Fluctuating Hydrodynamics Confronts the Rapidity Dependence of Transverse Momentum Fluctuations

George Moschelli and Rajendra Pokharel Lawrence Technological University Sean Gavin National Contract of the Contract of the Wayne State University

- I. Motivation: impact of viscosity on fluctuations and correlations
- II. Hydrodynamics modes: fluctuations and dissipation
	- a. Viscous diffusion of transverse shear modes
	- b. 1^{st} and 2^{nd} order hydrodynamics

i
I

III. Contributions to correlation measurements

Work in progress!

Transverse Momentum Fluctuations

small variations in transverse flow in each event

viscous friction as fluid elements flow past one another

shear viscosity drives velocity toward the average

$$
T_{zr} = -\eta \, \partial v_r / \partial z
$$

damping of transverse flow fluctuations \Longrightarrow viscosity

viscosity: SG & Abdel-Aziz, PRL 97 (2006) 162302 **baryon diffusion:** SG & Abdel-Aziz, PR C70 (2004) 034905 **ϕ correlations (CME):** Pratt, Schlichting, SG, PR C84 (2011) 024909

Momentum in Fluctuating Hydrodynamics

momentum current – small fluctuations $M_i \equiv T_{0i} - \langle T_{0i} \rangle \approx (e+p)v_i \approx sTv_i$

momentum conservation – linearized Navier-Stokes

$$
\partial_t M_i + \nabla_i p = \frac{\eta/3 + \zeta}{sT} \nabla_i (\vec{\nabla} \cdot \vec{M}) + \frac{\eta}{sT} \nabla^2 M_i
$$

Helmholtz decomposition:

$$
\vec{M} \equiv \vec{g}_L + \vec{g}
$$

"longitudinal" mode:

$$
\vec{\nabla}\times\vec{g}_L=0
$$

$$
= 0
$$
 "transverse" modes: $\vec{\nabla} \cdot \vec{g} = 0$

Hydrodynamic Modes

transverse modes: **viscous diffusion**

$$
\partial_t \vec{g} = v \nabla^2 \vec{g}, \qquad \qquad v = \eta / Ts
$$

• no transverse 'sound waves' • vorticity rse `sound **
 $\vec{\omega} \propto \vec{\nabla} \times \vec{g}$

longitudinal modes

$$
\partial_t \vec{g}_L + \vec{\nabla} p = \frac{\frac{4}{3} \eta + \zeta}{sT} \vec{\nabla} (\vec{\nabla} \cdot \vec{g}_L)
$$

sound waves – compression waves, damped by viscosity **thermal diffusion** – heat flow relative to baryons longitudinal modes + energy and baryon conservation imply:

Transverse Flow Fluctuations

transverse velocity fluctuations \rightarrow vorticity \rightarrow "transverse" shear modes

$$
T_{0i} - \langle T_{0i} \rangle \approx g_i \qquad \qquad T_{ji}^{diss} \approx -\eta \nabla_j v_i = -\nu \nabla_j g_i + \text{Langevin noise}
$$

diffusion equation for momentum current

correlation function

measures deviation of fluctuations from mean

$$
\frac{\partial}{\partial t}g_r = v\nabla^2(g_r + \text{noise})
$$

$$
r = \langle g_r(x_1)g_r(x_2) \rangle - \langle g_r(x_1) \rangle \langle g_r(x_2) \rangle
$$

Rapidity Dependence of Transverse Momentum Correlations

momentum flux density correlation function

$$
r = \langle g_r(x_1)g_r(x_2) \rangle - \langle g_r(x_1) \rangle \langle g_r(x_2) \rangle
$$

spatial rapidity

$$
\Delta r = r - r_{eq}
$$
 satisfies diffusion equation

Gardiner, Handbook of Stochastic Methods, (Springer, 2002)

fluctuations diffuse through volume, driving $r \rightarrow r_{eq}$

width in relative spatial rapidity grows $y = \sinh^{-1} z / \tau$ from initial value σ_0

$$
\sigma^2 = {\sigma_0}^2 + 4\frac{\eta}{Ts} \left(\frac{1}{\tau_0} - \frac{1}{\tau} \right)
$$

Diffusion vs. Wave Motion

Diffusion (1st Order)

- Gaussian peak spreads
- tails violate causality

Wave propagation – e.g. sound waves

- peak splits into left and right traveling pulses
- propagation speed c_s

2nd Order Viscous Diffusion

causal transport equation:

- transverse modes
- derived from linearized Israel-

$$
\left(\tau_{\pi}\frac{\partial^2}{\partial t^2} + \frac{\partial}{\partial t} - \nu\left(\nabla_1^2 + \nabla_2^2\right)\right)\Delta r = 0
$$

Stewart hydro equations
relaxation time $\tau_{\pi} \sim$ (mean free path)/(thermal speed)

coordinate space:

- wave-fronts traveling at speed = $(v/\tau_{\pi})^{1/2}$
- diffusion-like behavior in between
- no peak at $\Delta z = 0$

 $\Delta r = r - r_{eq}$

2nd Order Viscous Diffusion in Rapidity

$$
\left(\tau_{\pi}\frac{\partial^2}{\partial \tau^2} + \frac{\partial}{\partial \tau} - \frac{v}{\tau^2} \left(\frac{\partial^2}{\partial \eta_1^2} + \frac{\partial^2}{\partial \eta_2^2}\right)\right) \Delta r = 0
$$

spatial rapidity

• rapidity separation of fronts saturates

 $Δη ~Δz/τ$

• profile depends on initial width σ_0

2nd Order Viscous Diffusion in Rapidity

$$
\left(\tau_{\pi}\frac{\partial^2}{\partial \tau^2} + \frac{\partial}{\partial \tau} - \frac{v}{\tau^2} \left(\frac{\partial^2}{\partial \eta_1^2} + \frac{\partial^2}{\partial \eta_2^2}\right)\right) \Delta r = 0
$$

spatial rapidity

• rapidity separation of fronts saturates

Δη ~ Δz/τ

• profile depends on initial width σ_0

Measuring the Correlations

r = *gt*(*x*¹)*gt*(*x*²) − *gt*(*x*¹) *gt*(*x*² **correlation function**)

$$
r = \langle g_t(x_1)g_t(x_2) \rangle - \langle g_t(x_1) \rangle \langle g_t(x_2) \rangle
$$

 $\bf observed$ $\bf blue$:

$$
C = \frac{1}{\langle N \rangle^2} \left\langle \sum_{\text{pairs}} p_{ti} p_{tj} \right\rangle - \left\langle p_t \right\rangle^2 = \frac{1}{\langle N \rangle^2} \int (r - r_{eq}) dx_1 dx_2
$$

Abdel-Aziz & S.G., PRL 97 (2006) 162302; PR C70 (2004) 034905 Pratt, Schlichting, SG, Phys. Rev. C 84 (2011) 024909

p_t Covariance Measured

measured: rapidity width of near side peak

- \cdot fit peak + constant offset
- offset is ridge, i.e., long range rapidity correlations
- report rms width of the peak

 $\sigma_{\text{peripheral}} = 0.54 \pm 0.02$ $\sigma_{\text{central}} = 1.0 \pm 0.2$ **find:** width increases in central collisions

Rapidity Width Increases in Central Collisions

Central vs. peripheral increase consistent with $\eta/s = 0.17 \pm 0.08$

0 100 200 300

Npart

2nd Order Viscous Diffusion

Pokharel, Moschelli, S.G. in preparation

⎟ Δ*r* **causal transport equation:** *^g*

$$
\left(\tau_{\pi}\frac{\partial^2}{\partial \tau^2} + \frac{\partial}{\partial \tau} - \frac{\eta}{sT}\left(\nabla_1^2 + \nabla_2^2\right)\right)\Delta r_g = 0
$$

kinetic theory $\tau_{\pi} = \beta (\eta / sT)$ β ≈ 5 relaxation time $\tau_{\pi} \sim$ (mean free path)/(thermal speed)

temperature vs time:

ds d^τ + *s* τ = Φ *T*^τ $\frac{d\Phi}{d\tau} = -\frac{1}{\tau_{\pi}}$ $\Phi - \frac{4\eta}{2}$ 3τ $\big($ $\left(\Phi - \frac{4\eta}{3\tau}\right) - \left|\frac{1}{\tau}\right|$ $+\frac{\eta T}{\eta}$ $\tau_{_\pi}$ *d d*^τ $\tau_{_\pi}$ ^η*T* \int \setminus \overline{a} \overline{a} $\mathsf L$ \lfloor $\left(\frac{1}{\tau}+\frac{\eta T}{\tau}\frac{d}{d\tau}\left(\frac{\tau_{\pi}}{nT}\right)\right)$ $\overline{\mathsf{I}}$ $\overline{}$ Φ 2 entropy production: *TdS/dt* = viscous heating relaxation equation: causality delays heating

Minimum Viscosity Near Tc

sQGP viscosity Hirano & Gyulassy

- pQCD at high T; hadron gas at low T
- limit at T = T_c: $\eta / s = 1/4\pi$

EOS-I – Niemi, Denicol et al.

- Lattice HotQCD Collaboration
- Lattice viscosity T > TC Nakamura & Sakai
- Hagadorn HG Noronha-Hostler et al.

EOS-II – Hirano & Gyulassy

- Bag Model EOS
- QGP viscosity $T > T_c -$ Danielewicz & Gyulassy
- Pion gas $T < T_c -$ Gavin

Time Dependence of Correlation Profile

Compute contribution from early time diffusion in rapidity

$$
\left(\tau_{\pi}\frac{\partial^2}{\partial \tau^2} + \frac{\partial}{\partial \tau} - \frac{v}{\tau^2} \left(\frac{\partial^2}{\partial \eta_1^2} + \frac{\partial^2}{\partial \eta_2^2}\right)\right) \Delta r = 0
$$

Gaussian initial profile, fixed width

 $\sigma_{\text{o}} \approx \sigma_{\text{peripheral}}$

Separate peaks?

depends on EOS through $v(\tau)$

Rapidity Dependence of Covariance vs. Centrality

C. Pruneau, M. Sharma (STAR) private communications

2nd Order Diffusion, EOS I $d\Delta r/d\tau|_0 = 0$, $\tau_0 = 0.91$ fm $\tau_F(b=0) = 12.7$ fm $T_c = 155$ MeV $T_F = 143$ MeV freeze out time $\tau_F - \tau_0 \propto (R - R_0)^2$

 $T_0(b=0) = 209$ MeV

 $\sigma_0 = 0.50$

Important: tails inflate extracted widths

Rapidity Width of Momentum Covariance

Pokharel, Moschelli, S.G. in preparation

2nd Order Diffusion, EOS I $d\Delta r/d\tau|_0 = 0$, $\tau_0 = 0.91$ fm $\tau_F(b=0) = 12.7$ fm $T_c = 155$ MeV $T_F = 143$ MeV $T_0(b=0) = 209$ MeV $\sigma_0 = 0.50$

Important: reported widths include tails

1st Order Diffusion Can't Describe Rapidity Shape

1st Order Diffusion: Gaussian **Doesn't** Describe Shape

Gaussian initial distribution Δr at $\tau = \tau_0$, width σ_0

Initial derivative possibilities:

Near equilibrium

$$
\left. \frac{\partial \Delta r}{\partial \tau} \right|_{\tau = \tau_0} = \frac{v}{\tau^2} \left(\frac{\partial^2}{\partial \eta_1^2} + \frac{\partial^2}{\partial \eta_2^2} \right) \Delta r
$$

• fits valley better

Nonequilibrium:

$$
\left. \frac{\partial \Delta r}{\partial \tau} \right|_{\tau = \tau_0} = 0
$$

• better overall shape

Moschelli, Pokharel, S.G. in preparation

Near Equilibrium Initial Conditions Enhance Valley

1st Order Phase Transition Inconsistent

Prediction: Valley Disappears at Low Energy

 t_{Fe} = 9 fm

 $T_F = 0.1434 \text{ GeV}$

prominent valley at lower energy

Summary: rapidity dependence of p_t correlations

Hydro formulation: longitudinal and transverse modes

- Sound waves, shear modes, and heat modes
- Diffusive transverse shear modes important for rapidity dependence of p_t correlations
- 1st and 2nd order viscous fluctuating hydro description of shear modes

Causality shapes the rapidity dependence of correlations

Open Questions

- Influence of sound and heat modes on observables
- Charge balancing, resonances, jets, HBT

Covariance Measures Momentum Flux

covariance

$$
C = \frac{1}{\langle N \rangle^2} \left\langle \sum_{\text{pairs } i \neq j} p_{\text{ti}} p_{\text{tj}} \right\rangle - \left\langle p_{\text{t}} \right\rangle^2
$$

unrestr

unrestricted sum:
\n
$$
\sum_{\text{all }i,j} p_{ii} p_{ij} = \int p_{i1} p_{i2} dn_1 dn_2
$$
\n
$$
= \int dx_1 dx_2 \Big(\int dp_1 p_{i1} f_1 \Big) \Big(\int dp_2 p_{i2} f_2 \Big)
$$
\n
$$
= \Big(N \Big)^2 \Big(p_i \Big)^2 + \int g(x_1) g(x_2) dx_1 dx_2
$$

correlation function:

$$
r_g = \langle g_t(x_1)g_t(x_2) \rangle - \langle g_t(x_1) \rangle \langle g_t(x_2) \rangle
$$

$$
\int r_{g} dx_{1} dx_{2} = \left\langle \sum p_{ti} p_{tj} \right\rangle - \left\langle N \right\rangle^{2} \left\langle p_{t} \right\rangle^{2} = \left\langle \sum p_{ti}^{2} \right\rangle + \left\langle N \right\rangle^{2} C
$$

C =0 in equilibrium

$$
C = \frac{1}{\langle N \rangle^2} \int (r_g - r_{g, eq}) dx_1 dx_2
$$

Experimental Fit

