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OUTLINE

© Introduction

e Perfect fluidity in nucleus-nucleus collisions

e Similar observation in proton-nucleus collisions
@ Hydrodynamic calculations

e Comparison to existing data
© Proposal for new measurement r,

e Transverse momentum structure of pair correlation
e Predictions
e Comparison to subsequent measurements
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WHAT WE SEE IN A-A COLLISIONS: PAIR CORRELATION
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FLOW IN HEAVY-ION COLLISIONS: PERFECT FLUIDITY

WHAT WE SEE IN A-A COLLISIONS: PAIR CORRELATION
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INTERPRETATION: FLOW

PERFECT FLUIDITY
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INTERPRETATION: FLOW

e Hydro picture: system thermalizes and expands as fluid
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INTERPRETATION: FLOW

e Hydro picture: system thermalizes and expands as fluid
e Particles emitted independently at end of evolution
27 dN

Ndo ™ 14 2v,C0s82¢

YRP
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FLOW IN HEAVY-ION COLLISIONS: PERFECT FLUIDITY

INTERPRETATION: FLOW

e Hydro picture: system thermalizes and expands as fluid
e Particles emitted independently at end of evolution
27 dN

Ndo ™ 14 2v,C0s82¢

e — pair distribution is product of single-particle distributions
ANpairs ~ dN dN

PpadBpb ~ dBpa X o3 pb

—

Pt

YRP
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FLOW IN HEAVY-ION COLLISIONS: PERFECT FLUIDITY

INTERPRETATION: FLOW

e Hydro picture: system thermalizes and expands as fluid
e Particles emitted independently at end of evolution

27 dN
Nds = 14 2v»C0S82¢

e — pair distribution is product of single-particle distributions

deairs (flow) 2
dno x 14 2v,°cos2(A¢)

—

Pt

YRP
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FLOW IN HEAVY-ION COLLISIONS: PERFECT FLUIDITY

FLOW-LIKE CORRELATIONS IN P-A COLLISIONS
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FLOW IN HEAVY-ION COLLISIONS: PERFECT FLUIDITY

FLOW-LIKE CORRELATIONS IN P-A COLLISIONS
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FLOW IN HEAVY-ION COLLISIONS: PERFECT FLUIDITY

FLOW IN HEAVY-ION COLLISIONS

e Validity of hydrodynamics requires separation of scales
e — should break down when system size becomes too small
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FLOW IN HEAVY-ION COLLISIONS: PERFECT FLUIDITY

FLOW IN HEAVY-ION COLLISIONS

Validity of hydrodynamics requires separation of scales

— should break down when system size becomes too small

Do the observed pA correlations indicate collective behavior?
Can proton-nucleus collision behave as a fluid?

MATT Luzum (USC) FLOW IN PA 07/15/2015 6/29



FLOW IN HEA!

MEASURING Vj,

PERFECT FLUIDITY
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MEASURING V,
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PERFECT FLUIDITY

Fluctuations are important!
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FLOW IN HEAVY-ION COLLISIONS:
MEASURING Vj,

PERFECT FLUIDITY

Fluctuations are important!

=1+ 2v,cosn(¢ — n)
n=1
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FLOW IN HEAVY-ION COLLISIONS:
MEASURING Vj,

PERFECT FLUIDITY

Fluctuations are important!

=1+ inncos n(¢ — v¥n)
n=1
<<ein(¢1 _¢2)>pairs> _ Vn{2}2
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FLOW IN HEAVY-ION COLLISIONS:
MEASURING Vj,

PERFECT FLUIDITY

Fluctuations are important!

=1+ 2v,cosn(¢ — n)
n=1

<<ein(¢1 —¢2)>pairs> = v,{2}? (flow) <

v,§>
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FLOW IN HEAVY-ION COLLISIONS:
MEASURING Vj,

PERFECT FLUIDITY

Fluctuations are important!

=1+ 2v,cosn(¢ — n)
n=1
<<ein(¢1 _¢2)>pairs> _ Vn{2}2 (ﬂ;w) <
<<ein(¢1 toe—do—d4)) d>

v,§>
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MEASURING Vj,

FLOW IN HEAVY-ION COLLISIONS:

PERFECT FLUIDITY

Fluctuations are important!

=1+ 2v,cosn(¢ — n)
n=1
<<ein(¢1 _¢2)>pairs> _ Vn{2}2 (ﬂ;w) <

v,§>
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FLOW IN P-PB COLLISIONS: HYDRODYNAMIC CALCULATIONS

STRATEGY

© Explore plausibility:
e Perform hydrodynamic calculations of p-Pb collisions
e Look for generic trends
e Is it possible to naturally describe (simultaneously) existing data
with a reasonable model?

@ Look for “smoking gun”:

e Try to find more rigorous test of collectivity
e Can we kill flow as a possible explanation for data?
e Make predictions (and compare to subsequent measurements)

MATT Luzum (USC) FLOW IN PA 07/15/2015 8/29



FLOW IN P-PB COLLISIONS: HYDRODYNAMIC CALCULATIONS

DETAILS OF HYDRODYNAMIC CALCULATIONS

Start with traditional Glauber participant model:

(Animation from Igor Kozlov)
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HYDRODYNAMIC CALCULATIONS
DETAILS OF HYDRODYNAMIC CALCULATIONS

Start with traditional Glauber participant model:

Each ‘participant’ contributes entropy as transverse Gaussian

o =0.05fm

(Animation from Igor Kozlov)
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HYDRODYNAMIC CALCULATIONS
DETAILS OF HYDRODYNAMIC CALCULATIONS

Start with traditional Glauber participant model:

Each ‘participant’ contributes entropy as transverse Gaussian

o=0.10fm

(Animation from Igor Kozlov)
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FLOW IN P-PB COLLISIONS: HYDRODYNAMIC CALCULATIONS

DETAILS OF HYDRODYNAMIC CALCULATIONS

Start with traditional Glauber participant model:
Each ‘participant’ contributes entropy as transverse Gaussian

o =0.15fm

(Animation from Igor Kozlov)
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DETAILS OF HYDRODYNAMIC CALCULATIONS

Start with traditional Glauber participant model:

Each ‘participant’ contributes entropy as transverse Gaussian

o =0.20 fm

(Animation from Igor Kozlov)
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DETAILS OF HYDRODYNAMIC CALCULATIONS

Start with traditional Glauber participant model:

Each ‘participant’ contributes entropy as transverse Gaussian

o =0.251m

(Animation from Igor Kozlov)
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HYDRODYNAMIC CALCULATIONS
DETAILS OF HYDRODYNAMIC CALCULATIONS

Start with traditional Glauber participant model:

Each ‘participant’ contributes entropy as transverse Gaussian

o = 0.30 fm

(Animation from Igor Kozlov)
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HYDRODYNAMIC CALCULATIONS
DETAILS OF HYDRODYNAMIC CALCULATIONS

Start with traditional Glauber participant model:

Each ‘participant’ contributes entropy as transverse Gaussian

o =0.351fm

(Animation from Igor Kozlov)
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HYDRODYNAMIC CALCULATIONS
DETAILS OF HYDRODYNAMIC CALCULATIONS

Start with traditional Glauber participant model:

Each ‘participant’ contributes entropy as transverse Gaussian

o =040 fm

(Animation from Igor Kozlov)
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FLOW IN P-PB COLLISIONS:

HYDRODYNAMIC CALCULATIONS
DETAILS OF HYDRODYNAMIC CALCULATIONS

Start with traditional Glauber participant model:

Each ‘participant’ contributes entropy as transverse Gaussian

o=045fm

(Animation from Igor Kozlov)
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HYDRODYNAMIC CALCULATIONS
DETAILS OF HYDRODYNAMIC CALCULATIONS

Start with traditional Glauber participant model:

Each ‘participant’ contributes entropy as transverse Gaussian

o =0.50 fm

(Animation from Igor Kozlov)
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HYDRODYNAMIC CALCULATIONS
DETAILS OF HYDRODYNAMIC CALCULATIONS

Start with traditional Glauber participant model:

Each ‘participant’ contributes entropy as transverse Gaussian

o=055fm

(Animation from Igor Kozlov)
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HYDRODYNAMIC CALCULATIONS
DETAILS OF HYDRODYNAMIC CALCULATIONS

Start with traditional Glauber participant model:

Each ‘participant’ contributes entropy as transverse Gaussian

o =0.60 fm

(Animation from Igor Kozlov)
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HYDRODYNAMIC CALCULATIONS
DETAILS OF HYDRODYNAMIC CALCULATIONS

Start with traditional Glauber participant model:

Each ‘participant’ contributes entropy as transverse Gaussian

o =0.651fm

(Animation from Igor Kozlov)
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HYDRODYNAMIC CALCULATIONS
DETAILS OF HYDRODYNAMIC CALCULATIONS

Start with traditional Glauber participant model:

Each ‘participant’ contributes entropy as transverse Gaussian

o =0.70 fm

(Animation from Igor Kozlov)
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FLOW IN P-PB COLLISIONS:

HYDRODYNAMIC CALCULATIONS
DETAILS OF HYDRODYNAMIC CALCULATIONS

Start with traditional Glauber participant model:

Each ‘participant’ contributes entropy as transverse Gaussian

o=0.751fm

(Animation from Igor Kozlov)
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FLOW IN P-PB COLLISIONS: HYDRODYNAMIC CALCULATIONS

DETAILS OF HYDRODYNAMIC CALCULATIONS

GLAUBER + NBD

Entropy contribution of each participant chosen according to Negative
Binomial Distribution
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FLOW IN P-PB COLLISIONS: HYDRODYNAMIC CALCULATIONS

DETAILS OF HYDRODYNAMIC CALCULATIONS

GLAUBER + NBD

Entropy contribution of each participant chosen according to Negative
Binomial Distribution
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FLOW IN P-PB COLLISIONS:

HYDRODYNAMIC CALCULATIONS
DETAILS OF HYDRODYNAMIC CALCULATIONS
Without NBD:

o =040 fm
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FLOW IN P-PB COLLISIONS: HYDRODYN CCA ATIONS

DETAILS OF HYDRODYNAMIC CALCULATIONS

o =040 fm

With NBD:
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FLOW IN P-PB COLLISIONS: HYDRODYNAMIC CALCULATIONS

DETAILS OF HYDRODYNAMIC CALCULATIONS

GLAUBER + RAPIDITY DEPENDENCE
Choose asymmetric contribution from each participant

L e e B B
; © ATLAS Preliminary Loeeteses 1
ol o' 3
©op+PbL =1ub’ & 0% |
r - o ]
oo Sy =5.02TeV ‘.’.. 5%
"% Pb
& 510%
oo ]
oo .“..m..
ooe S 10-20% ]
ceveresteoee .
e 20-30%
30-40% 1
e
40-60%
1of- 60-90% — N
-10 -5 0 5 10
o b b b spatialrapidity
i 0 i
n
(ATLAS arXiv:1403.5738) (Bozek, Wyskiel arXiv:1002.4999)

MATT Luzum (USC) FLOW IN PA 07/15/2015 12/29



FLOW IN P-PB COLLISIONS: HYDRODYNAMIC CALCULATIONS

DETAILS OF HYDRODYNAMIC CALCULATIONS

GLAUBER + RAPIDITY DEPENDENCE
Choose asymmetric contribution from each participant
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FLOW IN P-PB COLLISIONS:

RESULTS: V>

o =0.4fm, n/s=0.08

HYDRODYNAMIC

CALCULATIONS
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RESULTS: V>

FLow IN p-PB CO!

o =0.4-0.8 fm, /s = 0.0-0.08

CALCULATIONS
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FLOW IN P-PB COLLISIONS: HYDRODYNAMIC CALCULATIONS

RESULTS: V>

o =0.4-0.8 fm, /s = 0.0-0.08, bulk viscosity )

50 100 150 200
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RESULTS: V>

o =0.4-0.8 fm, /s = 0.0-0.08 ]

50 100 150 200
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FLOW IN P-PB COLLISIONS: HYDRODYNAMIC CALCULATIONS

RESULTS: V>

o =0.4-0.8 fm, /s = 0.0-0.08, bulk viscosity J
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FLOW IN P-PB COLLISIONS: HYDRODYNAMIC CALCULATIONS

RESULTS: v2{2}(p7)

o =0.4-0.8 fm, /s = 0.0-0.08 )
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FLOW IN P-PB COLLISIONS: HYDRODYNAMIC CALCULATIONS

RESULTS: v2{2}(p7)

o =0.4-0.8 fm, /s = 0.0-0.08 )
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FLOW IN P-PB COLLISIONS: HYDRODYNAMIC CALCULATIONS

RESULTS: v3{2}

o =0.4-0.8 fm, n/s = 0.0-0.08 J
005 e Np—
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FLOW IN P-PB COLLISIONS:

RESULTS: v3{2}

HYDRODYNAMIC CALCULATIONS

o =0.4-0.8 fm, /s = 0.0-0.08, bulk viscosity
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FLOW IN P-PB COLLISIONS: HYDRODYNAMIC CALCULATIONS

RESULTS: (pr)

o =0.4-0.8 fm, n/s = 0.0-0.08 J
20
xf Kf p,p
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FLOW IN P-PB COLLISIONS: HYDRODYNAMIC CALCULATIONS

RESULTS: v3{2}

v3{2} the same in p-Pb and Pb-Pb:
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FLOW IN P-PB COLLISIONS: HYDRODYNAMIC CALCULATIONS

HOW DO WE UNDERSTAND V3 IN PA VS. AA?

We compare collisions with the same multiplicity.
A naive expectation:

e dN/dn < Npart = equal Npart

@ e3 x 1/y/Npat = equal e3
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HOW DO WE UNDERSTAND V3 IN PA VS. AA?

We compare collisions with the same multiplicity.
A naive expectation:

e dN/dn < Npart = equal Npart

@ e3 x 1/y/Npat = equal e3

40F >

50 100 150 200
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FLOW IN P-PB COLLISIONS: HYDRODYNAMIC CALCULATIONS

HOW DO WE UNDERSTAND V3 IN PA VS. AA?

We compare collisions with the same multiplicity.
A naive expectation:

o dN/dn x Npar = equat-Npgrr
@ 3 X 1/\/Npart — equal €3

40F >

50 100 150 200
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FLOW IN P-PB COLLISIONS: HYDRODYNAMIC CALCULATIONS

HOW DO WE UNDERSTAND V3 IN PA VS. AA?

We compare collisions with the same multiplicity.
A naive expectation:
] dN/d?’] X Npart — eqﬂ’a‘l’*NWf

40F ]

50 100 150 200
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FLOW IN P-PB COLLISIONS: HYDRODYNAMIC CALCULATIONS

HOW DO WE UNDERSTAND V3 IN PA VS. AA?

We compare collisions with the same multiplicity.
A naive expectation:
] dN/d?’] X Npart — eqﬂ’a‘l’*NWf
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FLOW IN P-PB COLLISIONS: HYDRODYNAMIC CALCULATIONS

HOW DO WE UNDERSTAND V3 IN PA VS. AA?

We compare collisions with the same multiplicity.
A naive expectation:

o dN/dUOC Npart — equaHV,Wf

o e3 x 1/y/Npat = targerpPbegz
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PREDICTED SIGNATURE OF FLOW: TRANSVERSE MOMENTUM STRUCTURE OF PAIR CORRELATIONS

INTERIM CONCLUSIONS

e Hydrodynamic calculations can reasonably describe many
observables in high multiplicity p-Pb collisions

e Collective flow remains as a plausible explanation
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PREDICTED SIGNATURE OF FLOW: TRANSVERSE MOMENTUM STRUCTURE OF PAIR CORRELATIONS

INTERIM CONCLUSIONS

e Hydrodynamic calculations can reasonably describe many
observables in high multiplicity p-Pb collisions

e Collective flow remains as a plausible explanation

Can we come up with a new measurement that will act as a more strict
test of collectivity?
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PREDICTED SIGNATURE OF FLOW: TRANSVERSE MOMENTUM STRUCTURE OF PAIR CORRELATIONS

MOMENTUM STRUCTURE OF PAIR CORRELATION

Two-particle correlation is a multidimensional matrix:

<cos n(¢? — ¢b)> = f(p%,n% P, n°)
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MOMENTUM STRUCTURE OF PAIR CORRELATION

Two-particle correlation is a multidimensional matrix:
(cos n(s® — 6°)) = H(p3. 1% P3,1°)

e Most “flow” measurements v, probe momentum of at most one
particle of the pair
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MOMENTUM STRUCTURE OF PAIR CORRELATION

Two-particle correlation is a multidimensional matrix:
(cos n(s® — 6°)) = H(p3. 1% P3,1°)

e Most “flow” measurements v, probe momentum of at most one
particle of the pair

e — There is more information available!
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PREDICTED SIGNATURE OF FLOW: TRANSVERSE MOMENTUM STRUCTURE OF PAIR CORRELATIONS

MOMENTUM STRUCTURE OF PAIR CORRELATION

Two-particle correlation is a multidimensional matrix:
(cos n(s® — 6°)) = H(p3. 1% P3,1°)

e Most “flow” measurements v, probe momentum of at most one
particle of the pair

e — There is more information available!

e Hydrodynamic behavior imposes constraints on the momentum
structure of the correlation |
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PREDICTED SIGNATURE OF FLOW: TRANSVERSE MOMENTUM STRUCTURE OF PAIR CORRELATIONS

e In the flow picture, particles are emitted according
to an underlying probability (which differs from event to event):

27 dN > -
S V/ —in¢
N do n_z_:w n®
Vn _ {e—inqS} _ Vnein‘»lln
deairs dN

dN .
d3pad3pb - d3pa X d3pb + C(pa7p )

MATT LuzuM (USC) FLOW IN PA 07/15/2015



PREDICTED SIGNATURE OF FLOW: TRANSVERSE MOMENTUM STRUCTURE OF PAIR CORRELATIONS

e In the flow picture, particles are emitted independently according
to an underlying probability (which differs from event to event):

ordN S
W% = n_z_oo Vne
Vn _ {e—inqb} _ Vnein\lln
ANpairs  (flow) dN aN
d3pad3pb = d3pa X d3pb

MATT LuzuM (USC) FLOW IN PA 07/15/2015



PREDICTED SIGNATURE OF FLOW: TRANSVERSE MOMENTUM STRUCTURE OF PAIR CORRELATIONS

e In the flow picture, particles are emitted independently according
to an underlying probability (which differs from event to event):

2w dN > ;
Ndg~ o Ve
n=—o0
Vn _ {e—inqb} _ Vnein\lln
dea/rs (ﬂgw) dN dN
d3pad3pb - d3pa X d3pb
(eN@*=0")y () ¢ ging?y ¢ g-ingPy
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PREDICTED SIGNATURE OF FLOW: TRANSVERSE MOMENTUM STRUCTURE OF PAIR CORRELATIONS

e In the flow picture, particles are emitted independently according
to an underlying probability (which differs from event to event):

n=—o0
Vn _ {e—inqb} _ Vnein\ll,7
deairs (ﬂ;W) ﬂ % ﬂ
a3 pa a3 pb a3 pa a3 pb
{ ein(¢af¢b)} (flow) { ein¢a} { e—imz)b} — va Vrt;)*
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PREDICTED SIGNATURE OF FLOW: TRANSVERSE MOMENTUM STRUCTURE OF PAIR CORRELATIONS

e In the flow picture, particles are emitted independently according
to an underlying probability (which differs from event to event):

2raN S i
Ndg~ 2 Ve

Vn _ {e—inqb} _ Vnein\lln
dea/rs (ﬂgw) dN dN
d3pad3pb - d3pa X d3pb
in(3—aby, (flow) inha _ingb s«
(on(et= )y (12 (gniry 1gmmy  yaye

nN=—o0

— (c0s n(67~6%)) "= (va(p3)va(p}) cos n (Wa(p3) — Wnl(p})) )
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PREDICTED SIGNATURE OF FLOW: TRANSVERSE MOMENTUM STRUCTURE OF PAIR CORRELATIONS

FLOW INEQUALITIES

This expression directly implies a set of inequalities:

Voa(pF,p9) = (ViVR") = (vivz cos n(v; —v7)
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PREDICTED SIGNATURE OF FLOW: TRANSVERSE MOMENTUM STRUCTURE OF PAIR CORRELATIONS

FLOW INEQUALITIES

This expression directly implies a set of inequalities:

<V,§”V,§’*> = <vﬁv,’7’ cos n(Wa — \IJ‘,?)>

VnA(pT7 pT)

= Vha(p%, %)
Von(p2, p2)2 < nA(p"%,p?-)VnA(p%p‘%)

| \/
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PREDICTED SIGNATURE OF FLOW: TRANSVERSE MOMENTUM STRUCTURE OF PAIR CORRELATIONS

FLOW INEQUALITIES

This expression directly implies a set of inequalities:

<V,§”V,§’*> = <vﬁv,’7’ cos n(Wa — \IJ‘,?)>

VnA(pT7 pT)

= Vha(p%, %)
Von(p2, p2)2 < nA(p"%,p?-)VnA(p%p‘%)

| \/

e If inequalities broken — unmistakable signal of non-flow
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PREDICTED SIGNATURE OF FLOW: TRANSVERSE MOMENTUM STRUCTURE OF PAIR CORRELATIONS

FLOW INEQUALITIES

This expression directly implies a set of inequalities:

Voa(pF, p%) = <Va Vb*> = <v,‘$v,’7’ cos n(Vy — \Ifﬁ)>
= Via(p%.p3) >0
Voa (P2, P2)2 < Voa(p2, p2) Van (P2, 02)

e If inequalities broken — unmistakable signal of non-flow
e If first inequality is satisfied, we can define the ratio

Voa(p%, p%)
\/VnA (P%,P%) VnA(pTapT)

The second inequality ensures that —1 < r, < 1

n =

MaATT LuzuM (USC) FLOW IN PA 07/15/2015



PREDICTED SIGNATURE OF FLOW: TRANSVERSE MOMENTUM STRUCTURE OF PAIR CORRELATIONS

FLOW INEQUALITIES

This expression directly implies a set of inequalities:

Voa(pF, p%) = <Va Vb*> = <v,‘$v,’7’ cos n(Vy — \Ifﬁ)>
= Via(p%.p3) >0
Voa (P2, P2)2 < Voa(p2, p2) Van (P2, 02)

e If inequalities broken — unmistakable signal of non-flow
e If first inequality is satisfied, we can define the ratio

Voa(p%, p%)
\/VnA (P%,P%) VnA(pTapT)

The second inequality ensures that —1 < r, < 1
e No fluctuations = r, =1

n =
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PREDICTED SIGNATURE OF FLOW: TRANSVERSE MOMENTUM STRUCTURE OF PAIR CORRELATIONS

PREDICTIONS: CENTRALITY DEPENDENCE

rn close to 1, closer with increasing multiplicity

p’[GeV/c]  pPlGeV/c]
04 08 125 175 2.25 04 08 125 1.75 225

.00 1.00

99 098 —0.00031-0.00631%
_______ 0.00631-0.05631%
o w e 0.05631-0.45631%
' /A R 0.45631-2.%
2.-5.%
97 0.94 5 ._12.%
/ e 12.-24%
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PREDICTED SIGNATURE OF FLOW: TRANSVERSE MOMENTUM STRUCTURE OF PAIR CORRELATIONS

PREDICTIONS: CENTRALITY DEPENDENCE

rn insensitive to viscosity, sensitive to granularity

pP[GeV/c] pP[GeV/c]

04 08 125 1.75 225 04 08 1.25 1.75 225
1.00 1.00
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PREDICTED SIGNATURE OF FLOW: RANSVERSE MOMENTUM STRUCTURE OF PAIR CORRELATIONS

PRELIMINARY DATA: D. DEVETAK, QM 14
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PREDICTED SIGNATURE OF FLOW: TRANSVERSE MOMENTUM STRUCTURE OF PAIR CORRELATIONS

PRELIMINARY DATA: D. DEVETAK, QM 14

trig
T

>
L4
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PREDICTED SIGNATURE OF FLOW: TRANSVERSE MOMENTUM STRUCTURE OF PAIR CORRELATIONS

INTERIM CONCLUSIONS

e Experimental data for r, agree with hydrodynamic predictions

e Iy indicates the breakdown of flow dominance (pr > 2.5 GeV +
Ncn < 150)
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PREDICTED SIGNATURE OF FLOW: TRANSVERSE MOMENTUM STRUCTURE OF PAIR CORRELATIONS
REVISITING NUCLEUS-NUCLEUS COLLISIONS
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PREDICTED SIGNATURE OF FLOW: TRANSVERSE MOMENTUM STRUCTURE OF PAIR CORRELATIONS

REVISITING NUCLEUS-NUCLEUS COLLISIONS

p[GeV/c] pP[GeV/c]

04 08 125 175 225 04 08 125 175 225
1.00 1.00 |:|
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PREDICTED SIGNATURE OF FLOW: TRANSVERSE MOMENTUM STRUCTURE OF PAIR CORRELATIONS

REVISITING NUCLEUS-NUCLEUS COLLISIONS

pelGeV/c] prlGeV/c]
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PREDICTED SIGNATURE OF FLOW: TRANSVERSE MOMENTUM STRUCTURE OF PAIR CORRELATIONS

REVISITING NUCLEUS-NUCLEUS COLLISIONS

Including r, adds tension to simultaneous description of p-Pb and
Pb-Pb
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PREDICTED SIGNATURE OF FLOW: TRANSVERSE MOMENTUM STRUCTURE OF PAIR CORRELATIONS

CONCLUSIONS

e Hydrodynamic calculations can describe many observables in
high multiplicity p-Pb collisions

e Preliminary data for r, agree with hydrodynamic predictions

e r, observable provides a useful new handle on physics. E.g.,

e to indicate where hydrodynamic description breaks down
e to probe aspects of initial condition not probed by other observables
(granularity)
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EXTRA SLIDES

HIGHER CUMULANTS
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EXTRA SLIDES

RESULTS: P-PB VS PB-PB

pPb /sy =5.02 TeVv PbPb sy =2.76 TeV
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