Contribution of Anisotropic Particle Escape to Elliptic Flow from Transport Models

Zi-Wei Lin *East Carolina University*

Based on *arXiv:1502.05572:*

Liang He, Terrence Edmonds, Zi-Wei Lin, Feng Liu, Denes Molnar, Fuqiang Wang:

Anisotropic parton escape is the dominant source of azimuthal anisotropy

- *in transport models (v3, much expanded from v1)*
- *from A Multi-Phase Transport (v1)*

INT Program 15-2b July 24, 2015

Outline

Current Picture of v_n Development in Heavy Ion Collisions

Method: Tracking Parton Collisions in Transport Models

Our Results

Potential Consequences

T_{current} P_{intra} of second Fourier coefficient \sim the effective parton scattering cross section is uncer-Current Picture of v_n Development different values for the cross section, i.e., 1 mb and 1

distribution, i.e., $\frac{1}{2}$ converts initial spatial anisotr 10° Me. We see that Ω is rather sensitive to the cross 2.1 min. Early hydro-type collective flow in sQGP ito final momentum-snace y \mathbf{r} sections, values for \mathbf{r} converts initial spatial anisotropy into final momentum-space v_n

$A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$ is a by $A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$ $\frac{11}{1}$ for global observables, especially flow v_n Hydrodynamics has been very successful

dependence of the elliptic flow on ^s . *^g*

 $v_2(p_T)$ in PbPb@LHC: ALICE vs. VISHNU
Data: ALICE, preliminary (Snellings, Krzewicki, Quark Matter 2011)

Dashed lines: Shen et al., PRC84 (2011) 044903 (VISH2+1, MC-KLN, $(\eta/s)_{\text{QGP}} = 0.2$)
Solid lines: Song, Shen, UH 2011 (VISHNU, MC-KLN, $(\eta/s)_{\text{OGP}} = 0.16$) $\overline{}$ \overline{a} $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$. 0.3 $0.2\begin{array}{l} \begin{array}{c} \bullet \quad K^+ \\ \bullet \quad P \end{array} \end{array}$ $(\eta/s)_{\text{QGP}} = 0.16$ $v₂$ **p**
P₂yp2YP₂₁₁ *x* $\frac{1}{\sqrt{2}}$ 5-10% over particle average of the single single single single single sin \mathbb{Z} stuared transverse momentum asymmetry. Similarly, since \mathbb{Z} $v₂$ \mathbb{Z} is the \mathbb{Z} is the \mathbb{Z} the particle \mathbb{Z} is the \mathbb{Z} 0.1 $\frac{1}{2}$ for cosmos $\frac{1}{2}$ $\frac{1}{2}$ for $\frac{1}{2}$ $\frac{1}{2}$ for $\frac{1}{2}$ and $\frac{1}{2}$ 0.24 distributions do not have the same to be two distributions of the same of the same of the same of the two distributions of the two distributions of the two distributions of the two distributions of the two distribu **0** 1.0 2.0 **0** 1.0 2.0 3.0
 p_T (GeV) p_T (GeV) p_T (GeV)

VISHNU yields correct magnitude and centrality dependence of $v_2(p_T)$ for pions, kaons and protons! Same $(\eta/s)_{\text{OGP}} = 0.16$ (for MC-KLN) at RHIC and LHC!

Heinz, BES Workshop at LBNL 2014 using viscous hydrodynamics.

Transport model can describe flow v_n : degree of equilibration is *controlled by cross section* σ

Fig. 1. Time evolution of v_2 coefficient for different effective parton scattering cross sections in Au-Au collisions at $\sqrt{s} = 200$ AGeV with impact parameter 7.5 fm. Filled circles are cascade data, and dotted lines are hyperbolic tangent fits to the data.

3/25 Zhang, Gyulassy and Ko, PLB (1999) using elastic parton transport.

Current Picture of v_n Development

Both hydrodynamics and transport model have been used to study v_n :

Alver and Roland, PRC (2010) discovered significant triangular flow using A Multi-Phase Transport (AMPT); \rightarrow intense developments of event-by-event hydrodynamics.

Transport at large-enough cross section will approach hydrodynamics.

It is generally believed: for low- P_T in high-energy heavy ion collisions, the mechanism of v_n development from transport model *(via particle interactions)* is in principle the same as viscous hydrodynamics *(via pressure gradient).*

Current Picture of v_n Development

A different paradigm for high-P_T

It is generally believed:

high- P_T observables cannot be described by hydrodynamics, one needs particle transport *(plus energy loss, fragmentation, etc)*

Current Picture of v_n Development e of v_n Development 01234 No. 1234 No. 1235 No. 1236

P collisions (lower paral) as obtained in the American symbols) with the string mechanism. \mathbf{C} **Small systems**: both hydrodynamics and transport can describe flow

 $\overline{}$

using e-by-e viscous hydrodynamics.

 $\sum_{i=1}^n$ $\sum_{i=1}^n$ $\sum_{i=1}^n$ $\sum_{i=1}^n$ for $\sum_{i=1}^n$ $\sum_{i=1}^n$ $\sum_{i=1}^n$

Monte Carlo model. The second most central class is de-

FIG. 1: The transverse momentum dependence of the elliptic, v2, and triangular, v3, flow coefficients in p+Pb (upper panel) and

elliptic, variangular, vari using A Multi-Phase Transport (AMPT). $p_{\text{A}}(2012)$ Dzuan and Ma, TKL (2014)

Puzzle for small systems such as p+Pb or d+Au: Mean free path may comparable to the system size; is hydrodynamics still applicable to such small systems? Puzzle for small systems such as $n+p$ or $d+A$ u Eq. is hydrodynamics suit a two different cuts imposed on the transverse momentum \mathcal{L}_{max} $\mathop{\mathtt{Hils}}$ such as $\mathop{\mathtt{pfr}}\limits$ of u+Au. m model to the quotam gize: dergo hadronic to the system size, till applicable to such small syste model provides a consistent framework to understand the unit \mathfrak{g} \mathbf{r}

Tracking Parton Collisions in Transport Models

Method:

Study v_n development

by tracking the complete collision history of each parton, **including**

• 3 parton populations

(e.g. freezeout partons, active partons & all partons)

- v_n versus **Ncoll** *(number of collisions suffered by a parton)*
- v_n versus time

Most results shown here are obtained with AMPT (string melting version); some obtained with MPC (elastic version of the parton cascade).

We only study the parton stage here.

A b=10 fm Au+Au event at 200AGeV from String Melting AMPT

Particle # vs time

Constraining Parameters of the String Melting AMPT

Same parameters for Au+Au as in ZWL PRC (2014), which described low-pt (<2GeV/c) $\pi \& K$ data on dN/dy, p_T spectra $\& V2$ in central & mid-central events of 200AGeV Au+Au.

Results: v2 versus collision # of each parton

Ncoll: *number of collisions suffered by a parton*

3 parton populations at a given Ncoll:

freezeout partons: freeze out after exactly Ncoll collisions; active partons: <i>will collide again, freeze out after >Ncoll collisions; all partons: *sum of the above two populations* collisions, the decorrective freezeout parties. *(i.e. all formed partons that have survived Ncoll collisions).*

Results: v2 versus collision # of each parton

this repeats itself to higher Ncoll…

11/25

Results: freezeout vs collision # of a parton

 \langle Ncoll \rangle =4.6 for Au+Au

 $F = 1.2$ for $d+Au$. (~surface emission, but not from a sharp surface); freezing out after *N*coll collisions. The thick and thin solid for Au+Au collisions. The *v*³ results are qualitatively ce); $=1.2$ for $d+Au$. Freezeout in the outer region

freezeout region moves in with Ncoll.

Results: anisotropic particle escape

At Ncoll=0: Escaped: $v2 \approx 4.5\%$, **purely** due to **anisotropic escape probability** (response to geometrical shape only, no effect from collective flow)

In simplified picture of elliptic flow

At Ncoll>=1:

Escaped: v2>0 due to the above **anisotropic escape probability modified by collective flow** of all active partons **Results**: anisotropic particle escape

Final v2 is generated by interactions, which generate anisotropic collective flow and freezeout/escape from an anisotropic shape:

Let's view v2 as coming from 2 separate but compounding sources:

14/25

f(**x**,**p**,t)

ϕ is randomized (after each scattering) to destroy collective flow

Results: space-momentum correlation vs collective flow

Results: space-momentum correlation vs collective flow

Results: contribution of escape mechanism to final v2

v2 from **Random Test:**

FIG. 3: Parton ? ⌘ h*r*ˆ? *· p*ˆ?i as a function of *N*coll in

purely from escape mechanism, *at 0 collective flow*

Results: this is a general feature of transport models

MPC gives essentially the same results as AMPT at similar <Ncoll> despite differences in *parton initial condition (number, density profile,* P_T *spectrum), dσ/dt, formation time, parton-subdivision.*

Results: this is a general feature of transport models

MPC gives essentially the same results as AMPT at similar <Ncoll>

Time-dependence of 3 parton populations: *frozen partons, active partons, & all partons*

 \mathcal{V}_{2}

Results: Anisotropic Particle Escape versus Hydrodynamic Flow

When will hydrodynamic flow dominate?

At very high \langle Ncoll \rangle or σ : *v2 of active partons follows the total v2 closely during the early v2 build-up*

Results: Anisotropic Particle Escape versus Hydrodynamic Flow

Escape mechanism is dominant for small system v2 & maybe even for semi-central AuAu at RHIC

Hydrodynamic collective flow will dominate at very high σ or \leq Ncoll $>$

Potential Consequences

• **Explains similar anisotropic flows observed in small systems and in large systems:** since both are dominated by the escape mechanism *(ϕ-dependent interactions & escape probability)* $\frac{1}{2}$ and the probably collisions. Both $\frac{1}{2}$ randomized by the escape meeting and shilit.) (*y*-acpendent meractions & escape probability)

Potential Consequences

Main reason for v_n **at low** P_T **and high** P_T **are qualitatively the same** since both are dominated by the escape mechanism *(ϕ-dependent particle interactions including energy-loss)*

Potential Consequences

Hydrodynamics

needs to include the escape mechanism (negative part of Cooper-Frye? continuous emission?)

will affect sQGP properties extracted by comparing v_n with hydrodynamics

Hydrodynamics can dominate v_n at very high interaction strength or collision number <Ncoll>: is it the case for heavy ion collisions?

Anisotropic Particle Escape versus Hydrodynamic Flow

Hydrodynamics describe vn data well. AMPT/transport describes vn data well.

Are they essentially the same?

How can we differentiate them with experimental observables?

Can they be improved to converge toward each other?