What Stubs and Sparkles in Vast Vats of Liquid Can Tell Us About Exploding Stars

Kate Scholberg, Duke University June 2015

Neutrinos from core collapse

When a star's core collapses, ~99% of the gravitational binding energy of the proto-nstar goes into v's of *all flavors* with ~tens-of-MeV energies

(Energy *can* escape via v's)

Mostly $v-\overline{v}$ pairs from proto-nstar cooling

Timescale: prompt after core collapse, overall $\Delta t \sim 10$'s of seconds

Expected neutrino luminosity and average energy vs time

Vast information in the *flavor-energy-time profile*

What can we learn from the next neutrino burst?

CORE COLLAPSE PHYSICS

explosion mechanism proto nstar cooling, quark matter black hole formation accretion, SASI nucleosynthesis

from flavor, energy, time structure of burst

input from photon (GW) observations input from neutrino experiments

NEUTRINO and OTHER PARTICLE PHYSICS

 v absolute mass (not competitive)
 v mixing from spectra: flavor conversion in SN/Earth (mass hierarchy)
 other v properties: sterile v's, magnetic moment,...
 axions, extra dimensions, FCNC, ...

+ EARLY ALERT

Information is in the *energy, flavor, time* structure of the burst

What do you want in a detector?

Size	~kton detector mass per 100 events @ 10 kpc
Low energy threshold	~Few MeV if possible
Energy resolution	Resolve features in spectrum
Angular resolution	Point to the supernova! (for directional interactions)
Timing resolution	Follow the time evolution
Low background	BG rate << rate in burst; underground location usually excellent; surface detectors conceivably sensitive
Flavor sensitivity	Ability to tag flavor components
High up-time and longevity	Can't miss a ~1/30 year spectacle!

Note that many detectors have a "day job"...

	Electrons	
	Elastic scattering	
Charged current	$\nu + e^- \to \nu + e^-$	
	^[−] _{ve} ·····► v e [−]	
Neutral current	v e	
	Useful for pointing	

	Electrons	Protons	
	Elastic scattering	Inverse beta decay	
	$\nu + e^- \to \nu + e^-$	$\bar{\nu}_e + p \to e^+ + n$	
Charged current	^[−] _{ve} ·····• √ e [−]	γ e^+ γ \overline{v}_e n γ	
Neutral current	ν e	Elastic scattering	
	Useful for pointing	very low energy recoils	

	Electrons	Protons	Nuclei
	Elastic scattering $\nu + e^- \rightarrow \nu + e^-$	Inverse beta decay $\bar{\nu}_e + p \rightarrow e^+ + n$	$ \nu_e + (N, Z) \to e^- + (N - 1, Z + 1) $ $ \bar{\nu}_e + (N, Z) \to e^+ + (N + 1, Z - 1) $
Charged current	^[¬] _{ve} ·····► v e [−]	$\overline{v}_{e}^{+} \gamma$	n ve ve e+/- Various possible ejecta and
Neutral current	ν e	Elastic scattering	$ \nu + A \rightarrow \nu + A^* $ deexcitation products $ \nu + A \rightarrow \nu + A^* $
	Useful for pointing	very low energy recoils	$ \nu + A \rightarrow \nu + A $ Coherent elastic (CEvNS)

	Electrons	Protons	Nuclei
	Elastic scattering $\nu + e^- \rightarrow \nu + e^-$	Inverse beta decay $\bar{\nu}_e + p \rightarrow e^+ + n$	$ \nu_e + (N, Z) \to e^- + (N - 1, Z + 1) $ $ \bar{\nu}_e + (N, Z) \to e^+ + (N + 1, Z - 1) $
Charged current	^[−] _{ve} ····· v e [−]	$\overline{v}_{e}^{+} \gamma$	r_{v_e} , $r_{e^{+/-}}$, r_{v_e} , $r_{v_$
Neutral current	ν e	Elastic scattering v	$\nu + A \rightarrow \nu + A^*$ products
	Useful for pointing	very low energy recoils	$ \nu + A \rightarrow \nu + A $ Coherent elastic (CEvNS)

IBD (electron antineutrinos) dominates for current detectors

Neutrino interaction thresholds

Current main supernova neutrino detector types

+ some others (e.g. DM detectors)

Water Cherenkov detectors

Super-Kamiokande

Mozumi, Japan 22.5 kton fid. volume (32 kton total) ~5-10K events @ 10 kpc (mostly anti- v_{e}) ~5° pointing @ 10 kpc

SUPERKAMIOKANDE INSTITUTE FOR COSMIC RAY RESEARCH UNIVERSITY OF TOKY

Hyper-Kamiokande

560 kton fiducial volume **Design & site-selection** underway

~half photocoverage, but still good efficiency for SN

Supernova signal in a water Cherenkov detector

Neutron tagging in water Cherenkov detectors

$$\bar{\nu}_e + p \to e^+ + n \quad \blacksquare$$

detection of neutron tags event as *electron antineutrino*

- especially useful for DSNB (which has low signal/bg)
- also useful for disentangling flavor content of a burst

(improves pointing, and physics extraction)

R. Tomas et al., PRD68 (2003) 093013 KS, J.Phys.Conf.Ser. 309 (2011) 012028; LBNE collab arXiv:1110.6249 R. Laha & J. Beacom, PRD89 (2014) 063007

"Drug-free" neutron tagging

$$n + p \rightarrow d + \gamma (2.2 \text{ MeV})$$

~200 μs thermalization & capture, observe Cherenkov radiation from γ Compton scatters

→ with SK-IV electronics,
~18% n tagging efficiency

SK collaboration, arXiv:1311.3738;

Enhanced performance by doping!

use gadolinium to capture neutrons

(like for scintillator)

J. Beacom & M. Vagins, PRL 93 (2004) 171101

Gd has a huge n capture cross-section: 49,000 barns, vs 0.3 b for free protons

H. Watanabe et al., Astropart. Phys. 31, 320-328 (2009)

EGADS: test tank in the Kamioka mine for R&D

http://snews.bnl.gov/snmovie.html

Long string water Cherenkov detectors

~kilometer long strings of PMTs in very clear water or ice (IceCube/PINGU, ANTARES)

Nominally multi-GeV energy threshold... but, may see burst of low energy \overline{v}_e 's as *coincident increase in single PMT count rates* (M_{eff}~ 0.7 kton/PMT)

IceCube collaboration, A&A 535, A109 (2011)

Map overall time structure of burst

Scintillation detectors

Liquid scintillator (C_nH_{2n}) volume surrounded by photomultipliers

- few 100 events/kton (IBD)
- low threshold, good energy resolution
 little pointing capability
 - (light is ~isotropic)

Current and near-future scintillator detectors

KamLAND (Japan) 1 kton

LVD (Italy) 1 kton

NOvA (USA) 14 kton

(on surface, but may be possible to extract counts for known burst)

Borexino (Italy) 0.33 kton

SNO+ (Canada) 1 kton

Future detector proposals

JUNO (China) 20 kton

RENO-50 (S. Korea) 18 kton

LENA (Finland) 50 kton

Liquid argon time projection chambers

- fine-grained trackers
- no Cherenkov threshold
- high v_e cross section

$$\nu_e + {}^{40}\mathrm{Ar} \to e^- + {}^{40}\mathrm{K}^*$$

ICARUS (Italy...) 0.6 kton

Supernova signal in a liquid argon detector

Example of supernova burst signal in 34 kton of LAr

Can we tag v_e CC interactions in argon using nuclear deexcitation γ 's? $\nu_e + {}^{40}\text{Ar} \rightarrow e^- + {}^{40}\text{K}^*$

20 MeV v_e , 14.1 MeV e^- , simple model based on R. Raghavan, PRD 34 (1986) 2088 Improved modeling based on ⁴⁰Ti (⁴⁰K mirror) β decay measurements in progress **Direct measurements (and theory) needed!**

... in fact there can be transitions to intermediate states, adding to the cross section (and complicating the γ -tag)

VOLUME 58, NUMBER 6

DECEMBER 1998

Neutrino absorption efficiency of an ⁴⁰Ar detector from the β decay of ⁴⁰Ti

Lead-based supernova detectors

SNO ³He counters + 79 tons of Pb: ~1-40 events @ 10 kpc

Coherent Elastic Neutrino Nucleus Scattering

$$v_{x} + A \rightarrow v_{x} + A$$

C. Horowitz et al., PRD68 (2003) 023005

High x-scn but *very* low recoil energy (10's of keV) \Rightarrow observable in DM detectors

 few events per ton for Galactic SN

v_x energy information from recoil spectrum

e.g. Ar, Ne, Xe, Ge, ...

DM detectors, e.g. CLEAN/DEAP, LUX, ...

\begin{aside}

Interactions with nuclei (cross sections & products) **very poorly understood**... sparse theory & experiment (*only* measurements at better than ~50% level are for ¹²C)

A. Bolozdynya et al., arXiv:1211.5199

NIN measurement in SNS basement

- Scintillator inside CsI detector lead shield (now)
- Liquid scintillator surrounded by lead (swappable for other NIN targets) inside water shield

Summary of supernova neutrino detectors

	Detector	Туре	Location	Mass (kton)	Events @ 10 kpc	Status
>	Super-K	Water	Japan	32	8000	Running (SK IV)
/it	LVD	Scintillator	Italy	1	300	Running
÷	KamLAND	Scintillator	Japan	1	300	Running
N N	Borexino	Scintillator	Italy	0.3	100	Running
en	IceCube	Long string	South Pole	(600)	(10 ⁶)	Running
Ň	Baksan	Scintillator	Russia	0.33	50	Running
ctic	Mini- BooNE	Scintillator	USA	0.7	200	(Running)
ac	HALO	Lead	Canada	0.079	20	Running
a	Daya Bay	Scintillator	China	0.33	100	Running
C	NOvA	Scintillator	USA	15	3000	Turning on
	SNO+	Scintillator	Canada	1	300	Under construction
	MicroBooNE	Liquid argon	USA	0.17	17	Under construction
Ei C	DUNE	Liquid argon	USA	40	3000	Proposed
U	Hyper-K	Water	Japan	540	110,000	Proposed
	JUNO	Scintillator	China	20	6000	Proposed
0 0	RENO-50	Scintillator	South Korea	18	5400	Proposed
ġ	PINGU	Long string	South pole	(600)	(10 ⁶)	Proposed
Exti	plus reactor experiments, DM experiments					

Example signals in future detectors

Distance reach for future detectors

SK will see ~1 event from Andromeda; HK will get a ~dozen

Summary

Vast information to be had from a core-collapse burst!

- Need energy, flavor, time structure

Current & near future detectors:

- ~Galactic sensitivity
 - (SK reaches barely to Andromeda)
- sensitive mainly to the $\overline{\nu_e}$ component of the SN flux
- excellent timing from IceCube
- early alert network is waiting
- we need to measure some x-scns

Farther future megadetectors

- huge statistics: extragalactic reach
- richer flavor sensitivity (e.g. v_e in LAr)
- multimessenger prospects

