Anisotropic gluon distributions of a nucleus

Adrian Dumitru Baruch College, CUNY

INT Program INT-15-2b

Correlations and Fluctuations in p+A and A+A Collisions

anisotropy of gluon distribution in CGC formalism

 v₂ anisotropy from TMD factorization, dijets in eA DIS

Independent production of two gluons:

(pointed out by Kovner & Lublinsky)

Correlated two-gluon production / "glasma graphs":

$$v_n \{2\}^2 \equiv c_n \{2\} = \left\langle e^{in(\phi_1 - \phi_2)} \right\rangle$$
$$= \left\langle e^{in\phi_1} \right\rangle \left\langle e^{-in\phi_2} \right\rangle + \left\langle e^{in(\phi_1 - \phi_2)} \right\rangle_{\text{conn.}}$$

 factorized contribution not zero if target field breaks 2D rot. symmetry of 1-particle distrib. !

E-field of Abelian charges

- isotropic monopole fields
- dipole fields
- and some more "exotic" field line configurations, too

Java applet by M. J. McGuffin, Univ. of Toronto (uses ~1/r Coulomb potential for d= 3)

McLerran-Venugopalan (MV) model

- "valence" quarks & gluons described as recoilless charges on the light-cone (slow fields)
- act as sources for soft (small-x) gluon field

MV model action:
$$S_{\rm MV} = \int d^2 x_{\perp} dx^{-} \frac{\rho^a \rho^a}{2\mu^2}$$
 (dense sources) (C-even)

more
generally:
$$S_{\text{eff}} = \int d^2 x_{\perp} dx^{-} \left(\frac{\rho^a \rho^a}{2\mu^2} - \frac{d^{abc} \rho^a \rho^b \rho^c}{\kappa_3} + \frac{\delta^{ab} \delta^{cd} \rho^a \rho^b \rho^c \rho^d}{\kappa_4} + \cdots \right)$$

generate configuration $\rho^a(x_{\perp}, x^-)$ with weight exp(- $S_{MV}[\rho]$)

soft field (in cov. gauge)
$$-\nabla_{\perp}^{2}A^{+a} = g \rho^{a}$$
, $F^{+i} = -\partial^{i}A^{+}$
compute VEV of $\langle O[A^{+}] \rangle$ ex: $O[A^{+}] = \frac{1}{N} \operatorname{tr} V_{x} V_{y}^{\dagger}$

E-field in MV model (at some fixed b), *single configuration*

A.D. & V. Skokov, arXiv:1411.6630

$$\frac{1}{r^2} \frac{1}{N} \operatorname{Im} \operatorname{tr} V_{\vec{x}} V_{\vec{y}}^{\dagger}$$

cos(φ)
 + higher components

another nice configuration:

cos 2φ

cos 3φ

Extracting the amplitudes of $\cos(\phi)$, $\cos(2\phi)$, ...

$$\begin{split} 1 - \operatorname{Re} \, S_{\rho}(\vec{r}) &= \mathcal{N}(r) \left(1 + \sum_{n=1}^{\infty} A'_{2n}(r) \cos(2n\phi_r) \right)_{\text{dipole amplitude}} \\ \operatorname{Im} \, S_{\rho}(\vec{r}) &= \mathcal{N}(r) \sum_{n=0}^{\infty} A'_{2n+1}(r) \cos((2n+1)\phi_r) \\ & \text{odderon} \end{split}$$

the A_n' contain a random global phase (angular zero mode: $\varphi \rightarrow \varphi + \psi$) $[\rightarrow \langle A_n' \rangle = 0]$ which needs to be removed: $A_n = (\pi/2) |A_n'|$

So, we shall compute $\langle A_n \rangle$ (r) analogy: SSB for complex scalar field φ : $V(\phi) = -\frac{1}{2}m^2\phi\phi^* + \frac{1}{4}\lambda(\phi\phi^*)^2$, $(m^2, \lambda > 0)$ U(1) circle of degenerate vacua: $\phi_0 = \sqrt{\frac{m^2}{\lambda}}e^{i\alpha}$ (α is random) $\langle \phi \rangle = 0$, $\langle |\phi|^2 \rangle \neq 0$

Even harmonics

• $<A_2>$ is largest amplitude

[should've compared to $xh_{\perp}^{(2)}(r^2)$ by Dominguez et al, PRD2012; at small r it behaves the same though; that's the distribution of linearly polarized gluons from the dipole operator)

- no difference to b=0 for small πr^2
- for large πr²: A₂ & A₄ suppressed
 [not shown here, see arXiv:1411.6630 fig.5]
- \rightarrow \vec{E} -field correlation length (magnitude & direction) of order 1/Q_s

Spontaneous breaking of rotational symmetry :

→ Angular dependence of *single-particle* distribution
 finite correl. length / domain size is essentially equivalent to "saturation" of gluon distribution

One interesting example:

A.D., McLerran, Skokov, arXiv:1410.4844

$$c_{2}\{4\} \equiv \left\langle e^{2i(\phi_{1}-\phi_{2}+\phi_{3}-\phi_{4})} \right\rangle - 2\left\langle e^{2i(\phi_{1}-\phi_{2})} \right\rangle \left\langle e^{2i(\phi_{3}-\phi_{4})} \right\rangle$$
$$= -\frac{1}{N_{D}^{3}} \left[\mathcal{A}^{4} - \frac{1}{4(N_{c}^{2}-1)^{3}} \right] \qquad \text{(around } c_{2}\{4\} \sim 0$$

 \bullet disconnected ~ connected (resp. c₂{4}~0) when $\mathcal{A} \sim 1/N_c^{3/2}$

- 4-particle correlation dominated by disconnected part <u>before</u> 2-particle correlation ! (i.e. for smaller *A*)
- analogous to BBGKY / Dyson-Schwinger hierarchy of n-particle correlations
- Note: not to be compared to experiment, assumes all four pT are >> Qs! (→ numerical results by Schlichting)

In other words:

$$\left\langle e^{in(\phi_{1}-\phi_{2})} \right\rangle = \mathcal{N} \int d^{2}b_{1}d^{2}b_{2} \int d\phi_{1}d\phi_{2} e^{in(\phi_{1}-\phi_{2})} \\ \int d^{2}r_{1}d^{2}r_{2} e^{i\vec{k}_{1}\cdot\vec{r}_{1}+i\vec{k}_{2}\cdot\vec{r}_{2}} \\ \int \mathcal{D}\rho \ e^{-S[\rho]} \ \frac{1}{N} \text{tr} \ V_{x_{1}}V_{y_{1}}^{\dagger} \ \frac{1}{N} \text{tr} \ V_{x_{2}}V_{y_{2}}^{\dagger}$$
while
$$\int d^{2}b_{1}d^{2}b_{2} \int d\phi_{1}d\phi_{2} e^{in(\phi_{1}-\phi_{2})} \int d^{2}r_{1}d^{2}r_{2} e^{i\vec{k}_{1}\cdot\vec{r}_{1}+i\vec{k}_{2}\cdot\vec{r}_{2}} \\ \left(\int \mathcal{D}\rho \ e^{-S[\rho]} \ \frac{1}{N} \text{tr} \ V_{x_{1}}V_{y_{1}}^{\dagger}\right) \left(\int \mathcal{D}\rho \ e^{-S[\rho]} \ \frac{1}{N} \text{tr} \ V_{x_{2}}V_{y_{2}}^{\dagger}\right) = 0 \quad \text{(for n>0)}$$

• contains a disconnected contribution from anisotropic 1-particle distribution :

$$\left\langle e^{in(\phi_1 - \phi_2)} \right\rangle = \left\langle e^{in\phi_1} \right\rangle \left\langle e^{-in\phi_2} \right\rangle + \left\langle e^{in(\phi_1 - \phi_2)} \right\rangle_{\text{conn.}}$$

Recent numerical calculation by T. Lappi (for pA)

arXiv:1501.05505

Schenke, Schlichting, Venugopalan: 1502.01331

- v2>0 instantly at $\tau=+0$!
- clearly not a rescattering effect but due to anisotropic gluon fields

Dijets in γ^*A :

(Dominguez, Marquet, Xiao, Yuan, PRD 2011)

Amplitude

Conjugate amplitude

Dijet total tr. momentum:

$$\vec{P} = \frac{1}{2} \left(\vec{k}_1 - \vec{k}_2 \right)$$
 or $\widetilde{P} = (1 - z)\vec{k}_1 - z\vec{k}_2$

and net momentum (imbalance): $\vec{q} = \vec{k}_1 + \vec{k}_2$

"correlation limit" $P \gg q$ involves only 2-point functions / UGDs, no quadrupole

Azimuthal anisotropy

(Dominguez, Qiu, Xiao, Yuan, PRD 2012)

→ rotate net transverse momentum vector q around and measure amplitude of cos(2\$\phi\$) modulation $v_2(q, x) = \langle \cos 2\phi \rangle = \frac{1}{2} \frac{h_{\perp}^{(1)}(x, q)}{G^{(1)}(x, q)}$

(if x independent of ϕ , true at z=1/2)

The distribution of linearly polarized gluons

~

(Metz, Zhou: PRD 2011; Dominguez, Qiu, Xiao, Yuan, PRD 2012)

$$\begin{aligned} xG_{\perp}^{(1)}(x,k) &= -\frac{2}{\alpha_s} \delta^{ij} \left\langle \operatorname{Tr} \left[E_i(\vec{k}) E_j(-\vec{k}) \right] \right\rangle \\ xh_{\perp}^{(1)}(x,k) &= \frac{2}{\alpha_s} \left(\delta^{ij} - 2\frac{k^i k^j}{k^2} \right) \left\langle \operatorname{Tr} \left[E_i(\vec{k}) E_j(-\vec{k}) \right] \right\rangle \\ E_i(\vec{k}) &= \int \frac{d^2 y}{(2\pi)^2} e^{-i\vec{k}\cdot\vec{y}} U^{\dagger}(\vec{y}) \partial_i U(\vec{y}) \end{aligned}$$

We have computed these functions at small x by solving JIMWLK from MV model initial conditions

(A.D., T. Lappi, V. Skokov: in preparation)

- $h^{(1)} \downarrow / G^{(1)} \rightarrow 0$ at low q
- but $h^{(1)} \downarrow / G^{(1)} \rightarrow 1$ at high transv. momentum

Summary

- azimuthal anisotropies from short-distance QCD frameworks
 - CGC / classical fields: $\langle E^i E^j \rangle \sim \delta^{ij} + 2\mathcal{A}\left(\hat{a}^i \hat{a}^j \frac{1}{2}\delta^{ij}\right) + \cdots$

- TMD factorization: $h^{(1)}_{\perp}$ (dijet in eA); $h^{(2)}_{\perp}$ (DY, pA)

- semi-analytical estimates & numerical calculations predict substantial <u>initial-state anisotropies</u> in pA at "high" p_T
- also predict very substantial v_2 for $\gamma^*A \rightarrow jet + jet + X$

Backup Slides

JIMWLK evolution (impact parameter dependent !) and its effect on anisotropy amplitudes A_n

Resummation of boost-invariant quantum fluctuations (JIMWLK):

classical ensemble at $Y = \log x_0/x = 0$:

$$P[\rho] \sim e^{-S_{cl}[\rho]} , S_{MV} = \int d^2 x_{\perp} \frac{1}{2\mu^2} \rho^a \rho^a ,$$
$$V(x_{\perp}) = \mathcal{P} \exp ig^2 \int dx^- \frac{1}{\nabla_{\perp}^2} \rho(x_{\perp})$$

quantum evolution to Y>0: random walk in space of Wilson lines

$$\partial_Y V(x_{\perp}) = V(x_{\perp}) it^a \left\{ \int d^2 y_{\perp} \, \varepsilon_k^{ab}(x_{\perp}, y_{\perp}) \, \xi_k^b(y_{\perp}) + \sigma^a(x_{\perp}) \right\}$$
$$\varepsilon_k^{ab} = \left(\frac{\alpha_s}{\pi}\right)^{1/2} \, \frac{(x_{\perp} - y_{\perp})_k}{(x_{\perp} - y_{\perp})^2} \, \left[1 - U^{\dagger}(x_{\perp})U(y_{\perp})\right]^{ab}$$
$$\langle \xi_i^a(x_{\perp}) \, \xi_j^b(y_{\perp}) \rangle = \delta^{ab} \delta_{ij} \delta^{(2)}(x_{\perp} - y_{\perp})$$

$$\sigma^a(x_\perp) = -i\frac{\alpha_s}{2\pi^2} \int d^2 z_\perp \frac{1}{(x_\perp - z_\perp)^2} \operatorname{tr} \left(T^a U^\dagger(x_\perp) U(z_\perp) \right)$$

p+Pb collisions at the LHC: significant anisotropy up to rather high p_T

- can we say anything from short distance QCD ?
- and carry that over to DIS on nuclei ?