1}{2}rac{ec{p}\cdotec{B}}{ec{p}ec{ec{B}}^2}$$

the equation of motion from the action gives

$$\sqrt{G} \dot{\vec{x}} = \frac{\partial \mathcal{E}}{\partial \vec{\rho}} + \vec{B} \left(\frac{\partial \mathcal{E}}{\partial \vec{\rho}} \cdot \vec{b} \right) = \frac{\vec{\rho}}{|\vec{\rho}|} + \frac{\vec{\rho}(\vec{\rho} \cdot \vec{B})}{|\vec{\rho}|^4} + \mathcal{O}(B^2)$$

where $\sqrt{G} = (1 + \vec{B} \cdot \vec{b})$ is the modified phase space measure

The second term is the new velocity from triangle anomaly (Stephanov-Yin)

4 **A** N A **B** N A **B** N

The current from this new velocity is

$$\vec{J} = \int \frac{d^{3}\vec{p}}{(2\pi)^{3}} \sqrt{G} \, \dot{\vec{x}} \left(f_{+}^{(0)} - f_{-}^{(0)}\right)$$

$$= \int \frac{d^{3}\vec{p}}{(2\pi)^{3}} \, \frac{\vec{p}(\vec{p} \cdot \vec{B})}{|\vec{p}|^{4}} \left(f_{+}^{(0)} - f_{-}^{(0)}\right)$$

$$= \frac{2}{3} \cdot \frac{1}{4\pi^{2}} \vec{B} \times \int_{0}^{\infty} dp \, \left(f_{+}^{(0)} - f_{-}^{(0)}\right)$$

$$= \frac{2}{3} \cdot \frac{\mu}{4\pi^{2}} \vec{B}$$
where
$$\int_{0}^{\infty} dp \, \left(f_{+}^{(0)} - f_{-}^{(0)}\right) = \mu$$

independent of temperature

イロン イ団 とくほ とくほ とう

Back to CMW: Linearize for small fluctuations: $\mu_{V/A} \approx n_{V/A}/\chi$

(χ : charge susceptibility)

$$ec{J}_V=rac{eec{B}}{2\pi^2\chi}n_A\,,\quad ec{J}_A=rac{eec{B}}{2\pi^2\chi}n_V$$

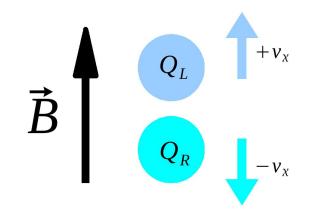
Add and subtract the two equations, and define $J_R = J_V + J_A$ and $J_L = J_V - J_A$ $\vec{J}_R = \frac{e\vec{B}}{2\pi^2\chi}n_R$, $\vec{J}_L = -\frac{e\vec{B}}{2\pi^2\chi}n_L$

Conservation equation $\dot{n}_{R/L} + \vec{\nabla} \cdot \vec{J}_{R/L} = 0$ gives

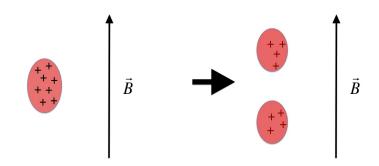
$$(\partial_t + \vec{\mathbf{v}} \cdot \vec{\nabla}) \mathbf{n}_R = \mathbf{0}, \quad (\partial_t - \vec{\mathbf{v}} \cdot \vec{\nabla}) \mathbf{n}_L = \mathbf{0}$$

with velocity $\vec{v} = \frac{e\vec{B}}{2\pi^2} \frac{1}{\chi}$: Two modes moving to opposite directions along the magnetic field!

Charge Splitting from CMW

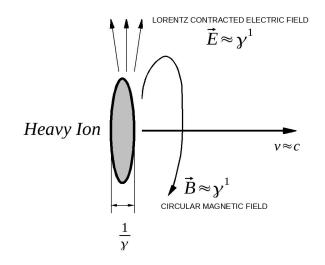


Charge Splitting from CMW



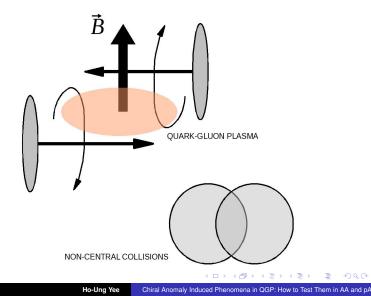
Initial vector (electric) charge is $n_V = n_R + n_L$

Magnetic field in heavy-ion collisions

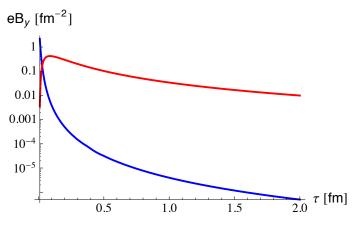


A > + = + + =

In non-central collisions, two magnetic fields overlap along the same direction out of reaction plane



Magnetic Field in QGP Medium

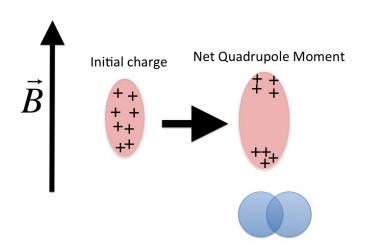


(Gursoy-Kharzeev-Ragagopal)

Faraday Effect with equilibrium QGP conductivity, which can be questioned

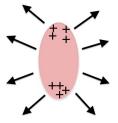
CMW in Heavy Ion Collisions

Burnier-Kharzeev-Liao-HUY



CMW in Heavy Ion Collisions

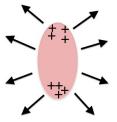
Net Quadrupole Moment



This leads to charge dependent elliptic flows of pions $v_2(\pi^+) < v_2(\pi^-)$ if the initial charge is positive $A_{\pm} > 0$

CMW in Heavy Ion Collisions

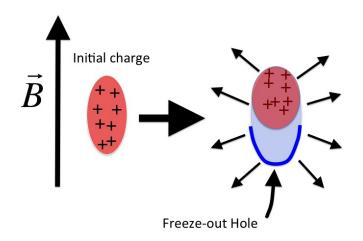
Net Quadrupole Moment



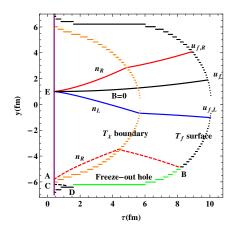
Prediction
$$\Delta v_2 \equiv v_2(\pi^-) - v_2(\pi^+) = r A_{\pm}, \quad A_{\pm} \equiv \frac{N_+ - N_-}{N_+ + N_-}$$

< 回 > < 三 > < 三 >

Freeze-out Hole Effect (HUY-Yin): A significant effect on the slope *r*



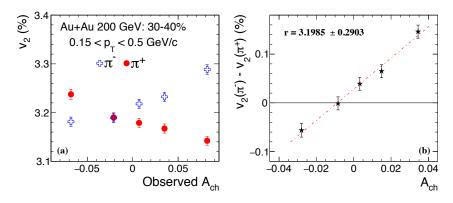
Freeze-out Hole Effect: A significant effect on the slope *r*



What it looks like in realistic simulations (HUY-Yin)

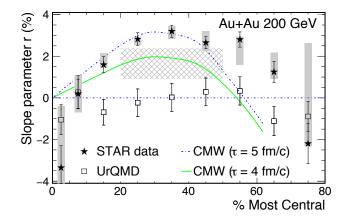
Confirmation of linear dependency at RHIC

(Phys.Rev.Lett. 114 (2015) 25, 252302)



 $\Delta v_2 = r \; A_{\pm} + \Delta v_2^0$: Note the intercept Δv_2^0 (Stephanov-Yee)

Centrality Dependence of The Slope r



The colored curves are from the simulations (Burnier-Kharzeev-Liao-HUY)

Other Sources for The Slope r?

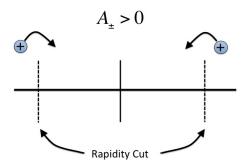
In the equation

$$\Delta v_2 = r A_{\pm} + \Delta v_2^0$$

both Δv_2 and A_{\pm} are charge conjugation (C) odd, so that the slope *r* is C even.

This means that *r* can receive contributions from other sources unrelated to the magnetic field

Example: Bzdak-Bozek Scenario



Since v_2 drops sharply for a larger rapidity, the $v_2(\pi^+)$ will be relatively smaller than $v_2(\pi^-)$ Can explain the 1/3 of the slope

Distinction in Δv_3 **?**

The slope in
$$\Delta extsf{v}_3 \equiv extsf{v}_3(\pi^-) - extsf{v}_3(\pi^+) = extsf{r}_3 \; extsf{A}_\pm$$

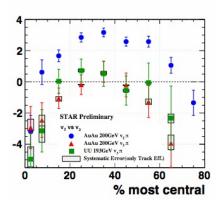
CMW: $r_3 \approx 0$

Bzdak-Bozek:
$$r_3 \approx r \times \frac{v_3}{v_2} \approx r \times \frac{1}{3}$$

Ho-Ung Yee Chiral Anomaly Induced Phenomena in QGP: How to Test Them in AA and pA

イロト イポト イヨト イヨト

3



イロト イヨト イヨト イヨト

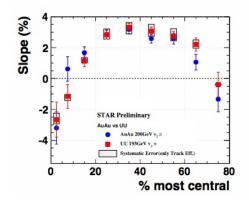
2

Distinction in U-U Collisions?

What should be most interesting is near zero centrality

CMW: No magnetic field, so $r \approx 0$

Bzdak-Bozek: *v*₂ is finite even at zero centrality, so *r* should be non-zero



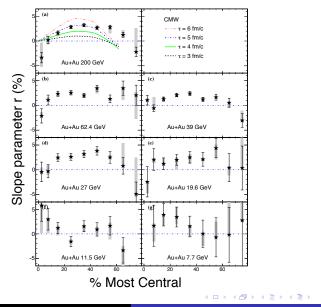
The slope *r* becomes negative near zero centrality: no current theoretical understanding

Other Background?: Mean-Field Potential (с. м. ко, et al)

Could explain $p - \bar{p}$ and $K^+ - K^-$ roughly, but its effect for $\pi^+ - \pi^-$ turns out to be too small

Beam energy Scan at RHIC

(Phys.Rev.Lett. 114 (2015) 25, 252302)



Ho-Ung Yee Chiral Anomaly Induced Phenomena in QGP: How to Test Them in AA and pA

3

In Summary:

No overwhelming background has been identified. Experiments seem to be in line with CMW. Need more tests

Chiral Vortical Effect

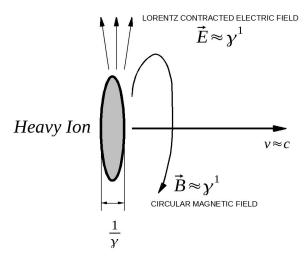
$$ec{J}_V = rac{m{e}\mu_A}{2\pi^2}ec{B} + rac{\mu_A\mu_V}{\pi^2}ec{\omega}$$

 $ec{\omega} = (1/2)ec{
abla} imes ec{u}$ is the fluid vorticity

Non-zero v_1 can give a vorticity in off-central collisions, which can induce baryon charge transport by CVE:

Signal in $\Lambda^0 - \overline{\Lambda}^0$ baryon separation (Kharzeev-Son)

pA Collisions ?



Magnetic field still exists with half a magnitude compared to AA

Ho-Ung Yee Chiral Anomaly Induced Phenomena in QGP: How to Test Them in AA and pA

 \vec{B} orientation and magnitude are fluctuating, but since what has been measured in the CMW observable is $v_2\{2\}$ and $v_2\{4\}$, we should still see some effect if there is CMW effect of charge splitting along \vec{B}

However, the orientation of \vec{B} is uncorrelated to the fluctuating v_2 , so the net effect on the previous observable is expected to disappear

pA does not have vorticity, so CVE should disappear in pA. This should be also a good place for testing CVE

Thank you very much for listening

- A - E - N