Longitudinal decorrelations of flow orientation angle (\Psi_n) in AA and pA

Wei Li, Rice University INT program, Seattle, July 16

Initial-state anisotropy

Final state:

 $f(p_T, \varphi, \eta) \sim 1 + 2v_2(p_T, \eta) \cos[2(\phi - \Psi_{RP})]$ Elliptic flow

Initial-state inhomogeneity

Ψ_{EP}: Direction of maximum particle density

Final state:

 $f(p_T, \varphi, \eta) \sim 1 + 2v_2(p_T, \eta) \cos[2(\phi - \Psi_{EP, PP})]$ Elliptic flow

Initial-state inhomogeneity

+...

Ψ_{EP}: Direction of maximum particle density

Final state:

2010

 $\begin{aligned} \mathsf{f}(\mathsf{p}_{\mathsf{T}}, \varphi, \eta) &\sim 1 + 2v_2(p_T, \eta) \cos\left[2\left(\phi - \Psi_2\right)\right] & \text{Elliptic flow} \\ &+ 2v_3(p_T, \eta) \cos\left[3\left(\phi - \Psi_3\right)\right] & \text{Triangular flow} \\ &+ 2v_4(p_T, \eta) \cos\left[4\left(\phi - \Psi_4\right)\right] \\ &+ 2v_5(p_T, \eta) \cos\left[5\left(\phi - \Psi_5\right)\right] \end{aligned}$

Initial-state inhomogeneity

2012-2013

ψ_{EP}: Direction of maximum particle density
(particle properties dependent)

Final state:

$$f(p_{T},\varphi,\eta) \sim 1 + 2v_{2}(p_{T},\eta)\cos\left[2\left(\phi - \Psi_{2}(p_{T},\eta)\right)\right] \\ + 2v_{3}(p_{T},\eta)\cos\left[3\left(\phi - \Psi_{3}(p_{T},\eta)\right)\right] \\ + 2v_{4}(p_{T},\eta)\cos\left[4\left(\phi - \Psi_{4}(p_{T},\eta)\right)\right] \\ + 2v_{5}(p_{T},\eta)\cos\left[5\left(\phi - \Psi_{5}(p_{T},\eta)\right)\right] \\ + 2v_{5}(p_{T},\eta)\cos\left[5\left(\phi - \Psi_{5}(p_{T},\eta)\right)\right]$$

+...

Decode the initial-state inhomogeneity

ψ_{EP}: Direction of maximum particle density
(particle properties dependent)

Final state:

$$f(\mathbf{p}_{\mathsf{T}},\boldsymbol{\varphi},\boldsymbol{\eta}) \sim 1 + 2\sum_{n} v_{n}(p_{T},\boldsymbol{\eta}) \cos\left[2\left(\phi - \Psi_{n}(p_{T},\boldsymbol{\eta})\right)\right]$$

Local hot spots perturb the event plane of a smooth background, in a (p_T , η ,...) dependent fashion.

 $\Psi_n(p_T, \eta)$ contains details of the lumpy initial state: fluctuations in r, ϕ and η directions

Longitudinal dynamics: QGP expands in <u>3D</u>

$$f(p_T, \phi, \eta) \sim 1 + 2\sum_{n=1}^{\infty} v_n(p_T, \eta) \cos\left[n\left(\phi - \Psi_n\left(p_T, \eta\right)\right)\right]$$

Gateway to a full 3D description of initial-state fluctuations and dynamics of system evolution

Flow is not quite boost-invariant in rapidity

<u>With respect to Ψ_n at a fixed η </u>

Stronger η dependence for v_3

Rapidity dependence of v_n magnitude or Ψ_n orientation? (energy density, η/s) (geometry, initial state)

"Extended longitudinal scaling" of v₂

PHOBOS - PRL 94, 122303 (2005)

Still not understood

Rapidity dependence of v_n magnitude or Ψ_n orientation? (energy density, η/s) (geometry, initial state)

Longitudinal dynamics: $\Psi_n(\eta)$ fluctuations

Wounded nucleon model

CGC-based model

Bozek et.al., arXiv:1011.3354

Global twist

Rapidity dependent granularity of gluon field fluctuations

Next, quantify this effect experimentally and compare to theoretical calculations

How to probe $\Psi_n(\eta)$ fluctuations experimentally

How about factorization ratio?

$$r_{n} = \frac{V_{n\Delta}(\eta^{a}, \eta^{b})}{\sqrt{V_{n\Delta}(\eta^{a}, \eta^{a})}\sqrt{V_{n\Delta}(\eta^{b}, \eta^{b})}} \sim \left\langle \cos\left[n\left(\Psi_{n}\left(\eta^{a}\right) - \Psi_{n}\left(\eta^{b}\right)\right)\right]\right\rangle$$

Problem:

A narrow window of $\Delta\eta\sim 0$

significant nonflow from near-side peak (jets, clusters, resonances etc.)

Need to find a way to always guarantee a large $\Delta \eta$!

How to extract $\Psi_n(\eta)$ fluctuations?

Ensure all pairs used have η gap > 2 units!

How $r_n(\eta^a, \eta^b)$ is related to factorization and $\Psi_n(\eta)$ fluctuations?

If $V_{n\Delta}$ factorizes or $\Psi_n(\eta)$ indep. of η ,

$$r_{n}(\eta^{a},\eta^{b}) = \frac{\left\langle \mathbf{v}_{n}(-\eta^{a})\mathbf{v}_{n}(\eta^{b})\right\rangle}{\left\langle \mathbf{v}_{n}(\eta^{a})\mathbf{v}_{n}(\eta^{b})\right\rangle} = 1 \quad \text{(for symmetric system)}$$

Otherwise,

$$r_{n}(\eta^{a},\eta^{b}) = \frac{\left\langle \mathbf{v}_{n}(-\eta^{a})\mathbf{v}_{n}(\eta^{b})\cos[n(\Psi_{n}(-\eta^{a})-\Psi_{n}(\eta^{b}))]\right\rangle}{\left\langle \mathbf{v}_{n}(\eta^{a})\mathbf{v}_{n}(\eta^{b})\cos[n(\Psi_{n}(\eta^{a})-\Psi_{n}(\eta^{b}))]\right\rangle}$$
$$\sim \frac{\left\langle \cos[n(\Psi_{n}(-\eta^{a})-\Psi_{n}(\eta^{b}))]\right\rangle}{\left\langle \cos[n(\Psi_{n}(\eta^{a})-\Psi_{n}(\eta^{b}))]\right\rangle} \quad \text{(for symmetric system)}$$

~
$$\left\langle \cos[n(\Psi_n(\eta^a) - \Psi_n(-\eta^a))] \right\rangle$$

(two EPs separated a gap of 2 η^a)

Let's vary $\eta_{\rm b}$ as well

When $\Delta \eta$ is small for denominator, short-range correlations pull r₂ down

Centrality dependence of $r_2(\eta^a, \eta^b)$ in PbPb

Roughly linear increase with η gap, except for 0-0.2% centrality

Nearly no p_T dependence ...

Indication of an initial-state effect !?

Higher-order $r_n(\eta^a, \eta^b)$ in PbPb

Much stronger effect up to 15% for n=3, as it is entirely driven by fluctuations

Centrality dependence of $r_3(\eta^a, \eta^b)$ in PbPb

Little centrality dependent, consistent with expectation?

Centrality dependence of $r_4(\eta^a, \eta^b)$ in PbPb

$$r_4(\eta^a,\eta^b) \approx \left\langle \cos[4(\Psi_4(\eta^a) - \Psi_4(-\eta^a))] \right\rangle$$

Also roughly linear increase with η gap

 r_4 is related to r_2 , esp. for peripheral events (linear vs non-linear contributions)

Empirical parameterization: $r_n(\eta^a, \eta^b) = e^{-2F_n^\eta \eta^a} \approx 1 - 2F_n^\eta \eta^a$

Trend qualitatively consistent with participant fluctuations in Glauber model

But details depend on dynamics

Comparison with AMPT model

How is v_2 {EP} affected by EP decorrelations?

How is v₂{EP} affected by EP decorrelations?

Resolution correction:

$$R_A = \sqrt{\frac{\langle \cos(2(\Psi_2^A - \Psi_2^B)) \rangle \langle \cos(2(\Psi_2^A - \Psi_2^C)) \rangle}{\langle \cos(2(\Psi_2^B - \Psi_2^C)) \rangle}}$$

How is v_2 {EP} affected by EP decorrelations?

If Ψ_2 depends on η

$$\begin{split} R_{A} &= R_{A}^{res} \sqrt{\frac{\left\langle \cos(2(\Psi_{2}^{+} - \Psi_{2}^{-}))\right\rangle \left\langle \cos(2(\Psi_{2}^{+} - \Psi_{2}^{0}))\right\rangle}{\left\langle \cos(2(\Psi_{2}^{-} - \Psi_{2}^{0}))\right\rangle}} \\ &= R_{A}^{res} \sqrt{\left\langle \cos(2(\Psi_{2}^{+} - \Psi_{2}^{-}))\right\rangle} \\ &\approx R_{A}^{res} \left\langle \cos(2(\Psi_{2}^{+} - \Psi_{2}^{0}))\right\rangle \end{split} \quad \Psi_{2}^{+}, \Psi_{2}^{-}, \Psi_{2}^{0} : \text{real EPs} \end{split}$$

How is v₂{EP} affected by EP decorrelations?

Some thoughts and remarks

Will these studies invalidate all previous v_n results (assuming factorization)? No, just need to be reinterpreted as v_n w.r.t. plane at a give (p_T , η)

What particular constraints to 3D hydrodynamics from these data?

Could "extended longitudinal scaling" of v₂ somehow related to the plane decorrelations?

Principle Component Analysis (PCA) in η space

$$V_{n\Delta}(\eta^a,\eta^b) = \sum_{\alpha=1}^k V_n^{(\alpha)}(\eta^a) V_n^{(\alpha)*}(\eta^b)$$

Due to short-range correlations, is it applicable experimentally?

Should be possible to *fit* the modes w/o diagonal $V_{n\Delta}$ terms

QGP in small systems (?)

Asymmetric (torqued?) QGP fireball on p- and Pb-going side?

Again, is it η -dependence of \mathbf{v}_n or Ψ_n ?

A subtlety in pPb as $v_n(-\eta^a) \neq v_n(\eta^a)$

$$r_{n}(\eta^{a},\eta^{b}) = \frac{\left\langle \mathbf{v}_{n}(-\eta^{a}) \times \mathbf{v}_{n}(\eta^{b}) \times \cos[n(\Psi_{n}(-\eta^{a}) - \Psi_{n}(\eta^{b}))] \right\rangle}{\left\langle \mathbf{v}_{n}(\eta^{a}) \times \mathbf{v}_{n}(\eta^{b}) \times \cos[n(\Psi_{n}(\eta^{a}) - \Psi_{n}(\eta^{b}))] \right\rangle}$$

Do not cancel!

Let's take a 'geometric mean'

$$\sqrt{r_n(\eta^a,\eta^b)} \times r_n(-\eta^a,-\eta^b) = \sqrt{\frac{V_{n\Delta}(-\eta^a,\eta^b)}{V_{n\Delta}(\eta^a,\eta^b)}} \frac{V_{n\Delta}(\eta^a,-\eta^b)}{V_{n\Delta}(-\eta^a,-\eta^b)}$$

 $= \sqrt{\frac{\left\langle \mathbf{v}_{n}(-\eta^{a})\mathbf{v}_{n}(\eta^{b})\cos[n(\Psi_{n}(-\eta^{a})-\Psi_{n}(\eta^{b}))]\right\rangle}{\left\langle \mathbf{v}_{n}(\eta^{a})\mathbf{v}_{n}(\eta^{b})\cos[n(\Psi_{n}(\eta^{a})-\Psi_{n}(\eta^{b}))]\right\rangle}} \frac{\left\langle \mathbf{v}_{n}(\eta^{a})\mathbf{v}_{n}(-\eta^{b})\cos[n(\Psi_{n}(-\eta^{a})-\Psi_{n}(-\eta^{b}))]\right\rangle}{\left\langle \mathbf{v}_{n}(-\eta^{a})\mathbf{v}_{n}(-\eta^{b})\cos[n(\Psi_{n}(-\eta^{a})-\Psi_{n}(-\eta^{b}))]\right\rangle}}$

$$\sim \sqrt{\frac{\left\langle \cos[n(\Psi_{n}(-\eta^{a})-\Psi_{n}(\eta^{b}))]\right\rangle}{\left\langle \cos[n(\Psi_{n}(\eta^{a})-\Psi_{n}(\eta^{b}))]\right\rangle}} \frac{\left\langle \cos[n(\Psi_{n}(-\eta^{a})-\Psi_{n}(-\eta^{b}))]\right\rangle}{\left\langle \cos[n(\Psi_{n}(-\eta^{a})-\Psi_{n}(-\eta^{b}))]\right\rangle}} \sim \left\langle \cos[n(\Psi_{n}(\eta^{a})-\Psi_{n}(-\eta^{a}))]\right\rangle}$$

Drawback: p- and Pb-side averaged ,not differentiable

Multiplicity dependence of $r_2(\eta^a, \eta^b)$ in PbPb

Intuitively, fluctuations should be larger in pPb

New constraints on the origin of ridge in pPb

Direct comparison of pPb and PbPb data

Empirical parameterization: $r_n(\eta^a, \eta^b) = e^{-2F_n^\eta \eta^a} \approx 1 - 2F_n^\eta \eta^a$

What's next

Experimentally,

- Quantitatively disentangle η dep. of v_n and Ψ_n
- Disentangle *global twist* vs *random* Ψ_n fluctuations?
- p- vs Pb-side in high-multiplicity pPb

Summary

- New handles on the initial state and transport from detailed two-particle correlation structure
- New results of longitudinal factorization breaking
 - Evidence for EP fluctuations in η
 - New constraints on longitudinal dynamics
 - Promising for completing the picture of QGP evolution in 3D
- Stronger effect observed in high-multiplicity pPb

<u>Backups</u>

$\Psi_n(p_T)$ fluctuations in pPb and PbPb

Significant effect toward central PbPb

EPOS

HYDJET

