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Core-Collapse Supernova Explosion 

Neutrino 

cooling by 

diffusion 

   End state of a 
   massive star 

   M ≳ 6–8 M⊙ 

Collapse of 
degenerate core 

 Bounce at ρnuc 
 Shock wave forms 
 explodes the star  

  Grav. binding E  
  ~ 3 × 1053 erg 
  emitted as nus 
  of all flavors 

• Huge rate of low-E neutrinos 
   (tens of MeV) over few seconds 
   in large-volume detectors 
• A few core-collapse SNe in our 
   galaxy per century 
• Once-in-a-lifetime opportunity 
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Three Phases of Neutrino Emission 

• Shock breakout 
• De-leptonization of 
   outer core layers 

• Shock stalls  ~ 150 km 
• Neutrinos powered by 
   infalling matter 

Cooling on neutrino 
diffusion time scale 

Spherically symmetric Garching model (25 M⊙) with Boltzmann neutrino transport 

Explosion 
triggered 
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Exploding 3D Garching Model (20 MSUN) 

Melson, Janka, Bollig, Hanke, Marek & Müller, arXiv:1504.07631 
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Exploding 3D Garching Model (20 MSUN) 

Melson, Janka, Bollig, Hanke, Marek & Müller, 
arXiv:1504.07631 

2D 3D 
Neutrino opacity reduced (few 10%) by 
strange quark contribution to nucleon spin 
(thick lines) 

“Standard” neutrino opacity 
(thin lines) 
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Variability seen in Neutrinos (3D Model) 

Tamborra, Hanke, Müller, Janka & Raffelt, arXiv:1307.7936 
See also Lund, Marek, Lunardini, Janka & Raffelt, arXiv:1006.1889 

SASI modulation 
80 Hz 

For sub-eV neutrino masses, 
no washing-out by time-of-flight effects! 
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Sky Map of Lepton-Number Flux (11.2 MSUN Model) 

Tamborra, Hanke, Janka, Müller, Raffelt & Marek, arXiv:1402.5418 

Lepton-number flux (𝝂𝒆 − 𝝂𝒆) relative to 4p average 
Deleptonization flux into one hemisphere, roughly dipole distribution 

(LESA — Lepton Emission Self-Sustained Asymmetry)  
 

Positive dipole 
direction and 
track on sky 
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Spectra in the two Hemispheres 

Direction of 
maximum lepton-number flux 

Direction of 
minimum lepton-number flux 

𝜈𝑒 

𝜈𝑒 

𝜈𝑒 

𝜈𝑥 

𝜈𝑒 

𝜈𝑥 

Neutrino flux spectra (11.2 MSUN model at 210 ms) in opposite LESA directions 

During accretion phase, flavor-dependent fluxes 
vary strongly with observer direction! 
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Growth of Lepton-Number Flux Dipole 

• Overall lepton-number flux (monopole) depends on accretion rate, 
    varies between models 
 

• Maximum dipole similar for different models 
 

• Dipole persists (and even grows) during SASI activity 
 

• SASI and LESA dipoles uncorrelated 

Tamborra et al., arXiv:1402.5418 

Monopole 

Dipole 
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Neutrino Oscillations in Matter 

Lincoln Wolfenstein 
10 Feb 1923–27 Mar 2015 

Neutrinos in a medium suffer flavor-dependent 
refraction  

f 

Z 
n n n n 

W 

f 

Typical density of Earth:  5 g/cm3 

𝑉weak = 2𝐺F ×  
𝑁e − 𝑁n 2 

−𝑁n 2 
    
for  𝜈e
for  𝜈μ

  

Δ𝑉weak ≈ 2 × 10−13 eV = 0.2 peV 
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Flavor Oscillations in Core-Collapse Supernovae 

Neutrino 
sphere 

MSW region 

Neutrino flux 

Flavor eigenstates are 
propagation eigenstates 
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SN Flavor Oscillations and Mass Hierarchy 

𝜈𝑒 survival prob.  

  Normal  (NH)   Inverted  (IH) 

Mass ordering  

 0 sin2 𝜃12 ≈ 0.3 

 𝜈𝑒 survival prob.   0 cos2 𝜃12 ≈ 0.7 

𝜈𝑒 Earth effects   No Yes 

• Mixing angle Θ13 has been measured to be “large” 
 

• MSW conversion in SN envelope adiabatic 
 

• Assume that collective flavor oscillations are not important 

• When are collective oscillations important?  
 

• How to detect signatures of hierarchy? 
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Early-Phase Signal in Anti-Neutrino Sector 

Garching Models with M = 12–40 M⊙ 

Average Energy Luminosity IceCube Signature 

• In principle very sensitive to hierarchy, notably IceCube 
• “Standard candle” to be confirmed by other than Garching models 

Abbasi et al. (IceCube Collaboration) A&A 535 (2011) A109  
Serpico, Chakraborty, Fischer, Hüdepohl, Janka & Mirizzi, arXiv:1111.4483 

 

𝜈𝑒 

𝜈𝑥 

𝜈𝑒 

𝜈𝑥 
𝜈𝑒 

𝜈𝑥 
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Flavor Oscillations in Core-Collapse Supernovae 

Neutrino 
sphere 

MSW region 

Neutrino flux 

Flavor eigenstates are 
propagation eigenstates 

Neutrino-neutrino 
refraction causes 
a flavor instability, 
flavor exchange 
between different 
parts of spectrum 
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Flavor-Off-Diagonal Refractive Index 

2-flavor neutrino evolution as an effective 2-level problem 

i
𝜕

𝜕𝑡

𝜈𝑒
𝜈𝜇

= 𝐻
𝜈𝑒
𝜈𝜇

 

𝐻 =
𝑀2

2𝐸
+ 2𝐺F  

𝑁𝑒 −
𝑁𝑛

2
0

0 −
𝑁𝑛

2

+ 2𝐺F

𝑁𝜈𝑒 𝑁〈𝜈𝑒 𝜈𝜇

𝑁〈𝜈𝜇 𝜈𝑒 𝑁𝜈𝜇

 

Effective mixing Hamiltonian 

Mass term in 
flavor basis: 
causes vacuum 
oscillations 

Wolfenstein’s weak 
potential, causes MSW  
“resonant” conversion 
together with vacuum 
term 

Flavor-off-diagonal potential, 
caused by flavor oscillations. 

(J.Pantaleone, PLB 287:128,1992) 

Flavor oscillations feed back on the Hamiltonian: Nonlinear effects! 

𝝂 

Z 
n n 
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Spectral Split 

Figures from 
 

Fogli, Lisi,  
Marrone & Mirizzi,  
arXiv:0707.1998 
 
Explanations in 
 

Raffelt & Smirnov 
arXiv:0705.1830 
and 0709.4641 
 

Duan, Fuller, 
Carlson & Qian 
arXiv:0706.4293 
and 0707.0290 

Initial 
fluxes at 
neutrino 

sphere 

After 
collective 

trans- 
formation 
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Self-Induced Flavor Conversion 

Flavor content exchanged 
between different momentum modes 
(or nus and anti-nus changing together) 

No net flavor conversion of ensemble 
(in contrast to MSW conversion) 

Instability required to get started 
- Exponentially growing off-diagonals in density matrix 
- Linearized stability analysis to find growing modes 

Interacting neutrino system: Coupled oscillators 
- Collective harmonic oscillation modes 
- Exponential run-away modes 
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Multi-Angle Multi-Energy Stability Analysis 

Sarikas, Raffelt, Hüdepohl & Janka, arXiv:1109.3601 
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 Shock wave 

Contours of 
growth rate 
𝜅 [km−1] 

The studied 15 𝑀⊙  
accretion-phase 
models (Garching) 
are stable against 
collective flavor conversion 
(2-flavor, inverted hierarchy) 
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Multi-Angle Matter Effect 

Liouville form of oscillation equation 
 

𝐏 𝜔,𝐯 + (𝐯 ⋅ 𝛁𝑟) 𝐏𝜔,𝐯 = 𝜔𝐁 + 𝜆𝐋 + 𝜇𝐏 × 𝐏𝜔,𝐯 
 
 

Esteban-Pretel, Mirizzi, Pastor, Tomàs, Raffelt, Serpico & Sigl, arXiv:0807.0659 

Drops out for stationary solutions 2𝐺F𝑁𝑒 2𝐺F𝑁𝜈 

SN 
core 

Longer path to 
same radial distance: 
Larger matter effect 

Self-induced conversion suppressed for 𝑵𝒆 ≳ 𝑵𝝂 

𝜕𝑟𝐏𝜔,𝑣 =
𝜔𝐁 + 𝜆𝐋 + 𝜇𝐏

𝑣𝒓
× 𝐏𝜔,𝑣 
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Symmetry Breaking in Collective Flavor Oscillations 

Assume globally spherically symmetric 
neutrino emission from SN core 
→ Axial symmetry in chosen direction 

f 

Self-induced neutrino flavor conversion 
in both hierarchies (unless suppressed by 
multi-angle matter effect) 
 

• Axially symmetric solution: 
   Conversion for inverted hierarchy 
   (usual result) 
 

• Spontaneous breaking of axial symmetry: 
   Dipole solution (∝ cos𝜙 or sin𝜙) 
   Conversion for normal hierarchy 
   (Was missed by enforcing axial symmetry 
    because of axially symmetric emission) 

G. Raffelt, S. Sarikas & D. de Sousa Seixas 
Axial symmetry breaking in self-induced flavor conversion of SN neutrino fluxes 
PRL 111 (2013) 091101 [arXiv:1305.7140] 
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Instability Footprints 

Raffelt, Sarikas & Seixas, arXiv:1305.7140 
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Axial-symmetry breaking (MAA) 
instability (normal ordering NH) 
is “more dangerous” to trigger 
self-induced flavor conversion 

Shock 
wave 

Traditional “bimodal” instability 
(inverted mass ordering IH) 
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Colliding Beam Model 

Raffelt & Seixas, arXiv:1307.7625 

𝜈𝑒 
𝜈𝑒 

𝜈𝑒 
𝜈𝑒 

Left- and right-moving neutrinos 
behave symmetrically 
Instability for inverted mass ordering (IH) 

Left-right symmetry breaking: 
- Anti-symmetric mode for 
   normal mass ordering (NH) 
- Corresponds to axial symmetry breaking 
   in SN case (MAA instability) 
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Symmetry Assumptions 

Neutrino transport and flavor oscillations: 7D problem 
 

     𝜕𝑡 + 𝑣 ⋅ 𝛻𝑥 + 𝐹 ⋅ 𝛻𝑝  𝜌 𝑡, 𝑥 , 𝑝 = −𝑖 𝐻 𝑡, 𝑥 , 𝑝 , 𝜌 𝑡, 𝑥 , 𝑝 + 𝒞[𝜌 𝑡, 𝑥 , 𝑝 ] 

Ignore collision term: 
Free streaming 

Ignore external forces 
(e.g. no grav. deflection) 

Includes vacuum, matter, 
nu-nu refraction 

• Homogeneous, isotropic system evolving in time (“early universe”) 
   or 1D homogeneous evolving in time (“colliding beams”) 
 

      𝜕𝑡𝜌 𝑡, 𝐸 = −𝑖 𝐻 𝑡, 𝐸 , 𝜌 𝑡, 𝐸  

• Stationary, spherically symmetric, evolving with radius (“supernova”) 
 

     𝑣𝑟𝜕𝑟𝜌 𝑟, 𝐸, 𝜃 = −𝑖 𝐻 𝑟, 𝐸, 𝜃 , 𝜌 𝑟, 𝐸, 𝜃  

Zenith angle of nu momentum 𝑝  

Radial velocity depends on 𝜃, leads to multi-angle matter effect  

• Ordinary differential equations in “time” or “radius” with maximal symmetries 
 

• Misses dominant solutions (spontaneous symmetry breaking) 
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Spatial Symmetry Breaking (SSB) 

Mirizzi, Mangano & Saviano 
arXiv:1503.03485 

Oscillation equation with explicit transport term 
 

     𝑖 𝜕𝑡 + 𝑣 ⋅  𝛻𝑥  𝜌 𝑡, 𝑥 , 𝑝 = [𝐻 𝑡, 𝑥 , 𝑝 , 𝜌 𝑡, 𝑥 , 𝑝 ] 

 
 

Spatial Fourier transform (plane wave expansion) 

      𝑖𝜕𝑡 + 𝑣 ⋅ 𝑘  𝜌 𝑡, 𝑘, 𝑝 =  𝑑3𝑥  𝑒−𝑖 𝑘⋅𝑥  𝐻 𝑡, 𝑥 , 𝑝 , 𝜌 𝑡, 𝑥 , 𝑝  

Interaction term couples different Fourier modes 

Without flavor oscillations: free streaming 

Space coordinate along beam 

Ti
m

e
 

𝜈𝑒 
𝜈𝑒 

𝜈𝑒 
𝜈𝑒 

Streamlines of 𝜈𝑒 flux 
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Spatial Symmetry Breaking (SSB) 

Effective neutrino density 

𝜈𝑒 
𝜈𝑒 

𝜈𝑒 
𝜈𝑒 

Linearized stability analysis for 
colliding-beam model 
Duan & Shalgar, arXiv:1412.7097 

√
 W

av
e 

n
u

m
b

er
 

• Instability footprint shifted 
   to larger neutrino density m 

   for larger wave number k 
 

• For any neutrino density, 
   unstable for some k-range 
 

• No flavor-stable conditions 
   exist for homogeneous 
   neutrino gas 
   (no “sleeping top” regime) 
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Small-Scale Instabilities 

Chakraborty, Hansen, Izaguirre & Raffelt, Work in progress (2015) 

Shock 
wave 

• Small-scale modes “fill in” 
   the stability footprint 
   for large neutrino density 
 

• Largest-scale mode is 
   “most dangerous” to 
   cross SN density profile 
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Space-Time-Dependent Problem in Supernova 

• Neutrino momentum distribution not limited 
   to “outward” direction 
 

• Important “halo” flux even at large distance 
 

• Large 3D effects 
 

 Inhomogeneous, anisotropic, non-stationary problem 
 
Really no self-induced flavor conversion below shock-wave 
or even below nu-sphere? 
 
• Investigations to date are simplified case studies 
 

• May not represent real SNe 
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Status of Collective Flavor Conversion 

Self-induced flavor conversion is an instability 
in flavor space of the interacting neutrino ensemble 

Space-time dependent phenomenon 
(not simply stationary or homogeneous) 

Solutions do not respect symmetries of initial system 
Instabilities can occur on all scales 

Essentially back 
to the drawing board … 
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Literature on Spatial Symmetry Breaking (SSB) 

1. Axial symmetry breaking in self-induced flavor conversion of SN neutrino fluxes  
    Raffelt, Sarikas & Seixas, PRL 111 (2013) 091101 
 

2. Neutrino flavor pendulum in both mass hierarchies 
    Raffelt & Seixas, PRD 88 (2013) 045031 
 

3. Chaotic flavor evolution in an interacting neutrino gas 
    Hansen & Hannestad, PRD 90 (2014) 025009 
 

4. Damping the neutrino flavor pendulum by breaking homogeneity 
    Mangano, Mirizzi & Saviano, PRD 89 (2014) 073017 
 

5. Spontaneous breaking of spatial symmetries in collective neutrino oscillations 
    Duan & Shalgar, arXiv:1412.7097 
 

6. Self-induced flavor instabilities of a dense neutrino stream in a 2D model  
     Mirizzi, Mangano & Saviano, arXiv:1503.03485  
 

7. Self-induced flavor-conversion anisotropy of supernova neutrinos 
    Chakraborty, Hansen, Izaguirre & Raffelt, work in progress (2015) 
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Crab Nebula 

More theory progress is needed to understand 
flavor conversion of supernova neutrinos! 
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Backup 
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Three-Flavor Eigenvalue Diagram 

Normal mass hierarchy Inverted mass hierarchy 

Dighe & Smirnov, Identifying the neutrino mass spectrum from a supernova 
neutrino burst, astro-ph/9907423 

Vacuum Vacuum 
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Three Ways to Describe Flavor Oscillations 

Schrödinger equation in terms of “flavor spinor” 
 

     i𝜕𝑡
𝜈𝑒
𝜈𝜇

= 𝐻
𝜈𝑒
𝜈𝜇

=
Δ𝑚2

2𝐸
cos 2𝜃 sin 2𝜃
sin 2𝜃 − cos 2𝜃

𝜈𝑒
𝜈𝜇

 
 

Neutrino flavor density matrix 
 

     𝜌 =
𝜈𝑒 𝜈𝑒〉 𝜈𝑒 𝜈𝜇〉

𝜈𝜇 𝜈𝑒〉 𝜈𝜇 𝜈𝜇〉
 

 

Equivalent commutator form of Schrödinger equation 
 

     i𝜕𝑡𝜌 = 𝐻, 𝜌  
 

Expand 22 Hermitean matrices in terms of Pauli matrices 
 

     𝜌 =
1

2
Tr 𝜌 + 𝐏 ⋅ 𝛔     and    𝐻 =

Δ𝑚2

2𝐸
𝐁 ⋅ 𝛔   with   𝐁 = (sin 2𝜃, 0, cos 2𝜃) 

 

Equivalent spin-precession form of equation of motion 
 

     𝐏 = 𝜔𝐁 × 𝐏    with   𝜔 =
Δ𝑚2

2𝐸
 

 

𝐏 is “polarization  vector” or “Bloch vector” or “flavor isospin vector” 
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Flavor Oscillation as Spin Precession 

𝑥 
𝑦 

𝑧 

Flavor 
direction Mass 

direction 

𝐁 

𝐏 
2𝜃 

↑ Spin up        𝜈𝑒 
↓ Spin down  𝜈𝜇 

Twice the vacuum  
mixing angle 

Flavor polarization vector 
precesses around the 
mass direction with 
frequency  𝜔 = Δ𝑚2 2𝐸  
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Instability in Flavor Space 

Two-mode example in co-rotating frame, initially  𝐏1 = ↓,  𝐏2 = ↑ (flavor basis)  
 

    𝐏 1 = [−𝜔𝐁 + 𝜇 (𝐏𝟏 + 𝐏𝟐)] × 𝐏𝟏 

    𝐏 2 = [+𝜔𝐁 + 𝜇 (𝐏𝟏 + 𝐏𝟐)] × 𝐏𝟐 
 

 0 initially 

𝐏1 
𝐏2 

𝐁 

𝑥 

𝑦 

• Initially aligned in flavor  
   direction and 𝐏 = 0 
• Free precession ±𝜔 

𝐏1 𝐏2 

𝐏 = 𝐏1 + 𝐏2 
 

Matter effect transverse to 
mass and flavor directions 
Both 𝐏1and 𝐏2tilt around 𝐏 
if 𝜇 is large 

After a short time, 
transverse 𝐏 develops 
by free precession 

𝐁 
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Two Spins with Opposite Initial Orientation 

𝐏1 𝐏2 

No interaction (𝜇 = 0) 
Free precession in 
opposite directions 

𝐁 

𝐏2 𝐏1 

Strong interaction  
(𝜇 → ∞) 

Pendular motion 

−
𝑃 1
𝑧
, 𝑃

2𝑧
 

Time 

Even for very small mixing angle, 
large-amplitude flavor oscillations 
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Multi-Angle Matter Effect in Supernovae  

Chakraborty, Hansen, Izaguirre & Raffelt, Work in progress (2015) 

Bimodal 
instability 
(IH) 

MAA 
instability 
(NH) 

MZA instability (NH) Antimatter 
background 

Antimatter 
background 

Effective neutrino density 
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Schematic Theory of LESA 
Accretion 
flow 

Convective 
overturn 

Tamborra et al. 
arXiv:1402.5418 

Electron 
distribution 

Feedback loop consists 
of asymmetries in 
• accretion rate 
• lepton-number flux 
• neutrino heating rate 
• dipole deformation 
   of shock front 
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LESA Dipole and PNS Convection 

Color-coded 
lepton-number flux 
along radial rays 
(11.2 MSUN model 
 at 210 ms) 

Neutrino 
sphere 

Neutrino 
sphere 

PNS 
Convection 

Lepton flux dipole builds up mostly 
below the neutrino sphere  
in a region of strong convection  
in the proto-neutron star (PNS) 
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Is the LESA Phenomenon Real? 

• Couch & O’Connor (2014) also find LESA in their 3D models 
 

• Dolence, Burrows & Zhang (arXiv:1403.6115), 2D models: No LESA dipole at all 

Red curve: 
Lepton-number dipole × 5 
No evidence for beyond-noise 
dipole evolution 
(Fig.11 of arXiv:1403.6115) 

Different method of neutrino radiative transfer, different interaction rates, and 
many other physics differences — needs to be understood 
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Sky Distribution of Number Fluxes (11.2 MSUN) 

Heavy-flavor neutrino fluxes (𝜈𝑥) 
nearly isotropic 

Flux of  𝜈𝑒 + 𝜈𝑒 nearly isotropic 

Lepton-number flux (𝜈𝑒 − 𝜈𝑒) 
has strong dipole distribution 

Neutrino number flux distribution 
for 11.2 MSUN model 
integrated over 150–250 ms 
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Asymmetries of Elements Relevant for LESA 

Accretion 
Rate 

Shock 
Radius 

Heating 
Rate 

11.2 MSUN 20 MSUN 27 MSUN 
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LESA vs. SASI Dipole Motions 

LESA 

LESA LESA 

LESA 

SASI Dipole SASI Dipole 

orthogonal 
to SASI Plane 

orthogonal 
to SASI Plane 

No apparent directional correlation between SASI and LESA 


