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PART ONE: the Ridge and Saturation.

Initial state (”saturation”) mechanism(s)

Local anisotropy A.K., M. Lublinsky : Phys.Rev. D83 (2011) 034017
(arXiv:1012.3398); Int. J. Mod. Phys. E Vol. 22 (2013) 1330001
(arXiv:1211.1928)

Density variation E. Levin a A. Rezaeian: Phys.Rev. D84 (2011) 034031
(arXiv:1105.3275)

“Glasma graphs” Dumitru, Gelis, Jalilian-Marian, Lappi: Phys.Lett.
B697 (2011) 21 (arXiv:1009.5295)
Followed by serious (and successful) quantitative effort to describe
data: Dusling and Venugopalan Phys.Rev.Lett. 108 (2012) 262001
(arXiv:1201.2658); arXiv:1302.7018

Q: What is the physics of “Glasma graphs”?

A: Bose enhancement of gluons in the hadronic wave function.
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Bose Enhancement.

Consider bosonic state with occupation numbers ni (p):

|{ni (p)}〉 ≡
∏

i ,p

1
√

ni (p)!
(a†i (p))

ni (p)|0〉, i = 1, . . . ,N

Mean particle density:

n ≡ 〈a†i (x)ai (x)〉 =
∑

i ,p

ni (p)

Density-density correlation?

D(x , y) ≡ 〈a†i (x)a†j(y)ai (x)aj(y)〉

Calculate in the momentum space:

〈a†i (p)a†j(q)ai (l)aj(m)〉 = δ(p − l)δ(q −m)
∑

i

ni (p)
∑

j

nj(q)

+δ(p −m)δ(q − l)
∑

i

ni (p)ni (q)

So that:

D(x , y) = n2+
∑

i

∣

∣

∣

∣

∫

d3p

(2π)3
e ip(x−y)ni (p)

∣

∣

∣

∣

2

; D(p, k) =

[

∑

i

ni (p)

]





∑

j

nj(k



+δ(k−p)
∑

i

(ni (p))
2
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Bose Enhancement in CGC?

Bose enhancement is pretty generic, but not present in classical states.
Coherent state:

|b(x)〉 ≡ exp{i
∫

d3x bi (x)(ai (x) + a†i (x))} |0〉

A trivial calculation gives

〈b(x)|a†i (x)ai (x)|b(x)〉 = bi (x)bi (x)

〈b(x)|a†i (x)a†j(y)ai (x)aj(y)|b(x)〉 = bi (x)bi (x)bj(y)bj(y)

so
D(x , y) = n(x)n(y)

Q: CGC is “classical fields”, can they produce Bose Enhancement?
A: Yes on both counts.
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First things first.

Double inclusive gluon production via “Glasma Graphs”:

a†(k1) a†(k2) a(k2) a(k1)

q

p

q

p

N(p− k1)

N(q − k2)

TYPE A

a†(k1) a†(k2) a(k4) a(k3)

q

p

q

p

N(p− k1)

N(q − k2)

TYPE B

a†(k1) a†(k2) a(k4) a(k3)

q

p

q

p

N(p− k1) N(q − k4)

TYPE C

Figure: Glasma graphs for two gluon inclusive production before averaging over
the incoming projectile state.

N(k) = −
∫

d2xe i
~k~x〈 1

Nc
tr [S†(x)S(0)]〉Target - the (adjoint) dipole

scattering probability.
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Gluon Production

Type A ∝
∫

k1,k2

〈in|a†ia (k1)a†jb (k2)aia(k1)a
j
b(k2)|in〉Projectile N(p−k1)N(q−k2)

N(k) - probability of momentum transfer k from the target.

Type B+Type C=”upside down” Type A + “suppressed”

IMPORTANT! k - is transverse momentum only.

CGC is boost invariant: aia(k) ≡ 1√
Y

∫

|η<Y /2|
dη
2π aia(η, k)

[aia(k), a
†j
b (p)] = (2π)2δabδ

ijδ(2)(k − p)
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The |in〉 state.
The wave function for the soft field is classical at fixed valence color
charge density:

|in〉ρ = exp

{

i

∫

k

bia(k)
[

a†ia (k) + aia(−k)
]

}

|0〉,

Weizsäcker-Williams field bia(k) = gρa(k)
ik i

k2 .

Projectile is a distribution of color charge density configurations (in
transverse plain) ρa(~x).

Averaging over the |in〉 state ≡ averaging over the configurations of ρa(~x)
with some weight function(al) W [ρ].

For any observable O: 〈O〉projectile =
∫

DρW [ρ]O[ρ]

We will work with the “McLerran-Venugopalan model”

W [ρ] = N exp{−
∫

k

1

2µ2(k)
ρa(k)ρa(−k)}
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The density matrix.

Thus the full hadronic wave function is not “classical”.
This defines the density matrix (operator) on the soft gluon Hilbert space:

ρ̂ = N
∫

D[ρ] e
−

∫
k

1
2µ2(k)

ρa(k)ρa(−k)
e
i
∫
q
bi
b
(q)φi

b
(−q)|0〉〈0| e−i

∫
p
b
j
c(p)φ

j
c (−p)

With MV model can integrate over ρ explicitly:

ρ̂ = e
−

∫
k

g2µ2(k)

2k4
k ik j φi

b
(k)φj

b
(−k)

{

+∞
∑

n=0

1

n!

[

n
∏

m=1

∫

pm

g2µ2(pm)

p4m
pimm φim

am
(pm)

]

|0〉

×〈0|
[

n
∏

m=1

pjmm φjm
am
(−pm)

]}

e
−

∫
k′

g2µ2(k′)

2k′4
k ′ i

′

k ′j
′

φi′

c (k
′)φj′

c (−k ′)

with
φi
a(k) = aia(k) + a†ia (−k)
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The Enhancement.

Easy to show that correlators in this ρ̂ Wick factorize in terms of two basic
elements:

tr [ρ̂a†ia (k)a
j
b(p)] = (2π)2δab δ(2)(k − p) g2µ2(p)

pipj

p4

tr [ρ̂aia(k)a
j
b(p)] = tr [ρ̂a†ia (k)a

†j
b (p)] = −(2π)2δab δ(2)(k + p) g2µ2(p)

pipj

p4

So that:

tr [ρ̂a†ia (k1)a
†j
b (k2)a

i
a(k1)a

j
b(k2)] = S2(N2

c − 1)2
{

g4µ2(k1)µ
2(k2)

k21k
2
2

+
1

S(N2
c − 1)

[

δ(2)(k1 − k2) + δ(2)(k1 + k2)
] g4µ4(k1)

k41

}

The first term is the “classical” square of the density.
The last term is a bona fide Bose enhancement contribution.
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Correlated production.

The main (“only”) source of correlated production in the “glasma graph”
calculation is Bose enhancement in the initial wave function.

Initial state Bose enhancement → correlation in the final state.

Say projectile has saturation momentum Qs , and |k1, k2| ∼ Qs : the
momentum transfer in the scattering is < Qs , and N(p − ki ) does not
have large effect.
Initial correlations are reflected in the final state (final state interactions
aside!).

Alex Kovner (University of Connecticut ) Initial State Correlations July 29, 2015 10 / 21



PART TWO: The “other” Bose correlations: HBT

Another interesting feature of the calculation: HBT correlations for
particles widely separated in rapidity.
Consider the following contraction of the graphs on the projectile side

Figure: Glasma graphs for “initial state” HBT.

For translationally invariant averaging get δ2(~p ± ~q). In fact it is smeared
over the inverse proton radius; |~p ± ~q| ∼ R−1.
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The emitter.

Usual HBT is local in transverse and longitudinal momentum.

Here emission is directly from the initial moment of interaction: the
emitter is localized in time and in longitudinal coordinate.

Only exist where the projectile and target charge densities overlap in
space-time:

ρP ∝ δ(x+); ρT ∝ δ(x−)

The emission function

S(x ,K ) ∝
∫

d4ye iK
µyµ < J(x +

y

2
)J(x − y

2
) >∝ δ(x−)δ(x+)

This is rapidity independent!
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Transverse space structure.

In transverse space: the radius of the source is the radius of the proton R .

Randomization of sources due to color decoherence.
Only areas ∼ Q2

T are correlated in color - outside color is decorrelated by
the scattering.

R

Q−1
s

Figure: Transverse structure of the emitter.

Rapidity independent emitter of area R2 consisting of the number of
coherent sources N ∼ R2Q2

T .
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HBT or Bose Enhancement?

In general correlation function has two pieces:

C (p, q) =

dN
dpdq

dN
dp

dN
dq

= 1 + CBE (p, q) + CHBT (p, q)

Both CBE (p, q) and CHBT (p, q) are rapidity independent.

CHBT is unsuppressed when the number of sources is large R2Q2
T ≫ 1, but

gives a narrow peak ∼ e−(~p−~q)2R2
(and ∼ e−(~p+~q)2R2

).

CBE - the coherent (or nonfactorizable) contribution is suppressed ∼ 1/R2Q2
T

but is “wide” in momentum space ∼ e−(~p−~q)2/Q2
s (and ∼ e−(~p+~q)2/Q2

s ).

For N ∼ several, both should be visible. Measure correations with better bin
resolution ∆ ∼ 300−400Mev and one should see that the ridge has structure.
Of course, provided final state interactions don’t destroy the signal -
admittedly this HBT signal is fragile.
Still an interesting possibility: measure proton radius in HBT at δη ≫ 1,
this is certainly a direct initial state effect!
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PART THREE: Density matrix and Entropy.

Now that we have the density matrix, we can do things with it.

ρ̂ = e
−

∫
k

g2µ2(k)

2k4
k ik j φi

b
(k)φj

b
(−k)

{

+∞
∑

n=0

1

n!

[

n
∏

m=1

∫

pm

g2µ2(pm)

p4m
pimm φim

am
(pm)

]

|0〉

×〈0|
[

n
∏

m=1

pjmm φjm
am
(−pm)

]}

e
−

∫
k′

g2µ2(k′)

2k′4
k ′ i

′

k ′j
′

φi′

c (k
′)φj′

c (−k ′)

with

φi
a(k) = aia(k) + a†ia (−k); aia(k) =

1√
Y

∫

|η<Y /2|

dη

2π
aia(η, k)

Immediate thought: let us calculate entropy MV model!.

Initial wave function: Entanglement entropy of soft modes

σE = tr [ρ̂ ln ρ̂]
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Entanglement Entropy

How to calculate ln?

The standard “replica trick”:

ln ρ̂ = lim
ǫ→0

1

ǫ
(ρ̂ǫ − 1)

Calculate ρN and take N → 0. N copies of the field - replicas, do the job.
Define:

Mij ≡ g2

∫

u,v
µ2(u, v)

(x − u)i
(x − u)2

(y − v)j
(y − v)2

δab

The result

σE =
1

2
tr

{

ln
M

π
+

√

1 +
4M

π
ln

[

1 +
π

2M

(

1 +

√

1 +
4M

π

)]}
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Calculating σE

Translationally invariant limit (and original MV model):

Mab
ij (p) = g2µ2 pipj

p4
δab

For small M, or the UV contribution

σE
UV = tr

[

M

π
ln

πe

M

]

= − N2
c − 1

π
S

∫

p2>
Q2
s

g2

d2p

(2π)2
Q2

s

g2p2
ln

Q2
s

eg2 p2

where Q2
s = g4

π µ2 In all σE is formally UV divergent

σE
UV =

Q2
s

4πg2
(N2

c − 1)S

[

ln2
g2Λ2

Q2
s

+ ln
g2Λ2

Q2
s

]

The large M, IR contribution is

σE
IR ≃ 1

2
tr [ln

e2M

π
] =

N2
c − 1

2
S

∫

p2<
Q2
s

g2

d2p

(2π)2
ln

e2Q2
s

g2p2
=

3(N2
c − 1)

8πg2
SQ2

s
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Properties of σE .

σ ≈ σE
UV + σIR =

SQ2
s

4πg2
(N2

c − 1)

[

ln2
g2Λ2

Q2
s

+ ln
g2Λ2

Q2
s

+
3

2

]

UV divergent: the divergence is cutoff physically at Λ ∼ MeY0 ≫ M,
where eikonal approximation breaks down.

σE is not extensive in rapidity: ony one longitudinal mode (rapidity
independent) is entangled with valence degrees of freedom.

Similar to “topological entropy”: insensitive to boundary region between
the modes.

But not quite what we would like to know.
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Entropy of the produced system.

Long story short: entropy of the system of produced particles is formally
very similar

σP =
1

2
〈tr
{

ln
MP

π
+

√

1 +
4MP

π
ln

[

1 +
π

2MP

(

1 +

√

1 +
4MP

π

)]}

〉T

with

MP ≡ g2

∫

u,v
µ2(u, v)

(x − u)i
(x − u)2

(y − v)j
(y − v)2

[(S(u)− S(x))(S†(v)− S†(y))]ab

Here 〈...〉T is average over the target.

〈MP〉T = δab
Q2

Pπ

g2

∫

z

(x − z)i
(x − z)2

(y − z)j
(y − z)2

[PA(x , y)+1−PA(x , z)−PA(z , y)]

PA - S-matrix of an adjoint dipole on the target
Qp - saturation momentum of the projectile.
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Entropy and inclusive gluons production.

Expand σP around M̄ (dilute projectile limit):

σP = tr

[

M̄

π
ln

πe

M̄

]

− 1

2π
tr
[{

〈(MP − M̄) (MP − M̄)〉T
}

M̄−1
]

....

M̄ is almost single inclusive gluon.

Second term - almost correlated part of double inclusive gluon
production.

Correlations between gluons decrease entropy of the produced state.

We can naturally define temperature through: T−1 = dσ
dET

Keeping only mean field term in the entropy: T = π
2 < kT >.
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Summary

Initial state has some pretty interesting and easily understandabe physics.

Perhaps it is seen in p-p (p-A) ridge?

If it is not, it would be nice to understand whether it can be seen
elsewhere. What you can calculate, you should be able to measure!
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