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History of longitudinal fluctuation studies

Definition of longitudinal fluctuations

Longitudinal

Spatial rapidity ηs = 1
2

ln t+z
t−z at initial state

Pseudo rapidity η = 1
2

ln E+Pz
E−Pz at final state.

Longitudinal fluctuations

Energy density(fluid velocity) fluctuations along ηs

Multiplicity (flow anisotropy + event plane) fluctuations along η
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History of longitudinal fluctuation studies

Historical study of longitudinal fluctuations

Petersen, Hannah et al.
PRC84 (2011) 054908

LongGang, Pang et al.
PRC86 (2012) 024911
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History of longitudinal fluctuation studies

Twist as one kind of longitudinal fluctuations

Twist of Event planes 

P Bozek et al, 

PRC 83, 034911 (2011)

J Jia et al, 

PRC 90, 034915 (2014)

rapidity

Hydrodynamics , torqued fireball Transport

•Statistical fluctuation in the transverse distribution

• the asymmetry in the emission profiles of 

forward(backward) moving wounded nucleons
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Ways to study longitudinal fluctuations Decorrelation of anisotropic flows along longitudinal

Decorrelations with big ∆η gap

Bozek Piotr’s method

cos(k∆FB)2 =
< exp (ik(φF − φB)) >√

< exp (ik(φF1 − φF2)) >< exp (ik(φB1 − φB2)) >
(1)

Kai Xiao’s method

rn(∆η = 2ηa) =< cos (Ψn(−ηa)−Ψn(ηa)) > /(Rn(ηa)Rn(−ηa)) (2)

Rn is the resolution factor to remove the effect of finite multiplicity.

Our method based on Qn vector (LongGang, Pang et.al PRC91 (2015)4, 044904)

Qn =
1

N

N∑
j=1

exp(inφj) = Vn exp (inΨn) (3)

where φj = arctan(py/px).

rn(∆η = 2ηa) =
< Qn(ηa)Q∗n(−ηa) >√
< Q2

n(ηa) >< Q2
n(−ηa) >

(4)

This method captures both anisotropic fluctuations and event plane angle
fluctuations.
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Ways to study longitudinal fluctuations Decorrelation of anisotropic flows along longitudinal

CMS methods (Wei, Li et. al arXiv:1503.01692)

TrackerHF- HF+

η

a a b

5.2-5.2 3.0-3.0 2.4-2.4 0

)bη,aη(∆nV

)bη,aη(-∆nV

)bη,aη(∆nV
)bη,aη(-∆nV

 ≡) bη,aη(nr

rn(∆η) =
< Qn(−ηa)Q∗n(ηb) >

< Qn(ηa)Q∗n(ηb) >
(5)

If ηb is far away from ηa, no short range correlation.
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Decorrelation of anisotropic flows along η

Model: Hydro with AMPT(A Multiple-Phase Transportation) initial
condition

Number of strings = Number of
participants (Lund string model)

Number of mini-jets per binary
collision = Poisson distribution with
mean given by mini-jet cross section
(depends on PDF with shadowing,
Pythia).

Number of participants and binary
collisions from MC Glauber model

3+1D hydrodynamic model
Effects of initial flow velocity fluctuation in event-by-event (3+1)D hydrodynamics. PRC86 (2012) 024911

Analytical and numerical Gubser solutions of the second-order hydrodynamics (PRD91 (2015)7, 074027
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Decorrelation of anisotropic flows along η

Centrality classes
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Ncharge ∝ Npartons.
Use number of initial partons to determine the centrality classes in Pb+Pb
collisions.
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Decorrelation of anisotropic flows along η

Multiplicity distribution along η
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Event-by-event hydro with AMPT initial condition can describe Multiplicity
distribution along η.
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Decorrelation of anisotropic flows along η

Results (n=2), 200 events for each centrality
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No splitting in event-by-event hydro

Non-linear shape for 0− 5%.
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Decorrelation of anisotropic flows along η

Results (n=3), 200 events for each centrality
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Very weak centrality dependence (non trivial).
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Decorrelation of anisotropic flows along η

Twist or pure fluctuations
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twist of event plane angles means: monotonic behavior of Ψn(η)

Ψn(η) can be: linear twist, non-linear twist, pure fluctuations
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Decorrelation of anisotropic flows along η

Twist or pure fluctuations of event plane angles
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Standard deviation for non-linear coefficients is small for Ψ3(η).

Standard deviation for non-linear coefficients is big for Ψ2(η) in most central
collisions.
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Decorrelation of anisotropic flows along η Longitudinal decorrelation in initial conditions

Definition of longitudinal decorrelation in initial conditions

Eccentricity in coordinate space

εn(ηs) = εn exp(iΨn) =

∫ rmax
0

∫ 2π

0
rnε(r, φ, ηs)e

inφrdrdφ∫ rmax
0

∫ 2π

0
rnε(r, φ, ηs)rdrdφ

where r is the transverse distance from the mass center.

Decorrelation along ηs

rn(ηas , η
b
s) =

〈
εn(−ηas )ε∗n(ηbs)

〉
〈εn(ηas )ε∗n(ηbs)〉
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Decorrelation of anisotropic flows along η Longitudinal decorrelation in initial conditions

Decorrelation at initial state

Initial state decorrelation
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Good centrality dependence for r2 from initial state decorrelation.

Hydro evolution is important for (3rd order).

Not apple to apple comparison.
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Decorrelation of anisotropic flows along η Longitudinal decorrelation in initial conditions
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Decorrelation of anisotropic flows along η Effect of longitudinal fluctuations and decorrelation

Use twist as an example

Aligned Twisted

vn is suppressed in present of longitudinal fluctuations or twist

E
d3N

d~p3
=

1

2π

d2N

dY pT dpT dφ

(
1 + 2

∞∑
1

vn cos(nφ(Y ))

)
(6)

vtwist
n =

1

2

∫ 1

−1
dY
∫ π
−π dφ cos(nφ)E d3N

d~p3∫ 1

−1
dY
∫ π
−π dφE

d3N
d~p3

(7)

= vn
sin(na)

na
(8)

where linear twist of event plane angles φ(Y ) = φ+ aY is assumed, and ΨRP is set to
0 for simplicity.
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Decorrelation of anisotropic flows along η Effect of longitudinal fluctuations and decorrelation

The suppression of anisotropic flows from twist
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Effect of twist on anisotropic flows
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Bigger a for Ψ2(η) than Ψ3(η) may explain why v3 > v2 in most central
collisions.

From page 14, a ≈ 0.22 for 2nd order and a ≈ 0.07 for 3rd order.

vtwist2 /v2 ≈ 0.968 and vtwist3 /v3 ≈ 0.99.
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Decorrelation of anisotropic flows along η Effect of longitudinal fluctuations and decorrelation

Effect of longitudinal fluctuations and decorrelations

Effect of hydrodynamic expansion

Aligned Twisted

Hydro evolution with twist

No fluctuation: the eccentricity at each slice is not affected by hydro expansion.

With longitudinal fluctuation: the eccentricity at each rapidity slice is reduced
by hydro expansion along longitudinal direction.
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Conclusion

Conclusion

Very good agreement between event-by-event hydro and CMS measurements

The decorrelation in momentum space comes from fluctuations in coordinate
space.

Hydro evolution is important to transfer initial state decorrelations to final state.

The suppression of anistropic flows from twist equals to sin(na)/(na).

Bigger v3 than v2 in most central collisions may come from longitudinal
fluctuations or (twist).

Outlook

Hydro evolution increases long range correlation.

The sensitivity of r2 and r3 to different strings
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Conclusion backup

Effect of Gaussian smearing
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Conclusion backup

Model: 3+1D hydrodynamics on GPU

Smearing on GPU to get initial conditions 10s vs 2-3 minutes

Hydro evolution on GPU to get bulk information 50s vs 1 hour

Freeze out hyper-surface finding on CPU 1s

Smooth spectral calculations on GPU 2.5m on K20 vs 6-8 hours

Resonance decay on GPU 2m on K20 vs 30-40 miniutes
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