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Introduction

The Color Glass Condensate effective theory is the pQCD description
of the wavefunction of a very energetic hadron

non-linear effects associated with the high gluon density

Via appropriate factorization schemes, it controls various high-energy
processes: DIS, proton-nucleus, nucleus-nucleus (initial conditions)

“Effective theory” : high-energy evolution described by pQCD

Balitisy-JIMWLK hierarchy ≈ BK equation (at large Nc)

non-linear generalizations of the BFKL equation

The non-linear evolution has recently been promoted to NLO

running coupling corrections to BK (Kovchegov, Weigert; Balitsky, 07)
full NLO version of the BK equation (Balitsky, Chirilli, 08)
JIMWLK evolution at NLO (Kovner, Lublinsky, Mulian, 2013)

Large corrections enhanced by double or single transverse logarithms
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Introduction

Similar corrections were previously identified in the context of
NLO BFKL (Fadin, Kotsky, Lipatov, Camici, Ciafaloni ... 95-98)

Associated with high transverse momenta (weak scattering/low gluon
density) =⇒ cannot be cured by non-linear effects

For NLO BFKL, one has devised powerful resummation schemes ...
(Salam, Ciafaloni, Colferai, Stasto, 98-03; Altarelli, Ball, Forte, 00-03)

... which however were formulated in Mellin space

The non-linear evolution equation (JIMWLK, BK) are naturally
formulated in the transverse coordinate space (eikonal approximation)

A new strategy for resumming the large transverse logarithms, better
suited for non-linear evolution (arXiv:1502.05642)

An all-order resummed (‘collinearly-improved’) version of the BK
equation, as a powerful tool for phenomenology (arXiv:1507.03651)
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Outline

The prototype process at high energy: dipole-hadron scattering

BK equation at leading order (LO)

A glimpse at the NLO corrections

Double transverse logarithms & Time ordering

Adding single transverse logarithms (DGLAP, running coupling)

=⇒ a “collinearly improved” version of BK equation

Fits to the HERA data
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QCD evolution via Bremsstrahlung

Bremsstrahlung favors soft and collinear emissions:

dP =
αsNc

π

dx

x

dk2⊥
k2⊥

≡ ᾱs dY dρ

double logarithmic enhancement: Y ≡ ln(1/x), ρ ≡ ln(k2
⊥/Q

2
0)

evolution with increasing Y (decreasing x) : BFKL, BK, JIMWLK

evolution with increasing ρ (or k⊥) : DGLAP

common limit: ‘double logarithmic approximation’ (DLA): (ᾱsY ρ)n

Beyond leading-order (LO) : ‘cross-terms’ between BFKL and DGLAP
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Dipole–hadron scattering

A high-energy process interesting for both DIS and pA collisions

σγ∗p(Q
2, x) = 2πR2

p

∑
f

∫
d2r

∫ 1

0
dz
∣∣Ψf (r, z;Q2)

∣∣2 T (r, x)

x =
Q2

2P · q '
Q2

s
� 1 (Bjoerken’ x)

T (r, x) : scattering amplitude for a qq̄ color dipole with transverse size r

r2 ∼ 1/Q2 : the resolution of the dipole in the transverse plane

x : longitudinal fraction of a gluon from the target that scatters
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Dipole–hadron scattering

A high-energy process interesting for both DIS and pA collisions

Forward quark production in pA collisions

a quark from the proton undergoes transverse momentum broadening
via rescattering off the nucleus

cross-section = amplitude × complex conjugate amplitude
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Dipole–hadron scattering

A high-energy process interesting for both DIS and pA collisions

mathematically equivalent (to the accuracy of interest) to the elastic
scattering of a dipole (amplitude only)

dσ

dηd2p
= xq(x)

1

(2π)2

∫
d2xd2y e−ip·(x−y) Sxy

Sxy = 1− Txy : the dipole S-matrix (survival of the singlet state)
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Dipole–hadron scattering (γ∗p, γ∗A, pA, ...)

Dipole (‘projectile’): large q+, transverse resolution Q2 = 1/r2

Hadron (‘target’): large P−, saturation momentum Q2
0

Wilson lines : multiple scattering in the eikonal approximation

Sxy =
1

Nc
tr
(
V †xVy

)
, V †(x) = P exp

{
ig

∫
dx+A−a (x+,x)ta

}
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The target average: CGC

Average over the color fields (or charges) in the target :

〈Sxy〉 =

∫
[DA−]W [A−]

1

Nc
tr
(
V †xVy

)
[A−]

The CGC weight function W [A−] : kind of ‘functional pdf’

B semi-classical treatment of the gluons in the target: high density
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An instructive model (‘low energy’)

MV model (McLerran, Venugopalan, ’93) : a Gaussian weight function

〈Sxy〉 = e−〈T0(r)〉 ' exp

{
−1

4
r2Q2

0 ln
1

r2Λ2

}
B Q2

0 ∝ color charged squared/unit ⊥ area; Λ = IR cutoff (‘confinement’)

B 〈Txy〉 = 1− 〈Sxy〉 ∝ r2 as r → 0 : ‘color transparency’

B 〈Txy〉 ' 1 as r & 1/Qs0 : ‘unitarity’
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High energy evolution

Probability ∼ αs ln(1/x) to have additional, soft (x� 1), gluons

x ≡ k+/q+ : longitudinal momentum fraction of the emitted gluon

x2 =
k+

q+
� x1 =

p+

q+
� 1 , Y = ln

1

xmin
= ln

s

Q2
0

Leading logarithmic approx: resum (ᾱsY )n with n ≥ 1

strong ordering in x, no special ordering in k⊥
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High energy evolution

Probability ∼ αs ln(1/x) to have additional, soft (x� 1), gluons

x ≡ k+/q+ : longitudinal momentum fraction of the emitted gluon

Non-linear evolution, due to high gluon density in the target

projectile (dipole) evolution: Balitsky hierarchy, BK equation

target (CGC) evolution: JIMWLK equation (functional)

linear approximation (weak scattering) : BFKL
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One step in the high energy evolution

‘Real corrections’ : the soft gluon crosses the shockwave
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The BK equation

∂Sxy
∂Y

=
ᾱs
2π

∫
d2zMxyz

[
SxzSzy − Sxy

]
Dipole kernel: BFKL kernel in the dipole picture (Al Mueller, 1990)

Mxyz =
(x− y)2

(x− z)2(y − z)2
=

[
zi − xi

(z − x)2
− zi − yi

(z − y)2

]2
color transparency : Mxyz ∝ r2, hence Txy ∝ r2 as r → 0

good ‘infrared’ (large z⊥, small k⊥) behavior : dipole

Mxyz '
r2

(z − x)4
when |z − x| ' |z − y| � r

‘ultraviolet’ poles (z = x or z = y) cancel between ‘real’ and ‘virtual’

non-linear effects =⇒ unitarity bound : Txy ≤ 1
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LO BK : numerical solutions
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LO BK : numerical solutions
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Next-to-leading order

Two successive emissions strongly ordered in p+ (or x) : ∼ (ᾱsY )2

two iterations of BK : part of the LO evolution

BNL, Long Island, July 2015 Collinearly-improved CGC Edmond Iancu 15 / 33



Next-to-leading order

Two successive emissions strongly ordered in p+ (or x) : ∼ (ᾱsY )2

two iterations of BK : part of the LO evolution

‘NLO’ : any effect of O(ᾱ2
sY )

the prototype: two successive emissions, one soft and one non-soft

Caution: two strongly-ordered emissions contribute to NLO as well

in fact, they give the largest NLO corrections (see below)

BNL, Long Island, July 2015 Collinearly-improved CGC Edmond Iancu 15 / 33



Some NLO graphs

NLO graphs too can be ‘real’ or ‘virtual’

They can involve quark loops as well
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BK equation at NLO
Balitsky, Chirilli (arXiv:0710.4330 [hep-ph]) : Nf = 0, large Nc

dSxy

dY
=
ᾱs

2π

∫
d

2
z

(x−y)2

(x−z)2(y−z)2

(
SxzSzy − Sxy

){
1 +

+ ᾱs

[
b̄ ln(x−y)

2
µ

2 − b̄
(x−z)2 − (y−z)2

(x−y)2
ln

(x−z)2

(y−z)2

+
67

36
−
π2

12
−

1

2
ln

(x−z)2

(x−y)2
ln

(y−z)2

(x−y)2

]}

+
ᾱ2
s

8π2

∫
d2u d2z

(u−z)4

(
SxuSuzSzy − SxuSuy

)
{
−2 +

(x−u)2(y−z)2 + (x−z)2(y−u)2 − 4(x−y)2(u−z)2

(x−u)2(y−z)2 − (x−z)2(y−u)2
ln

(x−u)2(y−z)2

(x−z)2(y−u)2

+
(x−y)2(u−z)2

(x−u)2(y−z)2

[
1 +

(x−y)2(u−z)2

(x−u)2(y−z)2 − (x−z)2(y−u)2

]
ln

(x−u)2(y−z)2

(x−z)2(y−u)2

}

blue : leading-order (LO) terms

red : NLO terms enhanced by (double or single) transverse logarithms

black : pure ᾱ2
s effects (no logarithms)
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Large transverse logarithms

Running coupling corrections: proportional to b̄ = 11
12 − 1

6
Nf
Nc

taken care off via ‘standard’ prescriptions; see below

Collinear logarithms: ratios of widely separated dipole sizes

the double-logarithmic correction is already manifest

−1

2
ln

(x−z)2

(x−y)2
ln

(y−z)2

(x−y)2
' −1

2
ln2 (x−z)2

r2
if |z − x| ' |z − y| � r

the single logs are still hidden: needs to perform the integral over u

1/Qs � |z − x| ' |z − y| ' |z − u| � |u− x| ' |u− y| � r

all dipoles are relatively small (� 1/Qs): weak scattering

... but such that their sizes are strongly increasing:

=⇒ logarithmic phase-space for the intermediate gluon at u

N.B. Collinear logs are important at weak scattering (dilute target)
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Unstable numerical solution

Keeping just the collinear logarithms =⇒

dT (r)

dY
= ᾱs

∫ 1/Q2
s

r2

dz2 r
2

z4

(
1− 1

2
ᾱs ln2 z

2

r2
− 11

12
ᾱs ln

z2

r2

)
T (z)
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The main source of instability: the double collinear logarithm
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Double logarithms in the QCD evolution

Where do the double collinear logs come from ?

Bremsstrahlung naturally introduces double-logarithmic corrections ...

dP =
αsNc

π

dx

x

dk2⊥
k2⊥

= ᾱs dY dρ

... but an energy logarithm times a collinear one !

Hint: From a constraint on the energy phase-space ...

Y > ρ =⇒ ᾱsY ρ −→ ᾱs(Y − ρ)ρ = ᾱsY ρ− ᾱsρ2

... which is introduced by time ordering
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Time ordering

To get double logs, successive emissions must be strongly ordered in ...

in longitudinal momentum : q+ � p+ � k+ · · · � q+
0

in transverse momentum/size: Q2 � p2
⊥ � k2

⊥ · · · � Q2
s

in lifetime: τp = p+/p2
⊥ � τk = k+/k2

⊥ (factorization)

Both p+ and p2⊥ are decreasing ⇒ potential conflict with time ordering
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Time ordering

To get double logs, successive emissions must be strongly ordered in ...

p+

p2⊥
>

k+

k2⊥
=⇒ p+

k+
>

p2⊥
k2⊥

=⇒ ∆Y ≡ ln
p+

k+
> ∆ρ ≡ ln

p2⊥
k2⊥

This condition enters perturbation theory via energy denominators
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Two successive emissions: p+ � k+

Light-cone (time-ordered) perturbation theory: physics is transparent

mixed F representation (p+, t ≡ x+), with p− = p2
⊥/2p

+ = 1/τp

the time integrals yield energy denominators

1∑
i∈interm

k−i − P−0
' 1

p− + k−

x

y

z, k+

z, k+

u, p+

u, p+p
p

k k

p̃

k̃ k̃

(a) (b)

t1 t2

⌧1

⌧2

1

p+u2 + k+z2
=

1

p+u2
p+u2

p+u2 + k+z2
' 1

p+u2
Θ(p+u2 − k+z2)
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Two successive emissions: p+ � k+

Light-cone (time-ordered) perturbation theory: physics is transparent

mixed F representation (p+, t ≡ x+), with p− = p2
⊥/2p

+ = 1/τp

the time integrals yield energy denominators

1∑
i∈interm

k−i − P−0
' 1

p− + k−

x

y

z, k+

z, k+

u, p+

u, p+p
p

k k

p̃

k̃ k̃

(a) (b)

t1 t2

⌧1

⌧2

Integrate out the harder gluon (p+,u) to double-log accuracy:

ᾱs

∫ z2

r2

du2

u2

∫ q+

k+

dp+

p+
Θ(p+u2 − k+z2) = ᾱsY ρ−

ᾱsρ
2

2

the expected LO contribution ᾱsY ρ

NLO contribution ᾱsρ2 to the kernel for emitting a softer gluon (k+, z)
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The double logarithmic approximation (DLA)

Enforce time-ordering in the ‘naïve’ DLA limit of BFKL =⇒ DLA 2.0

∂Txy
∂Y

=
ᾱs
2π

∫
d2zMxyz

[
Txz + Tzy − Txy

]
large daughter dipoles: 1/Q0 � |z − x| ' |z − y| � r

=⇒ Mxyz '
r2

(z − x)4

T (r) ∝ r2 =⇒ Txz ' Tzy � Txy : only ‘real’ terms matter

∂T (Y, r2)

∂Y
= ᾱs

∫ 1/Q2
0

r2

dz2

z2

r2

z2
T (Y, z2)

∂T (Y, ρ)

∂Y
= ᾱs

∫ ρ

0

dρ1 e−(ρ−ρ1) T (Y − ρ+ ρ1, ρ1)

introduce time-ordering =⇒ non-local in Y
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The double logarithmic approximation (DLA)

Enforce time-ordering in the ‘naïve’ DLA limit of BFKL =⇒ DLA 2.0

∂Txy
∂Y

=
ᾱs
2π

∫
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=⇒ Mxyz '
r2

(z − x)4

T (r) ∝ r2 =⇒ Txz ' Tzy � Txy : only ‘real’ terms matter

∂T (Y, ρ)

∂Y
= ᾱs

∫ ρ

0

dρ1 e−(ρ−ρ1) T (Y, ρ1)

introduce logarithmic variable ρ ≡ ln(1/r2Q2
0)

∂T (Y, ρ)

∂Y
= ᾱs

∫ ρ

0

dρ1 e−(ρ−ρ1) T (Y − ρ+ ρ1, ρ1)

introduce time-ordering =⇒ non-local in Y
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The double logarithmic approximation (DLA)

Enforce time-ordering in the ‘naïve’ DLA limit of BFKL =⇒ DLA 2.0

∂Txy
∂Y
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DLA 2.0

The importance of time-ordering has since long been recognized

coherence effects, kinematical constraint, choice of rapidity scale ...
Ciafaloni (88), CCFM (90), Lund group (Andersson et al, 96),
Kwiecinski et al (96), Salam (98) ... Motyka, Stasto (09), G. Beuf (14)

This is more than a prescription: it is a systematic approximation

resums powers of ᾱsY ρ and ᾱsρ2 to all orders

more precisely: all terms of order ᾱnsY kρ2n−k, n ≥ 1 and 0 ≤ k ≤ n

However, in order to be useful, this should also include

the terms of order (ᾱsY )n, n ≥ 1 (‘BFKL’)

the non-linear effects expressing saturation (‘BK’)

To that aim, one would need a ‘genuine’ evolution equation, local in Y

Does it exist ? Not a priori clear !
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Getting local

T (Y, ρ) = T (0, ρ) + ᾱs

∫ ρ

0
dρ1 e−(ρ−ρ1)

∫ Y−ρ+ρ1

0
dY1 T (Y1, ρ1)

For Y ≥ ρ, the solution T (Y, ρ) to the above equation coincides with
the solution T̃ (Y, ρ) to the following problem:

T̃ (Y, ρ) = T̃ (0, ρ) + ᾱs

∫ Y

0
dY1

∫ ρ

0
dρ1 e−(ρ−ρ1)KDLA(ρ− ρ1)T̃ (Y1, ρ1)

with the following, all-orders, kernel:

KDLA(ρ) =
J1
(
2
√
ᾱsρ2

)√
ᾱsρ2

= 1− ᾱsρ
2

2
+

(ᾱsρ
2)2

12
+ · · ·

... and the following, all-orders, initial condition:

T̃ (0, ρ) = T (0, ρ)−√ᾱs
∫ ρ

0
dρ1 e−(ρ−ρ1) J1

(
2
√
ᾱs(ρ− ρ1)2

)
T (0, ρ1)
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Adding the single transverse logarithms

Recall the NLO equation with all the single logs

dT (r)

dY
= ᾱs

∫
dz2

r2

z4

{
1− ᾱs

(
1

2
ln2 z

2

r2
+

11

12
ln
z2

r2
− b̄ ln r2µ2

)}
T (z)

The double-logarithm is already included within KDLA(ρ) X
The collinear single-log comes from the DGLAP regime:

one soft (x� 1) emission + one non-soft (x ∼ 1) one

coefficient A1 = 11/12 related to the DGLAP anomalous dimension:

γ(ω) =

∫ 1

0

dz zω
[
Pgg(z) +

CF

Nc
Pqg(z)

]
=

1

ω
−A1 +O

(
ω,

Nf

N3
c

)
can be resummed by including the A1 piece of γ(ω) into KDLA(ρ) X

The running coupling log is resummed by replacing ᾱs → ᾱs(r
2) X
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Extending to BFKL/BK

In the DLA regime (strong ordering in k⊥) we have so far obtained

∂T̃ (Y, ρ)

∂Y
= ᾱs(ρ)

∫ ρ

0

dρ1 e−(1+ᾱsA1)(ρ−ρ1)KDLA(ρ− ρ1) T̃ (Y, ρ1)

LLA: daughter dipoles can also be comparable/smaller than the parent
match onto the known result at NLLA:

KDLA ' 1− ᾱs
2

ln2 z
2

r2
→ 1− ᾱs

2
ln

(x−z)2

(x−y)2
ln

(y−z)2

(x−y)2

restore the virtual and the non-linear terms

extend the prescription for RC using guidance from DGLAP

dT̃xy
dY

=

∫
d2z

2π
ᾱs(rmin)

(x−y)2

(x−z)2(z−y)2

(
T̃xz + T̃zy − T̃xy − T̃xzT̃zy

)
×
[

(x−y)2

min{(x−z)2, (y−z)2}

]±ᾱsA1

KDLA

(
ρ̄(x,y, z)

)
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Numerical solutions
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Fixed coupling ᾱs = 0.25, double collinear logs alone

left: expanded to NLO
right: resummed to all orders

The resummation stabilizes & slows down the evolution
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Numerical solutions
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Fixed coupling ᾱs = 0.25, double collinear logs alone

left: saturation exponent λs ≡ d lnQ2
s(Y )/dY

LO: λs ' 4.88ᾱs ' 1 (for Y & 10)

DLA resummed: λs ' 0.5
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Numerical solutions
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Further slowing down when including the single collinear logs
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Numerical solutions
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... and even more so after also using a running coupling
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Fitting the HERA data (1)

Use numerical solutions to collinearly-improved running-coupling BK
equation using initial conditions which involve free parameters

a similar strategy as for the DGLAP fits

Various choices for the initial condition at Y = Y0 :

GBW : T (Y0, r) =

{
1− exp

[
−
(
r2Q2

0

4

)p]}1/p

rcMV : T (Y0, r) =

{
1− exp

[
−
(
r2Q2

0

4
ᾱs(CMVr)

[
1 + ln

(
ᾱsat

ᾱs(CMVr)

)])p]}1/p

One loop running coupling with scale µ = 2Cα/r :

αs(r) =
1

b0 ln
[
4C2

α/(r
2Λ2)

] , with r = min{|x−y|, |x−z|, |y−z|}

Up to 5 free parameters: Rp (proton radius), Q0, p, Cα, (CMV)
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Fitting the HERA data (2)

3 light quarks + charm quark, all treated on the same footing

quark masses are not fit parameters, but they are varied to test the
sensitivity of the fit

good quality fits for mu,d,s = 50÷ 140 MeV and mc = 1.3 or 1.4 GeV

The most recent HERA data for the reduced photon-proton
cross-section (combined analysis by ZEUS and H1)

small Bjoerken x: x ≤ 0.01

not very high Q2 : Q2 < Q2
max with Q2

max = 50÷ 400 GeV2

Good quality fits: χ2 per point around 1.1-1.2

Very discriminatory: the fits favor

rcMV initial condition (pQCD + saturation)

physical prescriptions for RC: smallest-dipole, FAC

physical values for the free parameters
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Fitting the HERA data (2)

3 light quarks + charm quark, all treated on the same footing

quark masses are not fit parameters, but they are varied to test the
sensitivity of the fit

good quality fits for mu,d,s = 50÷ 140 MeV and mc = 1.3 or 1.4 GeV

The most recent HERA data for the reduced photon-proton
cross-section (combined analysis by ZEUS and H1)

small Bjoerken x: x ≤ 0.01

not very high Q2 : Q2 < Q2
max with Q2

max = 50÷ 400 GeV2

Good quality fits: χ2 per point around 1.1-1.2

Very discriminatory: the fits disfavor
fixed coupling MV, GBW at high Q2

Balitsky prescriptions for RC

‘anomalous dimension’ γ > 1 in the initial condition
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The Fit in tables

init RC sing. χ2 per data point parameters
cdt. schm logs σred σcc̄red FL Rp[fm] Q0[GeV] Cα p CMV
GBW small yes 1.135 0.552 0.596 0.699 0.428 2.358 2.802 -
GBW fac yes 1.262 0.626 0.602 0.671 0.460 0.479 1.148 -
rcMV small yes 1.126 0.578 0.592 0.711 0.530 2.714 0.456 0.896
rcMV fac yes 1.222 0.658 0.595 0.681 0.566 0.517 0.535 1.550
GBW small no 1.121 0.597 0.597 0.716 0.414 6.428 4.000 -
GBW fac no 1.164 0.609 0.594 0.697 0.429 1.195 4.000 -
rcMV small no 1.097 0.557 0.593 0.723 0.497 7.393 0.477 0.816
rcMV fac no 1.128 0.573 0.591 0.703 0.526 1.386 0.502 1.015

init RC sing. χ2/npts for Q2
max

cdt. schm logs 50 100 200 400
GBW small yes 1.135 1.172 1.355 1.537
GBW fac yes 1.262 1.360 1.654 1.899
rcMV small yes 1.126 1.172 1.167 1.158
rcMV fac yes 1.222 1.299 1.321 1.317
GBW small no 1.121 1.131 1.317 1.487
GBW fac no 1.164 1.203 1.421 1.622
rcMV small no 1.097 1.128 1.095 1.078
rcMV fac no 1.128 1.177 1.150 1.131
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The Fit in plots

0
0.05

0.1
0.15

0.2 0.045
m

re
d

0.065 0.085 0.1 0.15

0
0.1
0.2
0.3
0.4
0.5

10-6 10-5 10-4

0.2

m
re

d

x
10-6 10-5 10-4

0.25

x
10-6 10-5 10-4

0.35

x
10-6 10-5 10-4

0.4

x
10-6 10-5 10-4

0.5

x

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

0.65

m
re

d

0.85 1.2 1.5 2

0
0.2
0.4
0.6
0.8

1
1.2

10-5 10-4 10-3

2.7

m
re

d

x
10-5 10-4 10-3

3.5

x
10-5 10-4 10-3

4.5

x
10-5 10-4 10-3

6.5

x
10-5 10-4 10-3

8.5

x

0
0.2
0.4
0.6
0.8

1
1.2
1.4 10

m
re

d

12 15 18 22

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

10-3 10-2

27

m
re

d

x
10-3 10-2

35

x
10-3 10-2

45

x

r2

1.13
1.22
1.10
1.13

hs
0.22
0.24
0.20
0.23

HERA data
small, DL+SL
fac, DL+SL
small, DL
fac, DL

BNL, Long Island, July 2015 Collinearly-improved CGC Edmond Iancu 33 / 33



The Fit in plots
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The Fit in plots
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The Fit in plots
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Rather stable predictions for the saturation line and the shape of the
initial amplitude
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