Thermal noise and Gubser flow

Li Yan

CNRS, Institut de Physique Théorique, Saclay

21 July 2015, INT workshop

Correlations and Fluctuations in p+A and A+A Collisions

with Hanna Grönqvist and Jean-Yves Ollitrault

Outline of this talk

- A brief introduction thermal noise in heavy-ion collisions
- Theoretical formulation of thermal fluctuations in a thermal system
 - ▶ Thermal fluctuations in a fluid system and heavy-ion collisions.

1

- Thermal noise and hydrodynamics with analytical solutions :
 - ► 1+1D Bjorken hydro.(Kapusta,Müller and Stephanov)
 - 2+1D Gubser hydro.
- Applications to A+A, p+A and p+p .

Thermal fluctuations in heavy-ion collisions

- Thermal fluctuations Physical quantities fluctuate around mean values
 - Thermal fluctuations are general for systems with T > 0.
 - Thermal fluctuations are related to dissipations fluctuation-dissipation

 $\eta/s \sim O(1/4\pi)$

- Thermal fluctuations are more significant in small systems.

from Pb+Pb and Au+Au to p+Pb, d+Au, ³He+Au, p+p

- Effective modeling heavy-ion collisions with hydro.,
 - * Initial state fluctuations hydro. event w.r.t. each initial state

 \Rightarrow Event-by-event hydro.

* Thermal fluctuations – ensemble average for each initial state

Why thermal fluctuations might be important?

• Modeling medium collectivity in small colliding systems – hydro.

* convergence of gradient expansion – Knudsen number

- * inclusion of thermal fluctuations
- A preliminary analysis of the effect of thermal fluctuations
 - * How significant is the effect of thermal fluctuations in heavy-ion collisions?
 - * In particular, effect of thermal fluctuations in small colliding systems?

Hydro. and thermal fluctuations in a fluid system

• Hydrodynamics – conservation of energy-momentum, etc.

 $T^{\mu\nu} = T^{\mu\nu}_{\text{ideal}} + \Pi^{\mu\nu} \qquad \leftrightarrow \qquad d_{\mu}T^{\mu\nu} = 0 \quad (\text{Euler and equ. of continuity})$

especially from hydro EoM, one recognizes that

$$d_{\mu}(su^{\mu}) = -\frac{1}{T} \nabla_{(\mu} u_{\nu)} \Pi^{\mu\nu} \quad \rightarrow \quad \frac{dS}{dt} = -\int d^3x \frac{1}{T} \nabla_{(\mu} u_{\nu)} \Pi^{\mu\nu}$$

Navier-Stokes hydro. (1st order):

$$\Pi^{\mu\nu} = -\eta \left[\frac{1}{2} \Delta^{\mu\alpha} \Delta^{\nu\beta} (d_{\alpha} u_{\beta} + d_{\beta} u_{\alpha}) - \frac{1}{3} \Delta^{\mu\nu} \Delta^{\alpha\beta} d_{\alpha} u_{\beta} \right] = -\eta \sigma^{\mu\nu}$$

where

$$\Delta^{\mu\nu} = u^{\mu}u^{\nu} + g^{\mu\nu}$$

* We ignore bulk viscosity ζ in our work.

Hydro. and thermal fluctuations in a fluid system

• EoM of a set of physical quantities $\{x_a\}$ in a thermal system (Landau and Lifshitz. J.Kapusta et al.)

$$\dot{x}_{a} = -\sum_{b} \gamma_{ab} X_{b} + \underbrace{y_{a}}_{\text{fluc.}} \quad \Leftrightarrow \quad \dot{S} = -\sum_{a} \dot{x}_{a} X_{a}$$
$$\underbrace{\text{drag}}$$

Maximization of S $\Rightarrow \langle y_a(t_1)y_b(t_2)\rangle = (\gamma_{ab} + \gamma_{ba})\delta(t_1 - t_2)$

- Auto-correlations of thermal noise : fluctuation-dissipation
- For hydro., γ_{ab} is determined then by identifying

$$\dot{x} \to \Pi^{\mu\nu} \text{ and } X \to \frac{\Delta V}{T} \nabla_{(\mu} u_{\nu)}, \qquad \left(\frac{dS}{dt} = -\int d^3x \frac{1}{T} \nabla_{(\mu} u_{\nu)} \Pi^{\mu\nu}\right)$$

- Remarks:
 - 1. White noise delta function $\delta() \sim \frac{1}{\Delta V \Delta t}$.
 - 2. Form of γ_{ab} corresponds to the detailed form of $\Pi^{\mu\nu}$, $\gamma_{ab} \sim$ dissipations.
 - 3. Noise y_a corresponds to thermodynamical quantity \dot{x}_a , also for $S^{\mu\nu}$ and $\Pi^{\mu\nu}$.

• Hydrodynamics with thermal noise (Navier-Stokes hydro):

(Landau and Lifshitz, J. Kapusta et. al. and A. Kumar et al.)

$$T^{\mu\nu} = T^{\mu\nu}_{\rm ideal} + \Pi^{\mu\nu} + S^{\mu\nu}$$

where thermal fluctuation tensor $S^{\mu\nu}$ are introduced w.r.t. $\Pi^{\mu\nu}$

$$\langle S^{\mu\nu}(x)\rangle = 0$$

Navier-Stokes: $\langle S^{\mu\nu}(x_1)S^{\alpha\beta}(x_2)\rangle = 4T\eta \Delta^{\mu\nu\alpha\beta}\delta^{(4)}(x_1 - x_2)$

where

$$\Delta^{\mu\nu\alpha\beta} = \frac{1}{2} \left[\Delta^{\mu\alpha} \Delta^{\nu\beta} + \Delta^{\mu\beta} \Delta^{\nu\alpha} \right] - \frac{1}{3} \Delta^{\mu\nu} \Delta^{\alpha\beta}, \text{ and } \Delta^{\mu\nu\alpha\beta} d_{\alpha} u_{\beta} = \sigma^{\mu\nu}$$

- * One-point functions of physical quantities are not affected.
- * Thermal noise affects two-point correlations.

• Linearized hydro. EoM with thermal fluctuations around $d_{\mu}T_{0}^{\mu\nu} = 0$

$$T(x) = T_0(x) + \delta T(x)$$

$$\varepsilon(x) = \varepsilon_0(x) + \delta \varepsilon(x)$$

$$\mathcal{P}(x) = \mathcal{P}_0(x) + \delta \mathcal{P}(x)$$

$$u^{\mu}(x) = u_0^{\mu}(x) + \delta u^{\mu}(x)$$

therefore $d_{\mu}\delta T^{\mu\nu} = 0 \sim O(\delta)$,

 $\delta w D u_{\alpha} + w \delta u^{\mu} d_{\mu} u_{\alpha} + (Dw + w \partial \cdot u) \delta u_{\alpha} + \nabla_{\alpha} \delta \mathcal{P} + w D \delta u_{\alpha} + d_{\mu} (\delta \Pi^{\mu}_{\alpha} + S^{\mu}_{\alpha}) = 0$ $D \delta \varepsilon + \delta w \partial \cdot u + d_{\mu} (w \delta u^{\mu}) + w \delta u^{\alpha} D u_{\alpha} - u^{\alpha} d_{\mu} (\delta \Pi^{\mu}_{\alpha} + S^{\mu}_{\alpha}) = 0$

Note that $\delta \Pi^{\mu\nu}$ is induced by δT , etc. (C. Young, J. Kapusta et al.)

• Beyond linear order, thermal noise becomes large, e.g., phase transition.

Hydro. with symmetry simplification – Bjorken hydro.

- Bjorken hydro., 1+1D (Bjorken, 1982)
 - ▶ Bjorken boost indep. of spatial rapidity ξ , so that in (τ, ξ) space-time,

$$ds^2 = -d\tau^2 + \tau^2 d\xi^2 \quad \rightarrow \quad u^\mu = (1,0) \qquad \text{fluid at rest}$$

► Only one equation left non-trivial – equation of continuity:

$$D\varepsilon + (\varepsilon + \mathcal{P})\nabla \cdot u + \nabla_{(\mu}u_{\nu)}\Pi^{\mu\nu} = 0$$

• For Navier-Stokes (1st order) hydro., with conformal EoS $\varepsilon = 3\mathcal{P}$,

$$\varepsilon(\tau) = \varepsilon_0 \left(\frac{\tau_0}{\tau}\right)^{4/3} \left[1 - \frac{H_0}{2\tau\varepsilon_0^{1/4}} \left(\frac{\tau}{\tau_0}\right)^{1/3}\right]^4$$

where constant $H_0 \propto \eta/s$ is used to parameterize η .

Hydro. with symmetry simplification – Gubser hydro.

- Gubser hydro., 2+1D (Gubser and Yarom, 2010)
 - ▶ Bjorken boost indep. of spatial rapidity ξ
 - Rotational symmetry w.r.t. to beam axis for p+A and ultra-central A+A
- Change coordinates:
 - Via Weyl transformation, $g_{\mu\nu} \rightarrow \tilde{g}_{\mu\nu} = g_{\mu\nu}/\tau^2$

$$\mathbf{R}^{1,3} \Rightarrow dS_3 \times \mathbf{R}: \qquad d\tilde{s}^2 = \frac{1}{\tau^2} \left[-d\tau^2 + d\vec{x}_{\perp}^2 \right] + d\xi^2.$$

• Reparameterize dS_3 by the mapping $(r, \tau) \leftrightarrow (\rho, \theta)$:

$$\sinh \rho = -\frac{1 - q^2 \tau^2 + q^2 r^2}{2q\tau}$$
$$\tan \theta = \frac{2qr}{1 + q^2 \tau^2 - q^2 r^2}$$

so that symmetry $SO(1,1) \times SO(3) \times \mathbb{Z}_2$ are now manifest

$$d\hat{s}^2 = -d\rho^2 + d\xi^2 + \cosh^2\rho \left(d\theta^2 + \sin^2\theta d\phi\right) \,.$$

 ρ plays the role of 'time' in the 'hat' coordinate system.

• $d\hat{s}^2 = -d\rho^2 + d\xi^2 + \cosh^2 \rho \left(d\theta^2 + \sin^2 \theta d\phi \right)$ leads to allowed velocity profile $\hat{u}^{\mu} = (1, 0, 0, 0)$ fluid at rest

• Only one equation left non-trivial – equation of continuity:

$$D\hat{\varepsilon} + (\hat{\varepsilon} + \hat{\mathcal{P}})d_{\mu}\hat{u}^{\mu} + \nabla_{(\mu}\hat{u}_{\nu)}\hat{\Pi}^{\mu\nu} = 0$$

• For Navier-Stokes (1st order) hydro., with conformal EoS $\varepsilon = 3\mathcal{P}$,

$$\hat{\varepsilon}(\rho) = (\cosh\rho)^{-\frac{4}{3}} \left[\hat{T}_0 + \frac{1}{3} H_0 F_d(\rho) \right]^4$$

• To recover quantities in the original coordinates,

. . .

$$\epsilon = \tau^{-d} \hat{\epsilon}$$
$$u_{\tau} = \tau \left(\frac{\partial \rho}{\partial \tau} \hat{u}_{\rho} + \frac{\partial \theta}{\partial \tau} \hat{u}_{\theta} \right)$$
$$u_{\perp} = \tau \left(\frac{\partial \rho}{\partial \vec{x}_{\perp}} \hat{u}_{\rho} + \frac{\partial \theta}{\partial \vec{x}_{\perp}} \hat{u}_{\perp} \right)$$

• $\hat{T}_0 \rightarrow$ multiplicity, $q \rightarrow$ transverse size.

Bjorken hydro. and thermal noise

• Correlation of thermal noise in 1+1D Bjorken hydro,. (J. Kapusta et. al., 2012)

$$\langle S^{\mu\nu}(\tau_1,\xi_1)S^{\alpha\beta}(\tau_2,\xi_2)\rangle = \frac{8}{3\tau_1A_\perp}T\eta\Delta^{\mu\nu}\Delta^{\alpha\beta}\delta(\tau_1-\tau_2)\delta(\xi_1-\xi_2)$$

1. $\delta(\vec{x}_{1\perp} - \vec{x}_{2\perp}) \rightarrow A_{\perp}$ characterizes transverse size of the system.

2. Tensor structure of $S^{\mu\nu}$ is factorized, due to the fact that $u^{\mu} = (1,0)$.

$$S^{\mu\nu} = w(\tau)f(\tau,\xi)\Delta^{\mu\nu},$$

such that the unknown scalar and dimensionless function $f(\tau,\xi)$

$$\langle f(\tau_1, \xi_1) f(\tau_2, \xi_2) \rangle = \frac{8T(\tau_1)\eta(\tau_1)}{3A_{\perp}w^2(\tau_1)\tau_1} \delta(\tau_1 - \tau_2)\delta(\xi_1 - \xi_2)$$

= $\frac{2\nu}{A_{\perp}w(\tau_1)\tau_1} \delta(\tau_1 - \tau_2)\delta(\xi_1 - \xi_2)$ with $\nu = \frac{4}{3}\frac{\eta}{s}$

3. Magnitude of thermal noise is constrained by (in addition to η/s):

$$(A_{\perp}w(\tau)\tau) \sim A_{\perp}\left(\frac{dE}{\tau d^2 x_{\perp} d\xi}\right)\tau \sim \frac{dE_{\perp}}{dy} \sim \text{multiplicity}$$

Multiplicity more crucial than system size.

Bjorken hydro. and thermal noise

• EoM of thermal fluctuations of modes (in the conjugate space of ξ):

$$d_{\mu}\delta T^{\mu\nu} = 0 \quad \rightarrow \quad \tilde{\mathcal{V}}'(\tau, k_{\xi}) = -\tilde{\Gamma}(\tau, k_{\xi})\tilde{\mathcal{V}}(\tau, k_{\xi}) + \tilde{\mathcal{K}}(\tau, k_{\xi}),$$

Prime denotes $\tau \partial_{\tau}$, and

$$\widetilde{\mathcal{V}}(\tau) = \begin{pmatrix} \widetilde{n}(\tau, k_{\xi}) \\ \widetilde{\alpha}(\tau, k_{\xi}) \end{pmatrix}, \quad \widetilde{n} = \frac{\delta \widetilde{s}}{\widetilde{s}} \quad \text{and} \quad \widetilde{\alpha} = \delta u_{\xi}/\tau$$

and

$$\tilde{\mathcal{K}}(\tau) = \begin{pmatrix} -\tilde{f} \\ -ik_{\xi}\tilde{f} \end{pmatrix}, \qquad \tilde{f}(\tau,k_{\xi}) = \int d\xi e^{ik_{\xi}\xi} f(\tau,\xi)$$

and

$$\tilde{\Gamma}(\tau) = \begin{pmatrix} 0 & ik_{\xi} \\ ik_{\xi}c_s^2 & 1-c_s^2 \end{pmatrix} + \frac{\nu}{T\tau} \begin{pmatrix} c_s^2 & -ik_{\xi} \\ -ik_{\xi} & 1+c_s^2+k_{\xi}^2 \end{pmatrix}$$

- 1. Coupled EoMs in 1+1D.
- 2. Thermal noises for u_{ξ} mode are larger for higher order (larger k_{ξ}) modes.
- 3. Langevin-type, but $\langle \tilde{\mathcal{K}} \tilde{\mathcal{K}} \rangle$ is NOT directly related to $\tilde{\Gamma}$ as in Langevin process.
- 4. Can be solved numerically, and analytically in some special limits, e.g., $k_{\xi} \to 0$.

Gubser hydro. and thermal noise

• Correlation of thermal noise in 2+1D Gubser hydro., $(X \to (\rho, \theta, \phi, \xi))$

$$\langle \hat{S}^{\mu\nu}(\rho_1,\theta_1,\phi_1,\xi_1)\hat{S}^{\alpha\beta}(\rho_2,\theta_2,\phi_2,\xi_2)\rangle = \frac{2\nu\hat{T}\hat{s}}{\cosh^2\rho_1\sin\theta_1}\hat{\Delta}^{\mu\nu}\hat{\Delta}^{\alpha\beta}\delta(X_1-X_2)$$

1. Tensor structure of $\hat{S}^{\mu\nu}$ is factorized, due to $\hat{u}^{\mu} = (1, 0, 0, 0)$.

$$\hat{S}^{\mu\nu}(\rho,\theta,\phi,\xi) = \hat{w}(\rho)\hat{f}(\rho,\theta,\phi,\xi)\hat{\Delta}^{\mu\nu}$$

and again we have the correlation of scalar function

$$\langle \hat{f}(\rho_1, \theta_1, \phi_1, \xi_1) \hat{f}(\rho_2, \theta_2, \phi_2, \xi_2) \rangle = \frac{2\nu}{\hat{w} \cosh^2 \rho_1 \sin \theta_1} \delta(X_1 - X_2)$$

2. For scalar function $\hat{f}(X)$, mode decomposition w.r.t. SO(3) symmetry leads to

scalar modes:
$$\hat{f}(\rho, \theta, \phi, \xi) = \sum h(\rho) Y_{lm}(\theta, \phi) e^{ik_{\xi}\xi}$$

and

$$\langle h(\rho_1)h(\rho_2)\rangle = \frac{2\nu}{\hat{w}\cosh^2\rho_1}\delta(\rho_1-\rho_2)$$

3. Magnitude of thermal noise is constrained by

$$\hat{\boldsymbol{w}} \sim \hat{T}_0 \sim \text{multiplicity}$$

Multiplicity more crucial than system size.

Gubser hydro. and thermal noise

• Decompose thermal fluctuations into modes – scalar and vector modes:

$$\delta \hat{T} = \hat{T} \sum \delta_{l}(\rho) Y_{lm}(\theta, \phi) e^{ik_{\xi}\xi}$$

$$\delta u_{i} = \sum \left[v_{ls}(\rho) \partial_{i} Y_{lm}(\theta, \phi) e^{ik_{\xi}\xi} + v_{lv}(\rho) \Phi_{i(lm)}(\theta, \phi) e^{ik_{\xi}\xi} \right]$$

$$\delta u_{\xi} = \sum v_{l\xi}(\rho) Y_{lm}(\theta, \phi) e^{ik_{\xi}\xi}$$

• EoM of each mode,

$$\tilde{\mathcal{V}}_{l}'(\rho) = -\tilde{\Gamma}(\rho, l, k_{\xi})\tilde{\mathcal{V}}_{l}(\rho) + \tilde{\mathcal{K}}(\rho, k_{\xi}),$$

where prime denotes derivative w.r.t. ρ

$$\tilde{\mathcal{V}}_{l}(\rho) = \begin{pmatrix} \delta_{l}(\rho) \\ v_{ls}(\rho) \\ v_{ls}(\rho) \\ v_{l\xi}(\rho) \\ v_{lv}(\rho) \end{pmatrix}, \qquad \tilde{\Gamma} \text{ is a } 4 \times 4 \text{ matrix}, \qquad \tilde{\mathcal{K}} = \begin{pmatrix} -\frac{2}{3} \tanh \rho h(\rho) \\ \frac{2\hat{T}}{3\hat{T}'} \tanh \rho h(\rho) \\ -\frac{ik_{\xi}\hat{T}}{\hat{T}+H_{0} \tanh \rho} h(\rho) \\ 0 \end{pmatrix}$$

- 1. Coupled EoMs in 3+1D.
- 2. Thermal noises for u_{ξ} mode are larger for higher order (larger k_{ξ}) modes.
- 3. Vector modes are decoupled, and NOT affected by thermal noise.
- 4. Can be solved numerically, and simplified in some special limits, e.g., $k_{\xi} \to 0$.

Analytical solution of the modes

• EoM of thermal noise, (for Bjorken take $\rho \to \ln(\tau/\tau_0)$.)

$$\tilde{\mathcal{V}}'(\rho) = -\tilde{\Gamma}(\rho, l, k_{\xi})\tilde{\mathcal{V}}(\rho) + \tilde{\mathcal{K}}(\rho, k_{\xi}),$$

has formal solutions, $(K \to (k_{\xi}, l, m))$

$$\tilde{\mathcal{V}}(\rho, K) = \underbrace{\int_{\rho_0}^{\rho} d\rho' \tilde{\mathcal{G}}(\rho - \rho', K) \tilde{\mathcal{K}}(\rho', K)}_{\text{thermal fluct.}} + \underbrace{\tilde{\mathcal{G}}(\rho - \rho_0, K) \tilde{\mathcal{V}}(\rho_0, K)}_{\text{initial fluct.}},$$

with Green function (determined by hydro. evolution)

$$\tilde{\mathcal{G}}(\rho - \rho', K) = \exp\left[-\int_{\rho'}^{\rho} d\rho'' \tilde{\Gamma}(\rho'', K)\right]$$

• One-point function (linear response),

$$\langle \tilde{\mathcal{V}}(\rho, K) \rangle = \tilde{\mathcal{G}}(\rho - \rho_0, K) \langle \tilde{\mathcal{V}}(\rho_0, K) \rangle$$

NOT affected by thermal fluctuations.

• Two-point function,

$$\langle \tilde{\mathcal{V}}_{i}(\rho, K) \tilde{\mathcal{V}}_{j}(\rho, K') \rangle = \underbrace{\int_{\rho_{o}}^{\rho} d\rho' \left(\tilde{\mathcal{G}}(\rho - \rho', K) \Lambda_{th}(\rho') \tilde{\mathcal{G}}^{T}(\rho - \rho', K') \right)_{ij} \delta(K + K')}_{\text{thermal fluct.}} + \underbrace{\left(\tilde{\mathcal{G}}(\rho - \rho_{0}, K) \Lambda_{ini}(\rho_{0}) \tilde{\mathcal{G}}^{T}(\rho - \rho_{0}, K') \right)_{ij} \delta(K + K')}_{\text{initial fluct.}}$$

* Dirac delta is given by two-point correlations of thermal and initial fluct.,

e.g.
$$\delta(K+K') \sim \delta(k_{\xi}+k'_{\xi})\delta_{ll'}\delta_{m,-m'}(-1)^m \quad \leftrightarrow \quad \delta(\vec{x}_{\perp}-\vec{x}'_{\perp})\delta(\xi-\xi')$$

* Λ_{ini} and Λ_{th} are matrices characterizing the strength of correlations.

$$\Lambda_{ini} \sim \frac{1}{N}$$
 (assuming $\delta s/s \sim 1/\sqrt{N}$)
 $\Lambda_{th} \sim \frac{\eta}{s}$

* 1+1D Bjorken hydro.: $k_{\xi} = 0$ mode and small η/s limit ($\tilde{n} \sim \delta s/s$)

$$\langle \tilde{n}(\rho,0)^2 \rangle = \int_{\rho_0}^{\rho} d\rho' (\tilde{\mathcal{G}}\Lambda_{th}\tilde{\mathcal{G}}^T)_{11} + (\tilde{\mathcal{G}}\Lambda_{ini}\tilde{\mathcal{G}}^T)_{11}$$
$$= \frac{9\pi\nu}{2A_{\perp}\varepsilon_0\tau_0^2} \left[1 - \left(\frac{\tau_0}{\tau}\right)^{2/3} \right] + \frac{1}{N} \exp[-2D_1(\tau-\tau_0)c_s^2]$$

where

$$D_1(\tau - \tau_0) = \frac{3\nu}{2T_0\tau_0} \left[1 - \left(\frac{\tau_0}{\tau}\right)^{2/3} \right] + O(\nu^2)$$

* Naïve estiamte for ultra-central PbPb and pPb:

Apply Gubser hydro. with thermal noise to heavy-ion collisions

- Ultra-central Pb-Pb, p-Pb and p-p.
- Approximates system evolution of first several fm's

– conformal symmetry, e.g., $\varepsilon = 3\mathcal{P}$.

- linearized hydro. EoM, treat noises as perturbations.
- $k_{\xi} = 0$ mode
 - Long rapidity range correlations, affected also by initial fluctuations.
 - Further simplification with v_{ξ} modes decoupled $\rightarrow 2$ coupled equations.
- \hat{T}_0 and q determine the system.

	PbPb	pPb	pp
\hat{T}_0	7.3	3.1	1.7
$q^{-1}(fm)^{-1}$	4.3	1.1	1.1

• Initial fluctuations: Gaussian, Dirac delta.

magnitude $\sim 1/\sqrt{N}$

Evolution of a Gaussian profile

•
$$\delta \hat{T}_0 = \exp\left[-\frac{\theta^2 + \theta_0^2 - 2\theta\theta_0 \cos(\phi - \phi_0)}{2\sigma^2}\right]$$
 (Staig and Shuryak)

• $\delta T(\tau, \vec{x}_{\perp})$ without thermal noise

•
$$\delta \hat{T}_0 = \exp\left[-\frac{\theta^2 + \theta_0^2 - 2\theta\theta_0\cos(\phi - \phi_0)}{2\sigma^2}\right]$$
 (Staig and Shuryak)

• $\delta T(\tau, \vec{x}_{\perp})$ with thermal noise, one random event

•
$$\delta \hat{T}_0 = \exp\left[-\frac{\theta^2 + \theta_0^2 - 2\theta\theta_0\cos(\phi - \phi_0)}{2\sigma^2}\right]$$
 (Staig and Shuryak)

• $\delta T(\tau, \vec{x}_{\perp})$ with thermal noise, average over 100 events

•
$$\delta \hat{T}_0 = \exp\left[-\frac{\theta^2 + \theta_0^2 - 2\theta\theta_0\cos(\phi - \phi_0)}{2\sigma^2}\right]$$
 (Staig and Shuryak)

• $\delta T(\tau, \vec{x}_{\perp})$ with thermal noise, average over 1000 events

Two-point correlations – PbPb

- Initial fluctuations: $\delta \hat{T}(\rho_0) \sim \delta(\theta \theta_0) \delta(\phi \phi_0)$, and $\theta_0 = 1.5$, $\phi_0 = \pi$.
- $\langle \delta \hat{T}_l(\rho)^2 \rangle$ with thermal noise (1000 events) and without thermal noise:

Two-point correlations – pPb

- Initial fluctuations: $\delta \hat{T}(\rho_0) \sim \delta(\theta \theta_0) \delta(\phi \phi_0)$, and $\theta_0 = 1.5$, $\phi_0 = \pi$.
- $\langle \delta \hat{T}_l(\rho)^2 \rangle$ with thermal noise (1000 events) and without thermal noise:

Two-point correlations – pp

- Initial fluctuations: $\delta \hat{T}(\rho_0) \sim \delta(\theta \theta_0) \delta(\phi \phi_0)$, and $\theta_0 = 1.5$, $\phi_0 = \pi$.
- $\langle \delta \hat{T}_l(\rho)^2 \rangle$ with thermal noise (1000 events) and without thermal noise:

- Formulate and solve 2+1D Gubser hydro. with thermal fluctuations.
- Effect of thermal noise in heavy-ion collisions:
 - 1. Absolute magnitude of thermal noise is mostly controlled by multiplicity.
 - 2. Relatively magnitude of initial fluctuations (~ $1/\sqrt{N}$).
 - 3. Thermal fluctuations are more significant in pp than pPb, but not in PbPb.
- Outlook
 - * Two-point correlations in particle spectrum.
 - * 2nd order hydro.
 - * Colored noise.(T. Hirano et al.)