

Cold atoms and hot quark-gluon plasma

Fuqiang Wang Lawrence Berkeley National Laboratory Purdue University

Our Paradigm

RHIC Scientists Serve Up "Perfect" Liquid

New state of matter more remarkable than predicted -- raising many new questions

Infinite viscosity **Very low viscosity**

Some recent thinking…

- 1. Opacity
- 2. Quantum effects

Motivated by small systems…

Majority anisotropy from escape

L. He, T. Edmonds, Z.-W. Lin, F. Liu, D. Molnar, FW, arXiv:1502.05572

- Majority of anisotropy comes from the final-step "escape" mechanism.
- This small v_2 is due to dynamics, result of hydrodynamic pressure push. It is this flow that is most relevant. However it plays a minor role.
- May explain small system data and weak energy dependence.

Relative escape contribution

• Escape contribution still sizeable even at x10 larger x-sections.

Anisotropy mechanism

No expansion Expansion, flow

Is QGP classical?

Li: $M \sim 6000$ MeV $T\sim1\mu$ K \sim 10⁻¹⁶MeV x~20µm, y~100µm p – (TM)^{1/2} – 10⁻⁶MeV

E quantum~ $1/(mr^2)$ ~ 10^{-20} MeV p quanyum $\sim1/r\sim10^{-8}$ MeV Negligible!

Cold atoms are **hot**, **"classical" w.r.t. trap size**. q,g: $M\sim 0$ MeV $T\sim$ 200 MeV $x \sim 3$ fm, y ~ 4 fm $p\sim$ 200MeV

E quanum~200 MeV p quanum $\sim1/r\sim200$ MeV Comparable!

QGP is **cold**, **quantum mechanical.**

Hot QGP

QM uncertainty principle

 $\Delta x \cdot \Delta p > \hbar / 2$ p_x > p_y

$$
\varepsilon = \frac{\langle y^2 \rangle - \langle x^2 \rangle}{\langle y^2 \rangle + \langle x^2 \rangle} \qquad v_2 = \langle \cos 2\varphi \rangle = \frac{\langle p_x^2 \rangle - \langle p_y^2 \rangle}{\langle p_x^2 \rangle + \langle p_y^2 \rangle}
$$

Infinite square well

a b 1 fm

$$
-\frac{\hbar^2}{2m}\nabla^2\psi = E\psi \quad \Rightarrow \quad \psi \propto \begin{cases} \cos\frac{n_{odd}\pi}{a}x \\ \sin\frac{n_{even}\pi}{a}x \end{cases}
$$

Take even mode for example:
\n
$$
\langle p_x^2 \rangle = \hbar^2 k^2
$$
; $\langle x^2 \rangle = \frac{a^2}{4} - \frac{2}{k^2}$; $k = \frac{n_{odd}\pi}{a}$
\n $\sqrt{\langle p_x^2 \rangle \cdot \langle x^2 \rangle} = \hbar \sqrt{\frac{k^2 a^2}{4} - 2} = \hbar \sqrt{\frac{\pi^2}{4} n_{odd}^2 - 2} > \hbar / 2$

$$
v_2 = \frac{\langle p_x^2 \rangle - \langle p_y^2 \rangle}{\langle p_x^2 \rangle + \langle p_y^2 \rangle} = \frac{b^2 - a^2}{b^2 + a^2} = \varepsilon \quad \text{for all } n.
$$

Single state anisotropy

Harmonic oscillator

$$
\left(-\frac{\hbar^2}{2m}\nabla^2 + \frac{1}{2}m\omega^2 x^2\right)\psi = E\psi \ ; \quad E = \left(n + \frac{1}{2}\right)\hbar\omega
$$

 $2 \lambda \left(\frac{2}{2} \right)$

 $y \rightarrow -\langle x \rangle$ $\omega_x - \omega_y$

 λ μ μ μ

 $y \rightarrow + \langle x \rangle$ $\omega_x + \omega_y$

 2λ , 2λ , 2λ

 $\mathcal{E} = \frac{1}{1} + \frac{1}{1} + \frac{1}{1} = \frac{1}{1} + \frac{1}{$

 $n_2 = \varepsilon$ for each and all n

x y

 $+(\chi^2)$ $\omega_{\alpha} + \omega_{\alpha}$

 $\omega - \omega$

 $\omega + \omega$

Thermal probability

x, y at same Fermi energy, so different number of filled energy levels.

At high temperature, classical limit, sum is approximated by integral:

$$
\frac{dN}{d\mathbf{p}} = N \frac{\int d\mathbf{r} e^{-H_1(\mathbf{p}, \mathbf{r})/T}}{\int d\mathbf{r} d\mathbf{p} e^{-H_1(\mathbf{p}, \mathbf{r})/T}} = N \frac{e^{-K(\mathbf{p})/T}}{\int d\mathbf{p} e^{-K(\mathbf{p})/T}}
$$

then it's independent of potential.

It's isotropic at all temperature because $K = (p_x^2 + p_y^2)/2m$ is isotropic.

Thermal probability weight

$$
\rho(\mathbf{r}) \equiv \frac{dN}{d\mathbf{r}} = \frac{1}{Z} \sum_{j} |\psi_j(\mathbf{r})|^2 e^{-E_j/T}
$$
\n
$$
f(\mathbf{p}) \equiv \frac{dN}{d\mathbf{p}} = \frac{1}{Z} \sum_{j} |\psi_j(\mathbf{p})|^2 e^{-E_j/T}
$$
\n
$$
Z \equiv \sum_{j} e^{-E_j/T}
$$
\n
$$
\langle p_i^2 \rangle = \frac{M\omega_i}{2} \coth \frac{\omega_i}{2T}, \quad \langle r_i^2 \rangle = \frac{1}{2M\omega_i} \coth \frac{\omega_i}{2T}.
$$
\n
$$
\bar{v}_2 \approx \frac{\hbar^2}{12k_BTM\langle r_x^2 \rangle} \cdot \frac{\varepsilon}{1+\varepsilon}
$$

Quantum physics anisotropy

D. Molnar, FW, and C.H. Greene, arXiv:1404.4119

$$
\rho(\mathbf{r}) \propto \exp\left(-\sum_{i} \frac{r_i^2}{2\langle r_i^2 \rangle}\right), \quad f(\mathbf{p}) \propto \exp\left(-\sum_{i} \frac{p_i^2}{2\langle p_i^2 \rangle}\right)
$$

 $100 \mu s$

200 us

 $600 \mu s$

800 µs

 $1000 \,\mu s$

$$
\bar{v}_2 \approx \frac{\hbar^2}{12 k_B T M \langle r_x^2 \rangle} \cdot \frac{\varepsilon}{1+\varepsilon} \; \approx 10^{-5}
$$

The observed large v_2 is indeed due to strong interactions.

Cold atoms

Strong elliptic anisotropy

K. M. O'Hara *et al.*, Science 298, 2179 (2002)

Lithium atoms M \sim 6000 MeV Temperature T \sim 1 μ K \sim 10⁻¹⁶ MeV Trap size $x \sim 20 \mu m$, y $\sim 100 \mu m$

Is quantum v₂ real in QGP?

X10-2

x10-4

- It should be... but need experiment to verify (cold atom experiment)
- Cold atoms are "classical." Make it Quantum Mechanical.
- Would be neat to verify QM and uncertainty principle

Li: $M~6000$ MeV

 $T\sim1\mu$ K \sim 10⁻¹⁶MeV

 $x\sim$ 20 μ m, y \sim 100 μ m

 p \sim $(TM)^{1/2}$ \sim 10^{-6} MeV

p quan \sim 1/r \sim 10⁻⁸MeV

E quan~1/(mr²)~10⁻²⁰MeV

Negligible!

Cold atoms are **hot**,

classical.

q,g: $M \sim 0$ MeV $T~200$ MeV $x \sim 3$ fm, y ~ 4 fm $p\sim$ 200MeV

p quan $\sim1/r\sim$ 200MeV E quan \sim 200 MeV Comparable!

QGP is **cold**, **quantum mechanical.**

Hot QGP

Summary

- Close connections between hot QGP and cold atoms.
- Cold atoms are hydrodynamical; QGP may not be.

Make it more dilute, or smaller, or less interacting to mimic QGP.

• QGP is quantum mechanical; cold atoms are "classical."

Make it smaller, or colder to mimic QGP, and measure the uncertainty principle.

Comparison to Hydrodynamics

Strong elliptic anisotropy

 Small value of specific viscosity over entropy *η/s* Model uncertainty dominated by *initial eccentricity ε*

Model: Song *et al. arXiv:1011.2783*

"flow" in small systems, and everywhere

7/28/2015 Collectivity in Small Colliding Systems -- Fuqiang Wang 23

How is anisotropy developed in AMPT?

L. He, T. Edmonds, Z.-W. Lin, F. Liu, D. Molnar, FW, arXiv:1502.05572

- Partons freeze out with large positive v_{2} , even when they do not interact at all.
- This is due to larger escape probability along x than y.
- Remaining partons start off with negative $v₂$, and become \sim isotropic (v₂ \sim 0) after one more collision.
- Process repeats itself.
- Similar for v_3 .
- Similar for d+Au collisions.