Initial State Correlations

Alex Kovner

University of Connecticut

July 29, 2015

[with T. Altinoluk, N. Armesto, G. Beuf, and M. Lublinsky]

 \leftarrow

 299

Initial state ("saturation") mechanism(s)

Local anisotropy A.K., M. Lublinsky : Phys.Rev. D83 (2011) 034017 (arXiv:1012.3398); Int. J. Mod. Phys. E Vol. 22 (2013) 1330001 (arXiv:1211.1928)

Density variation E. Levin a A. Rezaeian: Phys.Rev. D84 (2011) 034031 (arXiv:1105.3275)

"Glasma graphs" Dumitru, Gelis, Jalilian-Marian, Lappi: Phys.Lett. B697 (2011) 21 (arXiv:1009.5295) Followed by serious (and successful) quantitative effort to describe data: Dusling and Venugopalan Phys.Rev.Lett. 108 (2012) 262001 (arXiv:1201.2658); arXiv:1302.7018

```
Q: What is the physics of "Glasma graphs"?
```
A: Bose enhancement of gluons in the hadronic [wa](#page-0-0)[ve](#page-2-0) [fu](#page-1-0)[nc](#page-2-0)[ti](#page-0-0)[on.](#page-20-0)

Bose Enhancement.

Consider bosonic state with occupation numbers $n^{i}(p)$:

$$
|\{n^i(p)\}\rangle \equiv \prod_{i,p} \frac{1}{\sqrt{n^i(p)!}} (a_i^{\dagger}(p))^{n^i(p)}|0\rangle, \quad i=1,\ldots,N
$$

Mean particle density:

$$
n \equiv \langle a^{\dagger i}(x) a^i(x) \rangle = \sum_{i,p} n^i(p)
$$

Density-density correlation?

$$
D(x, y) \equiv \langle a^{\dagger i}(x) a^{\dagger j}(y) a^i(x) a^j(y) \rangle
$$

Calculate in the momentum space:

$$
\langle a^{\dagger i}(p)a^{\dagger j}(q)a^i(l)a^j(m)\rangle = \delta(p-l)\delta(q-m)\sum_i n^i(p)\sum_j n^j(q) + \delta(p-m)\delta(q-l)\sum_i n^i(p)n^i(q)
$$

So that:

$$
D(x,y) = n^2 + \sum_i \left| \int \frac{d^3 p}{(2\pi)^3} e^{ip(x-y)} n^i(p) \right|^2; \qquad D(p,k) = \left[\sum_i n_i(p) \right] \left[\sum_j n_j(k) \right] + \delta(k-p) \sum_i (n_i(p))^2
$$

Bose Enhancement in CGC?

Bose enhancement is pretty generic, but not present in classical states. Coherent state:

$$
|b(x)\rangle \equiv \exp\{i \int d^3x \, b^i(x)(a^i(x) + a^{\dagger i}(x))\} |0\rangle
$$

A trivial calculation gives

$$
\langle b(x)|a^{\dagger i}(x)a^i(x)|b(x)\rangle = b^i(x)b^i(x)
$$

$$
\langle b(x)|a^{\dagger i}(x)a^i(y)a^i(x)a^j(y)|b(x)\rangle = b^i(x)b^i(x)b^i(y)b^i(y)
$$

so

 $D(x, y) = n(x)n(y)$

Q: CGC is "classical fields", can they produce Bose Enhancement? A: Yes on both counts.

Double inclusive gluon production via "Glasma Graphs":

Figure: Glasma graphs for two gluon inclusive production before averaging over the incoming projectile state.

 $N(k) = -\int d^2x e^{i\vec{k}\vec{x}} \langle \frac{1}{N_c}tr[S^\dagger(x)S(0)] \rangle_{\rm Target}$ - the (adjoint) dipole scattering probability.

 200

Type A
$$
\propto \int_{k_1,k_2} \langle in|a_a^{\dagger i}(k_1)a_b^{\dagger j}(k_2)a_a^i(k_1)a_b^j(k_2)|in\rangle_{\text{Projectile}} N(p-k_1)N(q-k_2)
$$

 $N(k)$ - probability of momentum transfer k from the target.

Type $B+Type C="$ upside down" Type $A +$ "suppressed" **IMPORTANT!** $k -$ is transverse momentum only.

CGC is boost invariant:
$$
a_a^i(k) \equiv \frac{1}{\sqrt{Y}} \int_{|\eta < Y/2|} \frac{d\eta}{2\pi} a_a^i(\eta, k)
$$

\n
$$
[a_a^i(k), a_b^{ij}(p)] = (2\pi)^2 \delta_{ab} \delta^{ij} \delta^{(2)}(k - p)
$$

The $|in\rangle$ state.

The wave function for the soft field is classical at fixed valence color charge density:

$$
|in\rangle_{\rho} = \exp\left\{i \int_{k} b_{a}^{j}(k) \left[a_{a}^{\dagger j}(k) + a_{a}^{j}(-k)\right]\right\} |0\rangle,
$$

Weizsäcker-Williams field $b^{i}_{a}(k) = g \rho_{a}(k) \frac{ik^{i}}{k^{2}}$ $\frac{lK^2}{k^2}$.

Projectile is a distribution of color charge density configurations (in transverse plain) $\rho_a(\vec{x})$.

Averaging over the $|in\rangle$ state \equiv averaging over the configurations of $\rho_a(\vec{x})$ with some weight function(al) $W[\rho]$.

For any observable $O: \langle O \rangle_{\text{projectile}} = \int D\rho W[\rho]O[\rho]$

We will work with the "McLerran-Venugopalan model"

$$
W[\rho] = N \exp\{-\int_k \frac{1}{2\mu^2(k)} \rho_a(k) \rho_a(-k)\}
$$

 QQQ

The density matrix.

Thus the full hadronic wave function is not "classical". This defines the density matrix (operator) on the soft gluon Hilbert space:

$$
\hat{\rho} = \mathcal{N} \int D[\rho] e^{-\int_k \frac{1}{2\mu^2(k)} \rho_a(k)\rho_a(-k)} e^{i \int_q b_b^i(q) \phi_b^i(-q)} |0\rangle\langle 0| e^{-i \int_p b_c^i(p) \phi_c^i(-p)}
$$

With MV model can integrate over ρ explicitly:

$$
\hat{\rho} = e^{-\int_{k} \frac{g^{2} \mu^{2}(k)}{2k^{4}} k^{i} k^{j} \phi_{b}^{i}(k) \phi_{b}^{i}(-k)} \left\{ \sum_{n=0}^{+\infty} \frac{1}{n!} \left[\prod_{m=1}^{n} \int_{p_{m}} \frac{g^{2} \mu^{2}(p_{m})}{p_{m}^{4}} p_{m}^{i m} \phi_{a_{m}}^{i m}(p_{m}) \right] |0\rangle \right.
$$

$$
\times \langle 0| \left[\prod_{m=1}^{n} p_{m}^{j_{m}} \phi_{a_{m}}^{j_{m}}(-p_{m}) \right] \left\} e^{-\int_{k'} \frac{g^{2} \mu^{2}(k')}{2k'^{4}} k'^{i'} k'^{j'} \phi_{c}^{i'}(k') \phi_{c}^{i'}(-k')
$$

with

$$
\phi_a^i(k) = a_a^i(k) + a_a^{\dagger i}(-k)
$$

 200

The Enhancement.

Easy to show that correlators in this $\hat{\rho}$ Wick factorize in terms of two basic elements:

$$
tr[\hat{\rho} a_a^{\dagger i}(k) a_b^j(p)] = (2\pi)^2 \delta_{ab} \delta^{(2)}(k-p) g^2 \mu^2(p) \frac{p^i p^j}{p^4}
$$

$$
tr[\hat{\rho} a_a^j(k) a_b^j(p)] = tr[\hat{\rho} a_a^{\dagger i}(k) a_b^{\dagger j}(p)] = -(2\pi)^2 \delta_{ab} \delta^{(2)}(k+p) g^2 \mu^2(p) \frac{p^i p^j}{p^4}
$$

So that:

$$
tr[\hat{\rho} a_{a}^{\dagger i}(k_{1}) a_{b}^{\dagger j}(k_{2}) a_{a}^{i}(k_{1}) a_{b}^{j}(k_{2})] = S^{2}(N_{c}^{2} - 1)^{2} \left\{ \frac{g^{4} \mu^{2}(k_{1}) \mu^{2}(k_{2})}{k_{1}^{2} k_{2}^{2}} + \frac{1}{S(N_{c}^{2} - 1)} \left[\delta^{(2)}(k_{1} - k_{2}) + \delta^{(2)}(k_{1} + k_{2}) \right] \frac{g^{4} \mu^{4}(k_{1})}{k_{1}^{4}} \right\}
$$

The first term is the "classical" square of the density. The last term is a *b[on](#page-0-0)a fide* Bose enhancement [co](#page-7-0)[nt](#page-9-0)[ri](#page-7-0)[bu](#page-8-0)[ti](#page-9-0)on[.](#page-20-0) QQ Alex Kovner (University of Connecticut) [Initial State Correlations](#page-0-0) July 29, 2015 9 / 21

The main ("only") source of correlated production in the "glasma graph" calculation is Bose enhancement in the initial wave function.

Initial state Bose enhancement \rightarrow correlation in the final state.

Say projectile has saturation momentum Q_s , and $|k_1,k_2| \sim Q_s$: the momentum transfer in the scattering is $< Q_s$, and $N(p - k_i)$ does not have large effect.

Initial correlations are reflected in the final state (final state interactions aside!).

Another interesting feature of the calculation: HBT correlations for particles widely separated in rapidity.

Consider the following contraction of the graphs on the projectile side

Figure: Glasma graphs for "initial state" HBT.

For translationally invariant averaging get $\delta^2(\vec{p}\pm\vec{q})$. In fact it is smeared over the inverse proton radius; $| \vec{\rho} \pm \vec{q} | \sim R^{-1}$.

 Ω

Usual HBT is local in transverse and longitudinal momentum.

Here emission is directly from the initial moment of interaction: the emitter is localized in time and in longitudinal coordinate.

Only exist where the projectile and target charge densities overlap in space-time:

$$
\rho_P \propto \delta(x^+); \quad \rho_T \propto \delta(x^-)
$$

The emission function

$$
S(x, K) \propto \int d^4 y e^{iK^{\mu} y_{\mu}} < J(x + \frac{y}{2})J(x - \frac{y}{2}) > \propto \delta(x^{-})\delta(x^{+})
$$

This is rapidity independent!

Transverse space structure.

In transverse space: the radius of the source is the radius of the proton R . Randomization of sources due to color decoherence.

Only areas $\sim Q_T^2$ are correlated in color - outside color is decorrelated by the scattering.

Figure: Transverse structure of the emitter.

Rapidity independent emitter of area R^2 consisting of the number of coherent sources $N \sim R^2 Q_T^2$.

Alex Kovner (University of Connecticut) [Initial State Correlations](#page-0-0) July 29, 2015 13 / 21

HBT or Bose Enhancement?

In general correlation function has two pieces:

$$
C(p,q) = \frac{\frac{dN}{dpdq}}{\frac{dN}{dp}\frac{dN}{dq}} = 1 + C_{BE}(p,q) + C_{HBT}(p,q)
$$

Both $C_{BE}(p, q)$ and $C_{HBT}(p, q)$ are rapidity independent.

 C_{HBT} is unsuppressed when the number of sources is large $R^2 Q_T^2 \gg 1$, but gives a narrow peak $\sim e^{-(\vec{p}-\vec{q})^2R^2}$ (and $\sim e^{-(\vec{p}+\vec{q})^2R^2}$).

 C_{BE} - the coherent (or nonfactorizable) contribution is suppressed ∼ 1/ $R^2Q_T^2$ but is "wide" in momentum space $\sim e^{-(\vec{p}-\vec{q})^2/Q_s^2}$ (and $\sim e^{-(\vec{p}+\vec{q})^2/Q_s^2}$).

For $N \sim$ several, both should be visible. Measure correations with better bin resolution $\Delta \sim 300 - 400$ Mev and one should see that the ridge has structure. Of course, provided final state interactions don't destroy the signal admittedly this HBT signal is fragile.

Still an interesting possibility: measure proton radius in HBT at $\delta\eta \gg 1$, this is certainly a direct initial state effect! η are Alex Kovner (University of Connecticut) [Initial State Correlations](#page-0-0) July 29, 2015 14 / 21

Now that we have the density matrix, we can do things with it.

$$
\hat{\rho} = e^{-\int_{k} \frac{g^{2} \mu^{2}(k)}{2k^{4}} k^{i} k^{j} \phi_{b}^{i}(k) \phi_{b}^{i}(-k)} \left\{ \sum_{n=0}^{+\infty} \frac{1}{n!} \left[\prod_{m=1}^{n} \int_{p_{m}} \frac{g^{2} \mu^{2}(p_{m})}{p_{m}^{4}} p_{m}^{i_{m}} \phi_{a_{m}}^{i_{m}}(p_{m}) \right] |0\rangle \right.
$$

$$
\times \langle 0| \left[\prod_{m=1}^{n} p_{m}^{j_{m}} \phi_{a_{m}}^{j_{m}}(-p_{m}) \right] \left\} e^{-\int_{k'} \frac{g^{2} \mu^{2}(k')}{2k'^{4}} k'^{i'} k'^{j'} \phi_{c}^{i'}(k') \phi_{c}^{i'}(-k')
$$

with

$$
\phi^i_a(k) = a^i_a(k) + a^{i\dagger}_a(-k); \qquad a^i_a(k) = \frac{1}{\sqrt{Y}} \int_{|\eta < Y/2|} \frac{d\eta}{2\pi} a^i_a(\eta, k)
$$

Immediate thought: let us calculate entropy MV model!.

Initial wave function: Entanglement entropy of soft modes

$$
\sigma^E = \mathop{tr}[\hat{\rho} \ln \hat{\rho}]
$$

Alex Kovner (University of Connecticut) [Initial State Correlations](#page-0-0) July 29, 2015 15 / 21

Entanglement Entropy

How to calculate ln?

The standard "replica trick":

$$
\ln \hat{\rho} = \lim_{\epsilon \to 0} \frac{1}{\epsilon} \left(\hat{\rho}^{\epsilon} - 1 \right)
$$

Calculate ρ^N and take $N \to 0$. N copies of the field - replicas, do the job. Define:

$$
M_{ij} \equiv g^2 \int_{u,v} \mu^2(u,v) \frac{(x-u)_i}{(x-u)^2} \frac{(y-v)_j}{(y-v)^2} \delta^{ab}
$$

The result

$$
\sigma^E = \frac{1}{2} \text{tr} \left\{ \ln \frac{M}{\pi} + \sqrt{1 + \frac{4M}{\pi}} \ln \left[1 + \frac{\pi}{2M} \left(1 + \sqrt{1 + \frac{4M}{\pi}} \right) \right] \right\}
$$

 200

Calculating σ^E

Translationally invariant limit (and original MV model):

$$
M_{ij}^{ab}(p) = g^2 \mu^2 \frac{p_i p_j}{p^4} \delta^{ab}
$$

For small M, or the UV contribution

$$
\sigma_{UV}^E = tr \left[\frac{M}{\pi} \ln \frac{\pi e}{M} \right] = - \frac{N_c^2 - 1}{\pi} S \int_{p^2 > \frac{Q_s^2}{g^2}} \frac{d^2 p}{(2\pi)^2} \frac{Q_s^2}{g^2 p^2} \ln \frac{Q_s^2}{eg^2 p^2}
$$

where $Q_{\!s}^2=\frac{{\bf g}^4}{\pi}$ $\frac{g^4}{\pi}\mu^2$ In all σ^E is formally UV divergent

$$
\sigma_{UV}^E = \frac{Q_s^2}{4\pi g^2} (N_c^2 - 1) S \left[\ln^2 \frac{g^2 \Lambda^2}{Q_s^2} + \ln \frac{g^2 \Lambda^2}{Q_s^2} \right]
$$

The large M, IR contribution is

$$
\sigma_{IR}^E \simeq \frac{1}{2} \, tr[\ln \frac{e^2 M}{\pi}] = \frac{N_c^2 - 1}{2} \, S \, \int_{p_2 < \frac{Q_s^2}{g^2}} \frac{d^2 p}{(2\pi)^2} \, \ln \frac{e^2 Q_s^2}{g^2 p^2} = \frac{3(N_c^2 - 1)}{8\pi g^2} S Q_s^2
$$

Alex Kovner (University of Connecticut) [Initial State Correlations](#page-0-0) July 29, 2015 17 / 21

$$
\sigma \approx \sigma_{UV}^E + \sigma_{IR} = \frac{SQ_s^2}{4\pi g^2} (N_c^2 - 1) \left[\ln^2 \frac{g^2 \Lambda^2}{Q_s^2} + \ln \frac{g^2 \Lambda^2}{Q_s^2} + \frac{3}{2} \right]
$$

UV divergent: the divergence is cutoff physically at $\Lambda \sim Me^{Y_0} \gg M$. where eikonal approximation breaks down.

 σ^E is not extensive in rapidity: ony one longitudinal mode (rapidity independent) is entangled with valence degrees of freedom.

Similar to "topological entropy": insensitive to boundary region between the modes.

But not quite what we would like to know.

Entropy of the produced system.

Long story short: entropy of the system of produced particles is formally very similar

$$
\sigma^P = \frac{1}{2} \langle tr \left\{ \ln \frac{M^P}{\pi} + \sqrt{1 + \frac{4M^P}{\pi}} \ln \left[1 + \frac{\pi}{2M^P} \left(1 + \sqrt{1 + \frac{4M^P}{\pi}} \right) \right] \right\} \rangle_T
$$

with

$$
M^{P} \equiv g^{2} \int_{u,v} \mu^{2}(u,v) \frac{(x-u)_{i}}{(x-u)^{2}} \frac{(y-v)_{j}}{(y-v)^{2}} \left[(S(u)-S(x))(S^{\dagger}(v)-S^{\dagger}(y)) \right]^{ab}
$$

Here $\langle \ldots \rangle_T$ is average over the target.

$$
\langle M^P \rangle_T = \delta^{ab} \frac{Q_P^2 \pi}{g^2} \int_z \frac{(x-z)_i}{(x-z)^2} \frac{(y-z)_j}{(y-z)^2} [P_A(x,y) + 1 - P_A(x,z) - P_A(z,y)]
$$

 P_A - S-matrix of an adjoint dipole on the target Q_p - saturation momentum of the **projectile**.

Alex Kovner (University of Connecticut) [Initial State Correlations](#page-0-0) July 29, 2015 19 / 21

Expand σ^P around \bar{M} (dilute projectile limit):

$$
\sigma^P = \text{tr}\left[\frac{\bar{M}}{\pi} \ln \frac{\pi e}{\bar{M}}\right] - \frac{1}{2\pi} \text{ tr}\left[\left\langle \langle (M^P - \bar{M}) (M^P - \bar{M}) \rangle_T \right\rangle \bar{M}^{-1}\right] \dots
$$

 \overline{M} is almost single inclusive gluon.

Second term - almost **correlated part** of double inclusive gluon production.

Correlations between gluons decrease entropy of the produced state.

We can naturally define **temperature** through: $T^{-1} = \frac{d\sigma}{dE}$ dE_T

Keeping only mean field term in the entropy: $T = \frac{\pi}{2} < k_T > 1$.

 Ω

- Initial state has some pretty interesting and easily understandabe physics.
- Perhaps it is seen in p-p (p-A) ridge?
- If it is not, it would be nice to understand whether it can be seen elsewhere. What you can calculate, you should be able to measure!