Understanding non-linear hydrodynamic response in HI collisions via flow correlations

Soumya Mohapatra Columbia University

COLUMBIA UNIVERSITY

INT workshop 2015

Introduction

- Initial spatial fluctuations of nucleons lead to higher moments of deformations in the fireball, each with its own orientation.
- The spatial anisotropy is transferred to momentum space by collective flow.

Introduction

- Initial spatial fluctuations of nucleons lead to higher moments of deformations in the fireball, each with its own orientation.
- The spatial anisotropy is transferred to momentum space by collective flow.

Origin of the flow correlations-I

Representation of flow vector: $v_n \equiv (v_n \cos(n\Phi_n), v_n \cos(n\Phi_n)) \equiv v_n e^{in\Phi_n}$

Hydro response is linear for v_2 and v_3 : $v_n \propto \mathcal{E}_n$ and $\Phi_n \approx \Phi_n^*$ i.e.

 $v_2 e^{i2\Phi_2} \propto \mathcal{E}_2 e^{i2\Phi_2^*}, \ v_3 e^{i3\Phi_2} \propto \mathcal{E}_3 e^{i3\Phi_2^*}$

PhysRevC.84.024911 (Qui & Heinz) PhysRevC.87.054901 (Niemi et al.)

Non-linear terms possible for higher n Eccentricities of initial geometry

$$\begin{split} v_4 e^{i4\Phi_4} &= \alpha_4 \epsilon_4 e^{i4\Phi_4^*} + \alpha_{2,4} \left(\epsilon_2 e^{i2\Phi_2^*}\right)^2 + \dots \\ & \text{Hydrodynamic response to eccentricities} & \text{PhysRevC.85.024908 Gardim et al.} \\ &= \alpha_4 \epsilon_4 e^{i4\Phi_4^*} + \beta_{2,4} v_2^2 e^{i4\Phi_2} + \dots , \end{split}$$

Similarly correlations can occur between three harmonics of different orders:

$$v_5 e^{i5\Phi_5} = \alpha_5 \epsilon_5 e^{i5\Phi_5^*} + \alpha_{2,3,5} \epsilon_2 e^{i2\Phi_2^*} \epsilon_3 e^{i3\Phi_3^*} + \dots$$
$$= \alpha_5 \epsilon_5 e^{i5\Phi_5^*} + \beta_{2,3,5} v_2 v_3 e^{i(2\Phi_2 + 3\Phi_3)} + \dots$$

Origin of the flow correlations-II

Pb+Pb , b_{imp}=10 fm PhysRevC.90.024910 Huo, Jia & SM,

ε₂ and ε₃ are anti-correlated
 at fixed b_{imp} (centrality)

5

Initial geometry effects.

$$v_2 e^{i2\Phi_2} \propto \epsilon_2 e^{i2\Phi_2^*}, \ v_3 e^{i3\Phi_3} \propto \epsilon_3 e^{i3\Phi_3^*}$$

Geometry Correlations = Flow correlations

Event-shape selection

- Select events within same centrality that have different geometries : different ellipticity or triangularity.
- Make geometry bins using integrated v₂ or v₃ measured in Forward detectors
- Measure correlations between flow harmonics ay mid-rapidity

v₂-v₂ correlations : Centrality bins only

- Plot shows low-p_T v₂ intermediate-p_T v₂ correlation as centrality varies
- See non-trivial dependence with centrality (boomerang-curve),
- Indicates that viscous correction larger in peripheral events

$v_2 - v_2$ correlations : q_2 -bins

- Now for each centrality binning in event geometry (ellipticity) as well
- Saw non-trivial dependence with centrality (boomerang),
 - but within one centrality dependence is linear!
- Indicates that viscous correction mostly controlled by system size, not shape!

$v_3 - v_3$ correlations : q_3 -bins

Same conclusions for $v_3 - v_3$ correlations when binning in event triangularity

$v_3 - v_2$ correlations : q_2 -bins

- See anti-correlation between v₂ and v₃ at fixed centrality!
- Initial geometry effect?

v₃-v₂ correlations : Glauber & CGC comparison

11

models

$$(\varepsilon_3 - \varepsilon_2)$$
 correlation $\propto (v_3 - v_2)$ correlation

- See good agreement in most centralities but some deviation in (0-5)% central events
- Measurements can constrain initial geometry models
- Lines are linear fits $v_3 = kv_2 + v_3^0$

$v_4 - v_2$ correlations : q_2 -bins

12

- Centrality 0-65%, no q selection $>_4$ Clear non-linear correlations seen 0.03 ATLAS Preliminary in v_4 - v_2 case: upward bending of v_4 $\sqrt{s_{NN}}$ =2.76 TeV L_{int} = 7 µb⁻¹ at large v_2 . 0.02⊢Pb+Pb Can parameterize v_{4} into two components, one that is correlated Centrality intervals to v_2 and one that is independent with q_selection: 0.01 **→** 0-5% 30-35% <u>10-15%</u> 40-45% $v_4 e^{i4\Phi_4} = c_0 e^{i\Phi_4^*} + c_1 \left(v_2 e^{i2\Phi_2}\right)^2$ l∆ηl>2 - 20-25% **—** 50-55% $0.5 < p_{-} < 2 \text{ GeV}$ → 60-65% $\Rightarrow v_4 = \sqrt{c_0^2 + c_1^2 v_2^4}$ 0.15 0.050.1 ۷,
- The c_0 component is driven by ε_4 while the c_1 component is driven by ε_2 .

v₄-v₂ correlations : linear & non-linear components

13

··· MC-KLN

$$v_4 = \sqrt{c_0^2 + c_1^2 v_2^4}$$

- Also compare correlations to (rescaled) ε₄-ε₂ correlations calculated in Glauber & CGC models
 - Fits work quite well, but initial geometry models do not
 - Indicate that non-linear dynamical mixing produces these correlations

v₄-v₂ correlations : linear & non-linear components

14

Each N_{part} point corresponds to 5% centrality bin

Correlation between Φ_2 and Φ_4

$$\left\langle \cos 4 \left(\Phi_2 - \Phi_4 \right) \right\rangle$$

PhysRevC.90.024905

- Very different from correlations in initial state (Glauber)
- What happens if we include final-state-interactions?

Correlation between Φ_2 and Φ_4

- Correlations reproduced in AMPT model
 - AMPT results from PhysRevC.88.024909 (Bhalerao et. al.)
 - Model tuned to reproduce v_n also reproduces EP correlations
 - Also see: j.physletb.2012.09.030 (Qui & Heinz) and j.nuclphysa.2013.02.025 (Teaney & Yan)

v₄-v₂ correlations : comparison to EP correlations

17

The non-linear & linear components from EP correlations are obtained as:

$$v_4^{\text{NL}} = v_4 \left\langle \cos 4(\Phi_2 - \Phi_4) \right\rangle, \quad v_4^{\text{L}} = \sqrt{v_4^2 - (v_4^{\text{NL}})^2}$$

- The results from the two procedures compare quite well
- In most central cases almost all v₄ is uncorrelated with v₂
- Correlated component gradually increases and overtakes linear component as N_{part}~120

$v_5 - v_2$ correlations : q_2 -bins

- Fit v₅-v₂ correlation with above functional form to extract linear & non
 - linear components
- Comparison to Glauber & CGC models also shown, don't do a good job in describing data

$v_5 - v_3$ correlations : q_3 -bins

Now measure v₅-v₃ correlations, Parameterize as:

$$v_5 = \sqrt{c_0^2 + (c_1 v_2 v_3)^2} \qquad \left(\varepsilon_2 \varepsilon_3 \to v_5\right)$$

- data — Fit: $v_5 = \sqrt{c_0^2 + (c_1 v_2 v_3)^2}$ — Glauber - - MC-KLN
- Fit v₅-v₂ correlation with above functional form to extract linear & nonlinear components

Three-plane : "2-3-5" correlation

$$v_5 e^{i5\Phi_5} = \alpha_5 \varepsilon_5 e^{i5\Phi_5^*} + \beta_{2,3,5} v_2 e^{i2\Phi_2} v_3 e^{i3\Phi_3}$$

• $(2\Phi_2 + 3\Phi_3 - 5\Phi_5)$ correlation is non-zero

Glauber geometry does not match the correlation

Three-plane : "2-3-5" correlation

Glauber geometry does not match the correlation

21

v₅-v₂ correlations : comparison to EP correlations

22

- Compare linear & non-linear components from this analysis to EP correlation results
- The non-linear & linear components from EP correlations are obtained as:

$$v_5^{\text{NL}} = v_5 \left\langle \cos(2\Phi_2 + 3\Phi_3 - 5\Phi_5) \right\rangle, \quad v_5^{\text{L}} = \sqrt{v_5^2 - (v_5^{\text{NL}})^2}$$

$v_5 - v_{2/3}$ correlations : comparison to EP correlations ²³

- Compare linear & non-linear components from this analysis to EP correlation results
- The non-linear & linear components from EP correlations are obtained as:

$$v_5^{\text{NL}} = v_5 \left\langle \cos(2\Phi_2 + 3\Phi_3 - 5\Phi_5) \right\rangle, \quad v_5^{\text{L}} = \sqrt{v_5^2 - (v_5^{\text{NL}})^2}$$

- Φ_2 and Φ_3 weakly correlated, but both strongly correlated with Φ_6 .
- They show opposite centrality dependence
 - v_6 dominated by non-linear contribution: v_2^3 , v_3^2 ?

Final state interactions reproduce the correlations

R. S. Bhalerao, J.-Y. Ollitrault, and S. Pal, Phys. Rev.C 88, 024909

25

Three-plane : "2-4-6" correlation

correlations are weak (< few %)

Three-plane : "2-3-4" correlation

AMPT

28

ε_n scaling of linear components

- The v_n/rms-ε_n ratios are shown as a function of centrality
- For v₄ & v₅, the ratio is shown for the linear component as well as the total v_n.
- The linear component show greater variation
- indicates larger viscous dampening for higher harmonics, with decreasing centrality.

Flow-correlations also constrain η/s , initial geometry³⁰

j.physletb.2012.09.030: Qui & Heinz

Alternative parameterization of initial geometry³¹

• Typically initial geometry in Heavy-Ion collisions is quantified by the eccentricities ε_n :

$$\mathcal{E}_{n}e^{in\Phi_{n}}=-rac{\left\langle r^{n}e^{in\phi}
ight
angle }{\left\langle r^{n}
ight
angle }$$

- In a recent paper (arXiv:1206.1905) Teaney and Yan have pointed out that it might be better to quantify the initial geometry by cumulants c_n
- The cumulants are related to the eccentricities by:

Is this parameterization better?

Correlations In initial geometry

See also arXiv:1312.3689 Teaney & Yan

Compare correlation between cumulants to the ATLAS EP correlations

- 1. Do much better job than the correlations between the ϵ_{n}
- 2. Indicative that when we define initial geometry in terms of ϵ_n , we have to take into consideration a large degree on non-linear response in generation of the v_n

 $v_n e^{i\Phi_n} \propto \varepsilon_n e^{i\tilde{\Phi}_n} + \text{significant non-linear contribution from } \varepsilon_m (m < n)$ $v_n e^{i\Phi_n} \propto c_n e^{i\tilde{\Phi}_n} + \text{small non-linear contribution from } c_m (m < n)$

Summary

Measurements:

- Event-plane correlations
- Correlations between v₂/v₃ and v_m, m=2-5.

v_n(p_T^a)-v_n(p_T^b) correlations indicate viscous effects controlled by system size

- Not system shape!!!
- See small anti-correlation between magnitudes of v₂ & v₃
 - Initial geometry effect, reasonably weak described by CGC & Glauber models
- See strong correlation between v₄-v₂ and v₅-v₂.
 - Indicate non-linear response to initial geometry (not described by initial geometry models)
 - Extracted linear & non-linear contributions by two component fits
 - Correlated with v₂ incase of v₄-v₂ correlation
 - Correlated with both v₃ and v₂ incase of v₅-v₂ correlation
- Results show good agreement with independent EP correlation results
- Dependence of the linear components on the rms-ε_n were also studied
 - Stronger damping seen for higher order harmonics as expected from hydrodynamics
- v_n-v_m and EP correlations are new flow observables
 - Have much potential in improving our understanding of HI collisions.