

Coarse-grained transport studies about local equilibrium and negative Cooper-Frye

Hannah Petersen July 22, 2015, INT, Seattle

Motivation

- Hybrid transport+hydrodynamics approaches are successfully applied for the description of the dynamics of heavy ion collisions
- There are 2 ad hoc transitions
 - Initial assumption on local equilibration
 - Might not be fulfilled for lower beam energies, smaller systems, larger centralities
 - Final Cooper-Frye sampling/Particlization
 - Negative contributions: How large?
 - Are hydro and transport equivalent?
- In this talk: Investigation of these transitions in coarsegrained transport approach

Evolution of Heavy Ion Reactions

- Initial and final state require non-equilibrium treatment
- Nearly ideal hydrodynamics provides framework for the hot and dense stage of the evolution including a phase transition

Hybrid models achieve realistic description

Hybrid approaches

Transport

Microscopic description of the whole phase-space distribution

Non-equilibrium evolution based on the Boltzmann equation

 $(p^{\mu}\partial_{\mu})f = I_{coll}$ Partonic or hadronic degrees of freedom

Cross-sections are calculable using different techniques

Phase transition?

Hydrodynamics

Macroscopic description

Local equilibrium is assumed

$$\partial_{\mu} T^{\mu\nu} = 0 \quad \partial_{\mu} \left(n u^{\mu} \right) = 0$$

Propagation according to conservation laws

Equation of state is an explicit input

Boundary conditions: Breakdown of equilibrium assumptions?

- Combine the advantages of both approaches
- Successful description from initial to final state

One Event at RHIC Energies

Comparison to Experimental Data

Initial State Transition

based on work with D. Oliinychenko, in preparation

Fluctuating IC from Transport Approaches

- Density profiles are not smooth, but there are local peaks in transverse and longitudinal direction
- Impact parameter fluctuations within one specific centrality class, multiplicity fluctuations and differences in initial geometry
- Event plane **rotation** with respect to reaction plane in the laboratory
- All these effects are averaged out if assuming a smooth symmetric initial density profile

J.Steinheimer et al., PRC 77,034901,2008

Included in dynamical models of the initial state (e.g. a parton cascade, NEXUS/EPOS, UrQMD) or in Glauber or CGC Monte Carlo approaches

Initial Conditions from Dynamical Approaches

• The initial $T^{\mu\nu}$ for ideal hydrodynamics has to be given via:

$$\epsilon(x, y, z), p(x, y, z) \text{ and } n(x, y, z)$$

- Energy deposition model needs to describe final dE_T/dy in pp and A-A correctly
- Granularity is influenced by
 - Shape of the incoming nuclei
 - Distribution of binary collisions
 - Interaction mechanism
 - Degree of thermalization

- Differences in shape and fluctuations need to be quantified
 - Challenge: How is local equilibrium reached so fast?

What is Usually Done?

• To calculate the energy-momentum tensor and four-current from particles a **smearing kernel** (Gaussian) is used:

$$T_{init}^{\mu\nu}(r) = \sum_{i} \frac{p_{i}^{\mu} p_{i}^{\nu}}{p_{i}^{0}} K(\boldsymbol{r} - \boldsymbol{r_{i}}, \boldsymbol{p})$$
$$j_{init}^{\mu}(r) = \sum_{i} \frac{p_{i}^{\mu}}{p_{i}^{0}} K(\boldsymbol{r} - \boldsymbol{r_{i}}, \boldsymbol{p})$$

• Assuming that the resulting tensor has the form for relativistic ideal fluid dynamics, the following equations are solved iteratively

$$\begin{cases} T^{00} = (\epsilon + p)\gamma^2 - p \\ T^{0i} = (\epsilon + p)\gamma^2 \boldsymbol{v} \\ j^0_B = n\gamma \\ p = p_{EoS}(n, \epsilon) \end{cases}$$

 The other option: Solve the eigenvalue problem and decompose the tensor in the Landau frame

Different Approaches

Model	Initial condition	Hydro	Switching criterion	Smearing kernel	Getting $T^{\mu\nu}_{ideal}$
UrQMD hybrid [12]	UrQMD cascade	ideal 3+1D, SHASTA	$t_{CM}[\text{fm/c}] = max(2R\sqrt{\frac{E_{lab}}{2m_N}}, 1.0)$	Gaussian z-contracted	$T^{\mu 0}, j^0$
Skokov-Toneev hybrid [13]	Quark-Gluon- String-Model	ideal 3+1D, SHASTA	t_{CM} such that $S/Q_B = \text{const}$	not mentioned	$T^{\mu 0},j^0$
EPOS [15]	Strings (Regge- Gribov model)	ideal 3+1D	au	Gaussian z-contracted	Landau frame
NeXSPheRIO hybrid [16, 17]	Strings (Regge- Gribov model)	ideal 3+1D, SPH	$\tau = 1 \text{ fm } [18]$	Gaussian in $x, y, \tau \eta$	Landau frame
Gale et al [19]	IP-glasma	viscous 3+1D, MUSIC	$\tau = 0.2 \text{ fm/c} (\sqrt{s_{NN}} = 2.76 \text{ TeV})$	not mentioned	Landau frame
Karpenko hybrid [20]	UrQMD cascade	viscous 3+1D	$ au_{geom}$	Gaussian with σ_{\perp} and σ_{η}	$T^{\mu 0}, j^0$
Pang et al hybrid [21]	AMPT	ideal 3+1D, SHASTA	au	Gaussian with σ_{\perp} and σ_{η}	$T^{\mu 0}, j^0$

Coarse-Grained UrQMD

- Several thousands Au+Au collisions at E_{lab} = 5-160 AGeV beam energy and different centralities
- 2. Calculate $T^{\mu\nu}$ on a space-time grid
- 3. Transform to the Landau rest frame
- Investigate locally two measures of isotropization:
 - Pressure anisotropy:

$$X \equiv \frac{|T_L^{11} - T_L^{22}| + |T_L^{22} - T_L^{33}| + |T_L^{33} - T_L^{11}|}{T_L^{11} + T_L^{22} + T_L^{33}} \ll 1$$

- Off-diagonality: $Y \equiv \frac{3(|T_L^{12}| + |T_L^{23}| + |T_L^{13}|)}{T_L^{11} + T_L^{22} + T_L^{33}} \ll 1$
- X,Y \leq 0.3 \rightarrow viscous hydrodynamics applicable

Time Evolution

0.1 0.2 0.3

0.4

- E_{lab} = 80A GeV, b=6 fm, pressure anisotropy
- After initial collisions anisotropy develops minimum over a large region in space
- Later stages: Rise due to resonance decays

Number of Events

- In single events only small amount of the area is isotropic
- Off-diagonality is small in more than 80 % of area

Dependence on Gaussian Width

 Estimate systematic error associated with smearing parameter

• The qualitative pattern does not change

Centrality Dependence

 Isotropization time deviates from geometrical overlap criterion for higher beam energies

• Centrality dependence is weaker than expected from geometry $t_0(b) = t_0(b = 0) + \frac{R}{\gamma v}(1 - \sqrt{1 - (b/2R)^2})$

Cooper-Frye - Negative Contributions

based on work with D. Oliinychenko and P. Huovinen, Phys.Rev. C91 (2015) 2, 024906

Freeze-out Procedure

- Deconfinement/Confinement transition happens through equation of state in hydrodynamics
- Transition from hydro to transport when temperature/energy density is smaller than critical value
- Particle distributions are generated according to the Cooper-Frye formula $E\frac{dN}{d^3p} = \int_{\sigma} f(x,p)p^{\mu}d\sigma_{\mu}$
- Same EoS on both sides of the transition hypersurface
- Rescatterings and final decays calculated via hadronic cascade (UrQMD)

INT S

- Separation of chemical and kinetic freeze-out is taken into account
- Large viscosity in hadron gas stage!

Hypersurface Finding

- Cornelius: 3D hypersurface in 4 dimensions
- Constant energy density
- Avoiding holes and doublecounting
- Applicable as a subroutine
 - Input: 16-tuples of spatiotemporal information
 - Output: Hypersurface
 vectors and interpolated
 thermodynamic quantities

P. Huovinen, H.P. arXiv: 1206.3371 Fortran and C++ subroutines, cornelius, implementations of this algorithm in 3D and 4D, are available at <u>https://karman.physics.purdue.edu/OSCAR</u>

Negative Contributions

 $d\sigma_{\mu}$ - normal 4-vector $u_{\mu} = (\gamma, \gamma \overrightarrow{v})$ - 4-velocity T - temperature μ - chemical potential

- Definition:
 - Particles outward: $p^{\mu}d\sigma_{\mu} > 0$
 - Particles inward: $p^{\mu}d\sigma_{\mu} < 0$
- Different options:
 - Account for feedback in hydro
 - K. Bugaev, Phys Rev Lett. 2003; L. Czernai, Acta Phys. Hung., 2005 Account effectively by weights in transport

S. Pratt, Phys.Rev. C89 (2014) 2, 024910

- Neglect them and violate conservation laws
- Systematic study of the size of negative contributions by comparison to actual transport

Parameter Sensitivities

 Comparison of coarse-grained transport with Cooper-Frye calculation vs actual particles

- No significant dependence on cell sizes
- Saturation for large enough number of events
- Dependence on σ due to **smearing** of surface velocities

Cross-Check Energy Conservation

Energy is conserved at all times on hypersurface

Hypersurfaces

 Iso-energy density hypersurfaces (ε_c = 0.3 GeV/fm³) represent distributions in temperature

Mass Dependence

• Rapidity spectra of pions, kaons and protons at $E_{lab} = 40A$ GeV central Au+Au collisions

- Negative contributions are negligible for more massive particles
 - Concentrate on pions in the following

Energy Dependence

- Maximum at Elab~25 AGeV, decreasing at higher energies
- Actual particles are always less likely to fly inward

• Negative contributions are larger at small p_{T}

Switching Criterion

 Shape of the negative contributions as a function of rapidity depends slightly on switching criterion

Centrality Dependence

- Ratio of surface to volume emission varies with centrality
- Due to larger relative flow velocities the negative contributions are larger in more central events

Summary

- Hybrid approaches based on relativistic hydrodynamics and hadron transport provide realistic dynamical description
- Two transitions have been studied systematically using coarsegrained UrQMD calculations
- Initial switching transition:
 - Off-diagonality is small for a large fraction of the system in the coarse-grained scenario, event by event larger effect
 - Isotropy (according to the weak criterion) is reached at times at maximum 3 fm/c larger than geometrical overlap criterion
- Cooper Frye negative contributions:
 - Decrease for higher masses and higher beam energies
 - Largest at low transverse momentum
 - Always smaller for actual particles in transport calculation
- Is dynamic switching between hydro and transport feasible?

Influence of Statistics

 From N random thermal pions, the effect of finite particle statistics on the deviations of the energy-momentum tensor from equilibrium can be estimated

