Exact solution to the RTA Boltzmann equation subject to Gubser flow

Michael Strickland Kent State University Kent, OH USA

Institute for Nuclear Theory, July 28 2015

Collaborators: D. Bazow, G. Denicol, W. Florkowski, U. Heinz, A. Jaiswal, E. Maksymiuk, M. Martinez, M. Nopoush, J. Noronha, and R. Ryblewski

References: NPA 916, 249 (2013), PRC 88, 024903 (2013), PRC 89, 054908 (2014), PRC 90, 044905 (2014), PRL 113, 202301 (2014), PRD 90, 125026 (2014), PRD 91, 045007 (2015)

Motivation I

- Want to have a quantitatively reliable understanding of softdynamics of the QGP that can be applied far from equilibrium
- Different causal formulations on the market:
 - Israel-Stewart
 Grad-14
 Chapman-Enskog
 Anisotropic hydrodynamics } assume anisotropic background

• ... which is best?

- Leads to systematic uncertainties in extraction of transport coefficients, etc.
- Could use data as the arbitrar, but it would be better to have exact solutions that could be used to test frameworks/codes

It's important to calibrate your tools

The curvature of the earth must be much larger than we thought!?

It's important to calibrate your tools

Motivation II

- In the past, approximate analytic "shock-tube" solutions in the non-expanding case have been used to test codes
- Would be nice to have exact solutions that include both strong transverse and longitudinal expansion
- Test case(s) should be close in spirit to the conditions generated dynamically in heavy ion collisions
- Minimally, we can target a system that is boost invariant and cylindrically symmetric → solutions will be functions of longitudinal proper time τ and radial coordinate r
- Of course, we would like to go beyond this, but for now even this would be a good starting point

Motivation III

- For this purpose we will exactly solve the Boltzmann equation with a simple collisional kernel (relaxation time approximation = RTA) subject to a class of non-trivial flows
- <u>The resulting exact solution holds for arbitrary shear</u> <u>viscosity to entropy density ratio</u>
- Allows us to span physical situations ranging from ideal hydrodynamics all the way to free streaming
- Can be applied to large and small systems
- Using the same starting point (RTA Boltzmann), we then derive the corresponding hydrodynamical equations of motion using hydro frameworks on the market

[G. Denicol, U.W. Heinz, M. Martinez, J. Noronha, and MS, 1408.5646 and 1408.7048]

Visualization of the effective temperature

0+1d Solution

Bjorken Flow

Boost-invariant and transversally homogeneous flow \rightarrow Bjorken flow

$$\begin{bmatrix} t = \tau \cosh \varsigma ,\\ z = \tau \sinh \varsigma , \end{bmatrix}$$

Milne coordinates

$$\tau^2 = t^2 - z^2$$

$$\varsigma = \operatorname{arctanh}(z/t)$$

Cartesian components

$$u^{\mu} = (\cosh \varsigma, 0, 0, \sinh \varsigma) = \left(\frac{t}{\tau}, 0, 0, \frac{z}{\tau}\right)$$

Milne components

$$(t,x,y,z) \to (\tau,x,y,\varsigma)$$

$$u_{\tau} = 1$$
$$u_{\varsigma} = 0$$

In Milne coordinates Bjorken flow maps to a static flow, i.e. all spacelike components of the four-velocity are vanishing

Simple kinetic equation

Relativistic Boltzmann equation

 $p^{\mu}\partial_{\mu}f(x,p) = C[f(x,p)]$

Use RTA for the collisional kernel

$$C[f] = \frac{p \cdot u}{\tau_{\text{eq}}} \left(f^{\text{eq}} - f \right) \qquad \tau_{\text{eq}} = \text{ relaxation time}$$

Assume (for now) classical statistics

$$f^{\rm eq} = \exp\left(-\frac{p \cdot u}{T}\right)$$

In addition, assume (for now) that all particles are massless

See W. Florkowski and E. Maksymiuk, arXiv:1411.3666 for quantum statistics

Conformal (massless) thermodynamic vars

$$\begin{vmatrix} n_{\rm eq} = \frac{2g_0 T^3}{\pi^2} & S_{\rm eq} = \frac{8g_0 T^3}{\pi^2} \\ \mathcal{E}_{\rm eq} = \frac{6g_0 T^4}{\pi^2} & \mathcal{P}_{\rm eq} = \frac{2g_0 T^4}{\pi^2} \end{vmatrix}$$

Bjorken-flow symmetries

$$\begin{array}{ll}ISO(2) \times SO(1,1) \times {\bf Z}_2 \\ \text{transverse} & \text{boost} & \text{reflection} \\ \text{homogeneity} & \text{invariance} & \text{symmetry around} \\ & \text{collision plane} \end{array}$$

- The one-particle distribution function is a Lorentz scalar
- It can only depend on longitudinal-boost-invariant variables $\, au, \, w \, {\rm and} \, \vec{p}_T \,$ with

$$w = tp_L - zE$$

• RTA Boltzmann equation simplifies dramatically

$$\frac{\partial f}{\partial \tau} = \frac{f^{\rm eq} - f}{\tau_{\rm eq}}$$

$$f^{\rm eq}(\tau, w, p_T) = \exp\left[-\frac{\sqrt{w^2 + p_T^2 \tau^2}}{T(\tau)\tau}\right]$$

Solution for the distribution function

[W. Florkowski, R. Ryblewski, and MS, 1304.0665 and 1305.7234]

Solution for the distribution function is now straightforward to obtain

$$f(\tau, w, p_T) = D(\tau, \tau_0) f_0(w, p_T) + \int_{\tau_0}^{\tau} \frac{d\tau'}{\tau_{eq}(\tau')} D(\tau, \tau') f^{eq}(\tau', w, p_T)$$

with the damping function D given by

$$D(\tau_2, \tau_1) = \exp\left[-\int_{\tau_1}^{\tau_2} \frac{d\tau''}{\tau_{\rm eq}(\tau'')}\right] \qquad \text{with} \qquad \tau_{\rm eq}(\tau) = \frac{5\eta}{T\mathcal{S}}$$

One could solve this 3d integral equation for *f*, but the problem can be reduced to solving a 1D integral equation by integrating the left and right to obtain the energy density

$$\mathcal{E}(\tau) = \frac{g_0}{\tau^2} \int dP \, v^2 \, f(\tau, w, p_T) \qquad dP = 2 \, d^4 p \, \delta \left(p^2 - m^2 \right) \theta(p^0) / (2\pi)^3 = \frac{dw}{v} d^2 p_T$$
$$v \equiv Et - p_L z = \sqrt{w^2 + p_T^2 \tau^2}$$

Energy density integral equation

[W. Florkowski, R. Ryblewski, and MS, 1304.0665 and 1305.7234]

$$\bar{\mathcal{E}}(\tau) = D(\tau, \tau_0) \mathcal{R}(\xi_{\rm FS}(\tau)) / \mathcal{R}(\xi_0) + \int_{\tau_0}^{\tau} \frac{d\tau'}{\tau_{\rm eq}(\tau')} D(\tau, \tau') \bar{\mathcal{E}}(\tau') \mathcal{R}\left(\left(\frac{\tau}{\tau'}\right)^2 - 1\right)$$

$$\xi_{\rm FS}(\tau) = (1+\xi_0)(\tau/\tau_0)^2 - 1 \qquad \bar{\mathcal{E}} = \mathcal{E}/\mathcal{E}_0$$
$$\mathcal{R}(z) = \frac{1}{2} \left[(1+z)^{-1} + \arctan(\sqrt{z})/\sqrt{z} \right]$$

- Allows for arbitrarily momentum-space anisotropic initial condition
- Can be solved by guessing proper-time dependence of the energy density and then iterating until convergence is achieved
- Once the energy density profile is obtained, this can be used to determine the effective temperature, all other components of the energy-momentum tensor, number density, and the full oneparticle distribution function

Conformal 0+1d results

[W. Florkowski, R. Ryblewski, and MS, 1304.0665 and 1305.7234]

Conformal 0+1d results

[W. Florkowski, R. Ryblewski, and MS, 1304.0665 and 1305.7234]

Conformal 0+1d results - vaHydro

- Second-order aHydro ("vaHydro") further improves the agreement with the exact solutions
- Shown on the left is the pressure anisotropy is quite sensitive to the framework used
- Same conclusion obtained for all observables studied
- Note that I don't even show Israel-Stewart any longer, only 3rd order viscous hydro of Jaiswal

Conformal 0+1d results

[D. Bazow, U. Heinz, and MS, 1311.6720]

- Second-order aHydro ("vaHydro") further improves the agreement with the exact solutions
- Shown on the left is the pressure anisotropy is quite sensitive to the framework used
- Same conclusion obtained for all observables studied
- Note that I don't even show Israel-Stewart any longer, only 3rd order viscous hydro of Jaiswal

Conformal 0+1d results

- Number (entropy) production vanishes in two limits: ideal hydrodynamic and free streaming limits
- In the conformal model which we are testing with, number density is proportional to entropy density

Non-conformal (massive) gas

[W. Florkowski, E. Maksymiuk, R. Ryblewski, and MS, 1402.7348]

$$2m^{2}T(\tau)\left[3T(\tau)K_{2}\left(\frac{m}{T(\tau)}\right) + mK_{1}\left(\frac{m}{T(\tau)}\right)\right]$$
$$= D(\tau,\tau_{0})\Lambda_{0}^{4}\tilde{\mathcal{H}}_{2}\left[\frac{\tau_{0}}{\tau\sqrt{1+\xi_{0}}},\frac{m}{\Lambda_{0}}\right] + \int_{\tau_{0}}^{\tau}\frac{d\tau'}{\tau_{eq}}D(\tau,\tau')T^{4}(\tau')\tilde{\mathcal{H}}_{2}\left[\frac{\tau'}{\tau},\frac{m}{T(\tau')}\right]$$

- Can use a same method to obtain the exact solution for a massive gas
- Allows one to assess different methods for inclusion of bulk viscous effects
- The overarching conclusion is that it is <u>important to include shear-bulk</u> <u>couplings</u> (Israel-Stewart fails completely).

M. Nopoush, R. Ryblewski, and MS, 1405.1355 G.S. Denicol, W. Florkowski, R. Ryblewski, and MS, 1407.4767 A. Jaiswal, R. Ryblewski, and MS, 1407.7231

Plots on the left show recent results of Bazow, Heinz, and Martinez 1503.07443

Non-conformal (massive) gas

[W. Florkowski, E. Maksymiuk, R. Ryblewski, and MS, 1402.7348]

1+1d Conformal Solution

Gubser Flow

[S. Gubser, 1006.0006; S. Gubser and Y.Yarom, 1012.1314]

Gubser flow is a cylindrically-symmetric and boost-invariant flow that possesses a high degree of symmetry when mapped to Weyl-rescaled deSitter space

$$SO(3)_q \times SO(1,1) \times Z_2$$

Related to boost reflection
rotational symmetry invariance symmetry around

The parameter q above is an arbitrary energy scale that sets the radial extent of the system at a given proper time.

around beam axis

Polar Milne components

 $\tilde{u}^{\tau} = \cosh(\theta_{\perp})$

 $\tilde{u}^r = \sinh(\theta_\perp)$

 $\tilde{u}^{\phi} = 0$

 $\tilde{u}^{\varsigma} = 0$

Transverse rapidity

$$\theta_{\perp} = \tanh^{-1} \left(\frac{2q^2\tau r}{1+q^2\tau^2+q^2r^2} \right)$$

This flow is quite strong: The velocity gradients grow exponentially in time!

collision plane

Weyl-rescaled de Sitter Coordinates

- Conformal theories are invariant under arbitrary Weyl transformations
- An (m,n) tensor with canonical dimension Δ transforms as

$$Q^{\mu_1...\mu_m}_{\nu_1...\nu_n}(x) \to \Omega^{\Delta+m-n} Q^{\mu_1...\mu_m}_{\nu_1...\nu_n}(x)$$

where Ω is an arbitrary function of spacetime

- For the problem at hand we take $\Omega = \tau \rightarrow$ "Weyl-rescaling"
- Next we transform to de Sitter coordinates defined via

$$\sinh \rho = -\frac{1-q^2\tau^2+q^2r^2}{2q\tau}$$
$$\tan \theta = \frac{2qr}{1+q^2\tau^2-q^2r^2}$$

• ρ = de Sitter "time"

- $SO(3)_q$ symmetry guarantees that, in the end, physical observables will not depend on θ
- Azimuthal angle and spatial rapidity are the same as in Minkowski coords

Weyl-rescaled de Sitter Coordinates

$$\begin{array}{l}
 \hline dS_3 \times \mathbf{R} \quad \hat{g}_{\mu\nu} = \frac{1}{\tau^2} \frac{\partial x^{\alpha}}{\partial \hat{x}^{\mu}} \frac{\partial x^{\beta}}{\partial \hat{x}^{\nu}} g_{\alpha\beta} \quad \mathbf{R}^{3,1} \\
 \overleftarrow{q}_{\mu\nu} = \operatorname{diag}(-1, \cosh^2\rho, \cosh^2\rho \sin^2\theta, 1) \\
 d\hat{s}^2 = -d\rho^2 + \cosh^2\rho \left(d\theta^2 + \sin^2\theta \, d\phi^2 \right) + d\varsigma^2 \\
 \overrightarrow{SO(3)_q}
\end{array}$$

$$\left| \begin{array}{l} \sinh\rho = -\frac{1-q^2\tau^2+q^2r^2}{2q\tau} \\ \tan\theta = \frac{2qr}{1+q^2\tau^2-q^2r^2} \end{array} \right|$$

Polar Milne components

$$\tilde{u}^{\tau} = \cosh(\theta_{\perp})$$

 $\tilde{u}^{r} = \sinh(\theta_{\perp})$
 $\tilde{u}^{\phi} = 0$
 $\tilde{u}^{\varsigma} = 0$

After Weyl rescaling and coordinate transformation the Gubser flow four-velocity is static!

[S. Gubser, 1006.0006;

S. Gubser and Y.Yarom, 1012.1314]

de Sitter space flow velocity

Sketch of the 1+1d kinetic solution

- Start with the RTA Boltzmann equation subject to Gubser flow
- Make a Weyl-rescaling (homogeneous transformation of RTA Boltzmann eq.) + coord. transformation of the kinetic equation
- Use the fact that the distribution function can only depend on SO(3)_q x SO(1,1) x Z₂ invariants

SO(3)_q invariance
$$\longrightarrow \hat{p}_{\Omega}^2 = \hat{p}_{\theta}^2 + \frac{\hat{p}_{\phi}^2}{\sin^2 \theta}$$

SO(1,1) invariance $\longrightarrow \hat{p}_{\varsigma}$ (related to the w variable from 0+1d solution)

$$Z_2 \longrightarrow \zeta \rightarrow -\zeta$$
 Reflection symmetry

$$f(\hat{x}^{\mu}, \hat{p}_i) \longrightarrow f(\rho; \hat{p}_{\Omega}^2, \hat{p}^{\varsigma})$$

Sketch of the 1+1d kinetic solution

[G. Denicol, U.W. Heinz, M. Martinez, J. Noronha, and MS, 1408.5646 and 1408.7048]

• For a conformal system the relaxation time must be proportional to the inverse temperature (no other scale)

$$au_{
m eq} = rac{c}{T}$$
 For RTA kernel $c = 5\eta/\mathcal{S}$

• This gives

$$\frac{\partial}{\partial\rho}f(\rho;\hat{p}_{\Omega}^{2},\hat{p}_{\varsigma}) = -\frac{\hat{T}(\rho)}{c}\left[f(\rho;\hat{p}_{\Omega}^{2},\hat{p}_{\varsigma}) - f_{\rm eq}\left(\hat{p}^{\rho}/\hat{T}(\rho)\right)\right]$$

with
$$\hat{p}^{
ho} = \sqrt{\frac{\hat{p}_{\Omega}^2}{\cosh^2
ho} + \hat{p}_{\varsigma}^2}$$
 (mass shell constraint)

• This looks exactly like the Bjorken-flow problem solved previously!

Sketch of the 1+1d kinetic solution

[G. Denicol, U.W. Heinz, M. Martinez, J. Noronha, and MS, 1408.5646 and 1408.7048] [M. Nopoush, R. Ryblewski, and MS, 1410.6790]

 As before, we can turn this into a 1d integral equation for the energy density and, once that it is solved, we can determine all components of the energy-momentum tensor and the full distribution function

$$\hat{\varepsilon}(\rho) = D(\rho, \rho_0)\hat{\varepsilon}_{\rm FS} + \frac{3}{\pi^2 c} \int_{\rho_0}^{\rho} d\rho' D(\rho, \rho') \mathcal{H}_{\varepsilon}\left(\frac{\cosh\rho'}{\cosh\rho}\right) \hat{T}^5(\rho')$$

$$\mathcal{H}_{\varepsilon}(x) \equiv \frac{x^2}{2} + \frac{x^4}{2} \frac{\tanh^{-1}\sqrt{1-x^2}}{\sqrt{1-x^2}}$$

- For heavy ion application, the initial value for the de Sitter space energy density should be provided at $\rho_0 \rightarrow -\infty$ which maps to $\tau_0 \rightarrow 0^+$
- I will show results for ho_0 = -10 which, for q = 1, maps to au_0 < 5 x 10⁻⁴ fm/c

[G. Denicol, U.W. Heinz, M. Martinez, J. Noronha, and MS, 1408.5646 and 1408.7048] [M. Nopoush, R. Ryblewski, and MS, 1410.6790]

Isotropic initial conditions

Why is this nontrivial?

Knudsen number in de Sitter coordinates

$$\operatorname{Kn} = \hat{\tau}_{\operatorname{micro}} / \hat{\tau}_{\operatorname{macro}} = \hat{\tau}_{\operatorname{rel}} |\hat{\theta}| \equiv \underbrace{\hat{\tau}_{\operatorname{rel}}}_{c/\hat{T}} |\hat{\nabla} \cdot \hat{u}|_{2 \operatorname{tanh}(\rho)}$$

$$4\pi\eta / \operatorname{s} = 1 \quad \rho_0 = 0 \quad \hat{\mathcal{E}}(\rho_0) = 1$$

$$4\pi\eta / \operatorname{s} = 1 \quad \rho_0 = 0 \quad \hat{\mathcal{E}}(\rho_0) = 1$$

$$f_{10^{-1}} \int_{10^{-2}}^{10^{-1}} \int_{10^{-2}}^{10^{-1}} \operatorname{Kinetic} \operatorname{Exact}}_{10^{-3} - 10^{-2}} \int_{-10^{-2}}^{-10^{-2}} \int_{$$

[G. Denicol, U.W. Heinz, M. Martinez, J. Noronha, and MS, 1408.5646 and 1408.7048] [M. Nopoush, R. Ryblewski, and MS, 1410.6790]

Isotropic initial conditions

[G. Denicol, U.W. Heinz, M. Martinez, J. Noronha, and MS, 1408.5646 and 1408.7048] [M. Nopoush, R. Ryblewski, and MS, 1410.6790]

Oblate $(P_{L,0} / P_{T,0} \ll 1)$ initial conditions

[G. Denicol, U.W. Heinz, M. Martinez, J. Noronha, and MS, 1408.5646 and 1408.7048] [M. Nopoush, R. Ryblewski, and MS, 1410.6790]

Prolate ($P_{L,0} / P_{T,0} >> 1$) initial conditions

M. Strickland

Results are not very easy to interpret intuitively, so let's map back them back to Minkowski space by reversing the Weyl-rescaling and coordinate transformation, e.g.

۲

[G. Denicol, U.W. Heinz, M. Martinez, J. Noronha, and MS, 1408.5646 and 1408.7048]

Visualization of the effective temperature

[G. Denicol, U.W. Heinz, M. Martinez, J. Noronha, and MS, 1408.5646 and 1408.7048] [M. Nopoush, R. Ryblewski, and MS, 1410.6790]

Conclusions

- All methods (exact solution and hydro formulations) agree qualitatively → momentum-space anisotropy, etc.
- Israel-Stewart (IS) equations are the worst approximation overall.
- Grad-14 and Jaiswal's Chapman-Enskog-like method work much better than IS for the conformal case and, if one includes the shear-bulk couplings, they also work reasonably well in the non-conformal case.
- Anisotropic hydrodynamics (aHydro and vaHydro) worked the best in all cases examined.
- aHydro can describe systems ranging from the ideal hydro limit to the free streaming limit and automatically includes higher-order couplings, e.g. shear-bulk couplings.

[G. Denicol, U.W. Heinz, M. Martinez, J. Noronha, and MS, 1408.5646 and 1408.7048]

Gives exact solution in the forward light cone. Below I show the solution for the scaled shear correction.

