Chiral Anomaly Induced Phenomena in QGP: How to Test Them in AA and pA?

Ho-Ung Yee

University of Illinois at Chicago and RIKEN-BNL Research Center

July 17, 2015

Correlations and Fluctuations in pA and AA Collisions INT, Seattle, July, 2015

← → → → → → → 三

Summary of Chiral Anomaly Induced Transports in QGP

AD * * E * * E

Chiral Shear Wave (Sahoo-HUY)

Shear velocity fluctuations δu^i decay as

$$
\omega \approx -i\frac{\eta}{4p}k^2 \pm i\frac{\lambda_1}{16p}k^3 + \cdots
$$

where $T_{(2)}^{\mu\nu} \sim \lambda_1 \Pi_{\alpha\beta}^{\mu\nu} \mathcal{D}^{\alpha} \omega^{\beta}$ (Kharzeev-HUY)

Chiral Magnetic Wave (CMW) on Electric Charges

A peculiar motion of electric charges under a magnetic field !!!

Quantum Picture of Fermionic Charge Carriers in a Magnetic Field (Kharzeev-Warringa)

 ${\sf Helicity:}~\vec{\mathcal{S}} = h^{\, \vec{\mathit{v}}}_{|\vec{\mathit{v}}|}, \quad h = \pm \frac{1}{2} \left[{\textbf{Chirality}} \right]$ **Wigner-Eckart Theorem :** $\vec{\mu}_m \propto q\vec{S}$, $q =$ charge **Spin Magnetic Moment Interaction :** $H = -\vec{\mu}_m \cdot \vec{B}$

A motion along the direction of the magnetic field is induced. Some go up, others go down, depending on their helicity

An intricate interplay of

- **Quantum Spin**
- **Charge and Magnetic Moment**
- **Helicity (Chirality)**

 $Q \cap$

Theoretical Description of CMW (Kharzeev-HUY)

CMW arises from the interplay of

- ${\bf Chiral~Magnetic~Effect:} ~\vec{J}_V = \frac{e\mu_A}{2\pi^2} \vec{B}$ **(Fukushima-McLerran-Kharzeev-Warringa)**
- \mathbf{C} hiral Separation Effect : $\vec{J}_A = \frac{e\mu_V}{2\pi^2} \vec{B}$ **(Son-Zhitnitsky)**

The velocity is

$$
\textbf{v}_{\chi}=\frac{eB}{2\pi^2}\frac{1}{\chi}\,,\quad \chi=\text{susceptibility}
$$

Quasi-particle picture of CME

Quantized Weyl particles (*p***) and anti-particles (** \bar{p} **)**

4 ロ ▶ 4 何 ▶ 4 百 ▶ 4 百 ▶ │ 百

 QQ

Quasi-particle picture of CME

Energy shift in a magnetic field: $\Delta E = -\vec{\mu}_M\cdot\vec{B}=-\frac{1}{2}$ ~ *p·B*~ $|\vec{p}|^2$ **It gives rise to a tendency to align the momentum along the magnetic field direction**

Quantitative Understanding of CME

The energy shift $\Delta E = -\frac{1}{2}$ ~ *p·B*~ *|*~ *^p|*² **will modify the** equilibrium distribution of particles ($f^{\rm eq}_{+}$) and anti-particles (*f* $_{-}^{\text{eq}}$)

from

$$
f_{\pm}^{(0)} \equiv \big(\exp[\beta(|\vec{\rho}| \mp \mu)] + 1\big)^{-1}
$$

to

$$
\begin{array}{rcl} f_{\pm}^{\mathrm{eq}} & = & \left(\exp[\beta (|\vec{\rho}| -\frac{1}{2} \frac{\vec{\rho} \cdot \vec{B}}{|\vec{\rho}|^{2}} \mp \mu)] + 1 \right)^{-1} \\ \\ & \approx & f_{\pm}^{(0)} + \beta f_{\pm}^{(0)} (1 - f_{\pm}^{(0)}) \frac{\vec{\rho} \cdot \vec{B}}{2|\vec{\rho}|^{2}} + \mathcal{O}(B^{2}) \end{array}
$$

The net current is

$$
\vec{J} = \int \frac{d^3 \vec{p}}{(2\pi)^3} \dot{\vec{x}} \, (f_+^{eq} - f_-^{eq}) = \int \frac{d^3 \vec{p}}{(2\pi)^3} \frac{\vec{p}}{|\vec{p}|} \, (f_+^{eq} - f_-^{eq})
$$
\n
$$
= \frac{\beta}{2} \int \frac{d^3 \vec{p}}{(2\pi)^3} \frac{\vec{p}}{|\vec{p}|} \frac{\vec{p} \cdot \vec{B}}{|\vec{p}|^2} \left(f_+^{(0)} (1 - f_+^{(0)}) - f_-^{(0)} (1 - f_-^{(0)}) \right)
$$
\n
$$
= \frac{1}{3} \cdot \frac{1}{4\pi^2} \vec{B} \times \beta \int_0^\infty dp \, p \left(f_+^{(0)} (1 - f_+^{(0)}) - f_-^{(0)} (1 - f_-^{(0)}) \right)
$$
\n
$$
= \frac{1}{3} \cdot \frac{\mu}{4\pi^2} \vec{B}
$$

where

$$
\beta \int_0^\infty dp \; p \left(f_+^{(0)}(1 - f_+^{(0)}) - f_-^{(0)}(1 - f_-^{(0)}) \right) = \mu
$$

independent of temperature

イロト イ押 トイヨ トイヨト

 299

This contribution from the energy shift explains only $\frac{1}{3}$ of the full result

Identifying the remaining $\frac{2}{3}$ contribution to the CME **needs a complete picture of microscopic motions of fermions under a magnetic field**

Motion of Weyl Particle in a Magnetic Field

Using the relativistic energy

$$
\mathcal{E}=|\vec{\rho}|-\frac{1}{2}\frac{\vec{\rho}\cdot\vec{B}}{|\vec{\rho}|^2}
$$

the equation of motion from the action gives

$$
\sqrt{G}\,\dot{\vec{x}} = \frac{\partial \mathcal{E}}{\partial \vec{p}} + \vec{B}\left(\frac{\partial \mathcal{E}}{\partial \vec{p}} \cdot \vec{b}\right) = \frac{\vec{p}}{|\vec{p}|} + \frac{\vec{p}(\vec{p} \cdot \vec{B})}{|\vec{p}|^4} + \mathcal{O}(B^2)
$$

where $\sqrt{G} = (1 + \vec{B}\cdot\vec{b})$ is the modified phase space **measure**

The second term is the new velocity from triangle anomaly (Stephanov-Yin)

メタト メミト メミト

The current from this new velocity is

$$
\vec{J} = \int \frac{d^3 \vec{p}}{(2\pi)^3} \sqrt{G} \dot{\vec{x}} \left(f_+^{(0)} - f_-^{(0)} \right)
$$

=
$$
\int \frac{d^3 \vec{p}}{(2\pi)^3} \frac{\vec{p}(\vec{p} \cdot \vec{B})}{|\vec{p}|^4} \left(f_+^{(0)} - f_-^{(0)} \right)
$$

=
$$
\frac{2}{3} \cdot \frac{1}{4\pi^2} \vec{B} \times \int_0^\infty d\rho \left(f_+^{(0)} - f_-^{(0)} \right)
$$

=
$$
\frac{2}{3} \cdot \frac{\mu}{4\pi^2} \vec{B}
$$

where

$$
\textstyle\int_0^\infty\textit{d}p\;\left(f^{(0)}_+-f^{(0)}_-\right)=\mu
$$

independent of temperature

イロト イ押ト イヨト イヨト

 298

Back to CMW: Linearize for small fluctuations: $\mu_{V/A} \approx n_{V/A}/\chi$ **(: charge susceptibility)** $\vec{J}_V = \frac{e \vec{B}}{2\pi^2 \chi} n_A \,, \quad \vec{J}_A = \frac{e \vec{B}}{2\pi^2 \chi} n_V$

Add and subtract the two equations, and define $J_R = J_V + J_A$ and $J_l = J_V - J_A$ $\vec{J}_R = \frac{e\vec{B}}{2\pi^2 \chi} n_R \,, \quad \vec{J}_L = -\frac{e\vec{B}}{2\pi^2 \chi} n_L$

 $\bf{Conservation~equation}~\dot{n}_{R/L}+\vec{\nabla}\cdot\vec{J}_{R/L}={\bf 0}~\bf{gives}$

$$
(\partial_t + \vec{v} \cdot \vec{\nabla}) \eta_R = 0 \,, \quad (\partial_t - \vec{v} \cdot \vec{\nabla}) \eta_L = 0
$$

with velocity $\vec{v} = \frac{e \vec{B}}{2\pi^2}$ 1 $\frac{1}{\chi}$: **Two modes moving to opposite directions along the magnetic field!**

Charge Splitting from CMW

 \sqrt{m} \rightarrow \sqrt{m} \rightarrow \sqrt{m}

 299

∍ \rightarrow

Charge Splitting from CMW

Initial vector (electric) charge is $n_V = n_R + n_L$

Magnetic field in heavy-ion collisions

 \leftarrow

← → → → → → → → → → → →

つへへ

In non-central collisions, two magnetic fields overlap along the same direction out of reaction plane

Magnetic Field in QGP Medium

(Gursoy-Kharzeev-Ragagopal)

Faraday Effect with equilibrium QGP conductivity, which can be questioned

CMW in Heavy Ion Collisions

(Burnier-Kharzeev-Liao-HUY)

つへへ

CMW in Heavy Ion Collisions

Net Quadrupole Moment

This leads to charge dependent elliptic flows of pions $v_2(\pi^+) < v_2(\pi^-)$ if the initial charge is positive $A_+ > 0$

CMW in Heavy Ion Collisions

Net Quadrupole Moment

Prediction
$$
\Delta v_2 \equiv v_2(\pi^-) - v_2(\pi^+) = r A_{\pm}, A_{\pm} \equiv \frac{N_+ - N_-}{N_+ + N_-}
$$

化重新润滑

D.

∍

つへへ

Freeze-out Hole Effect (HUY-Yin): A significant effect on the slope *r*

Freeze-out Hole Effect: A significant effect on the slope *r*

What it looks like in realistic simulations (HUY-Yin)

Confirmation of linear dependency at RHIC

(**Phys.Rev.Lett. 114 (2015) 25, 252302**)

 Δ *v*₂ = *r* $A_{\pm} + \Delta$ *v*₂⁰: Note the intercept Δ *v*₂⁰ (Stephanov-Yee)

Centrality Dependence of The Slope *r*

The colored curves are from the simulations (Burnier-Kharzeev-Liao-HUY)

つひひ

Other Sources for The Slope *r***?**

In the equation

$$
\Delta v_2 = r A_{\pm} + \Delta v_2^0
$$

both Δv_2 and A_+ are charge conjugation (C) odd, so **that the slope** *r* **is C even.**

This means that *r* **can receive contributions from other sources unrelated to the magnetic field**

Example: Bzdak-Bozek Scenario

Since v_2 drops sharply for a larger rapidity, the $v_2(\pi^+)$ **will be relatively smaller than** $v_2(\pi^-)$ **Can explain the 1/3 of the slope**

つひひ

Distinction in Δv_3 ?

The slope in
$$
\Delta v_3 \equiv v_3(\pi^-) - v_3(\pi^+) = r_3 A_{\pm}
$$

CMW: $r_3 \approx 0$

$$
\textbf{Bzdak-Bozek: } r_3 \approx r \times \frac{v_3}{v_2} \approx r \times \frac{1}{3}
$$

Ho-Ung Yee Chiral Anomaly Induced Phenomena in QGP: How to Test Them in AA and pA

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶ ...

 299

∍

メロメメ 御 メメ きょく きょう

重

 299

Distinction in U-U Collisions?

What should be most interesting is near zero centrality

CMW: No magnetic field, so $r \approx 0$

Bzdak-Bozek: v_2 **is finite even at zero centrality, so** *r* **should be non-zero**

The slope *r* **becomes negative near zero centrality: no current theoretical understanding**

つへへ

Other Background?: Mean-Field Potential (C. M. Ko, *et al***)**

Could explain $p - \bar{p}$ and $K^+ - K^-$ roughly, but its effect for $\pi^+ - \pi^-$ turns out to be too small

Beam energy Scan at RHIC

(**Phys.Rev.Lett. 114 (2015) 25, 252302**)

Ho-Ung Yee Chiral Anomaly Induced Phenomena in QGP: How to Test Them in AA and pA

 299

∍

In Summary:

No overwhelming background has been identified. Experiments seem to be in line with CMW. Need more tests

Chiral Vortical Effect

$$
\vec{J}_V=\frac{\textit{e}\mu_A}{2\pi^2}\,\vec{B}+\frac{\mu_A\mu_V}{\pi^2}\,\vec{\omega}
$$

 $\vec{\omega} = (1/2)\vec{\nabla} \times \vec{\mu}$ is the fluid vorticity

Non-zero v_1 can give a vorticity in off-central **collisions, which can induce baryon charge transport by CVE:**

Signal in $\Lambda^0 - \bar{\Lambda}^0$ baryon separation **(Kharzeev-Son)**

pA Collisions ?

Magnetic field still exists with half a magnitude compared to AA

Ho-Ung Yee Chiral Anomaly Induced Phenomena in QGP: How to Test Them in AA and pA

∢ □ ▶ ∢@ ▶ ∢ ∃ ▶ ∢ ∃

B~ **orientation and magnitude are fluctuating, but since what has been measured in the CMW observable is** *v*2*{*2*}* **and** *v*2*{*4*}***, we should still see some effect if** there is CMW effect of charge splitting along \overrightarrow{B}

However, the orientation of \vec{B} is uncorrelated to the fluctuating v_2 , so the net effect on the previous **observable is expected to disappear**

pA does not have vorticity, so CVE should disappear in pA. This should be also a good place for testing CVE

Thank you very much for listening

 \rightarrow \equiv \rightarrow

 \sim

つへへ