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Website: http://conferences.jlab.org/PREX

The only input required to compute the structure
of neutron stars is the equation of state of cold

neutron-rich matter: P=P(E ,T =0)
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Nuclear Charge and Weak-Charge Form Factors (Electroweak )
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Charge Form Factor

208Pb

Charge densities known with enormous
precision R208

ch =5.5012(13) fm
Started with Hofstadter in the late 1950’s
and continues to this day in RIBFs
Provides our most detailed picture of the
atomic nucleus
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Weak Form Factor

Weak-charge densities as fundamental
as charge densities
Weak-charge densities are very poorly
known R208

wk =5.826(181) fm
Elastic e-scattering largely insensitive to
the weak-charge distribution
Elastic ν-scattering very sensitive to the
weak-charge distribution
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Parity Violation in Elastic e-Nucleus Scattering (JLab and Mainz)
Charge (proton) densities known with exquisite precision

charge density probed via parity-conserving eA scattering
Weak-charge (neutron) densities very poorly known

weak-charge density probed via parity-violating eA scattering

APV =
GF Q2

2
√

2πα

1− 4 sin2 θW︸ ︷︷ ︸
≈0

− Fn(Q2)

Fp(Q2)



Use parity violation as Z0 couples preferentially to neutrons
PV provides a clean measurement of neutron densities (R208

n )

up-quark down-quark proton neutron
γ-coupling +2/3 −1/3 +1 0
Z0-coupling ≈ +1/3 ≈ −2/3 ≈ 0 −1

gv=2tz − 4Q sin2 θW≈2tz−Q
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CEvNS: From Dark Matter Searches to Neutron Stars
Coherent elastic ν-Nucleus scattering has never been observed!
Predicted shortly after the discovery of weak neutral currents
Enormously challenging; must detect exceedingly slow recoils
CEvNS (pronounced “7s” ) are backgrounds for DM searches
CEvNS is coherent (“large”) as it scales ∼N2

“Piggybacking” on the enormous progress in dark-matter searches

Z0
A

Coherent Elastic ν-Nucleus
Scattering at the Spallation Neutron
Source (ORNL) may become
possible in the “not-so-distant” future
(see Kate Scholberg’s talk)
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Neutron Stars: The Role of Nuclear Physics

Chandrasekhar shows that massive stars will collapse (1931)
Chadwick discovers the neutron (1932)
... predicted earlier by Ettore Majorana but never published!
Baade and Zwicky introduce the concept of neutron stars (1933)
Oppenheimer-Volkoff compute masses of neutron stars using GR (1939)
Predict M?'0.7 M� as maximum NS mass or minimum black hole mass
Demorest/Antoniadis discover massive neutron stars (2010-2013)
Observation of M?'2 M� in compact relativistic binaries

Increase from (0.7→2)M� is all Nuclear Physics!
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The Anatomy of a Neutron Star (Figures courtesy of Dany Page and Sanjay Reddy)

Atmosphere (10 cm): Shape of Thermal Radiation (L=4πσR2T 4)
Envelope (100 m): Huge Temperature Gradient (108K ↔106K )
Outer Crust (400 m): Coulomb crystal of exotic neutron-rich nuclei
Inner Crust (1 km): Coulomb frustrated “Nuclear Pasta”
Outer Core (10 km): Neutron-rich uniform matter (n,p,e, µ)
Inner Core (?): Exotic matter (Hyperons, condensates, quark matter, . . .)
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Neutron Stars as Nuclear Physics Gold Mines
Neutron Stars are the remnants of massive stellar explosions

Are bound by gravity NOT by the strong force
Satisfy the Tolman-Oppenheimer-Volkoff equation (vesc/c∼1/2)

Only Physics sensitive to: Equation of state of neutron-rich matter
EOS must span about 11 orders of magnitude in baryon density

Increase from 0.7→2M� must be explained by Nuclear Physics!

common feature of models that include the appearance of ‘exotic’
hadronic matter such as hyperons4,5 or kaon condensates3 at densities
of a few times the nuclear saturation density (ns), for example models
GS1 and GM3 in Fig. 3. Almost all such EOSs are ruled out by our
results. Our mass measurement does not rule out condensed quark
matter as a component of the neutron star interior6,21, but it strongly
constrains quark matter model parameters12. For the range of allowed
EOS lines presented in Fig. 3, typical values for the physical parameters
of J1614-2230 are a central baryondensity of between 2ns and 5ns and a
radius of between 11 and 15 km, which is only 2–3 times the
Schwarzschild radius for a 1.97M[ star. It has been proposed that
the Tolman VII EOS-independent analytic solution of Einstein’s
equations marks an upper limit on the ultimate density of observable
cold matter22. If this argument is correct, it follows that our mass mea-
surement sets an upper limit on this maximum density of
(3.746 0.15)3 1015 g cm23, or ,10ns.
Evolutionary models resulting in companion masses.0.4M[ gen-

erally predict that the neutron star accretes only a few hundredths of a
solar mass of material, and result in a mildly recycled pulsar23, that is
one with a spin period.8ms. A few models resulting in orbital para-
meters similar to those of J1614-223023,24 predict that the neutron star
could accrete up to 0.2M[, which is still significantly less than the
>0.6M[ needed to bring a neutron star formed at 1.4M[ up to the
observed mass of J1614-2230. A possible explanation is that some
neutron stars are formed massive (,1.9M[). Alternatively, the trans-
fer of mass from the companion may be more efficient than current
models predict. This suggests that systems with shorter initial orbital
periods and lower companion masses—those that produce the vast
majority of the fully recycled millisecond pulsar population23—may
experience even greater amounts of mass transfer. In either case, our
mass measurement for J1614-2230 suggests that many other milli-
second pulsars may also have masses much greater than 1.4M[.
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Figure 3 | Neutron star mass–radius diagram. The plot shows non-rotating
mass versus physical radius for several typical EOSs27: blue, nucleons; pink,
nucleons plus exoticmatter; green, strange quarkmatter. The horizontal bands
show the observational constraint from our J1614-2230 mass measurement of
(1.976 0.04)M[, similar measurements for two other millisecond pulsars8,28

and the range of observed masses for double neutron star binaries2. Any EOS
line that does not intersect the J1614-2230 band is ruled out by this
measurement. In particular, most EOS curves involving exotic matter, such as
kaon condensates or hyperons, tend to predict maximum masses well below
2.0M[ and are therefore ruled out. Including the effect of neutron star rotation
increases themaximum possiblemass for each EOS. For a 3.15-ms spin period,
this is a=2% correction29 and does not significantly alter our conclusions. The
grey regions show parameter space that is ruled out by other theoretical or
observational constraints2. GR, general relativity; P, spin period.
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The EOS of neutron-rich matter: Where do the extra neutrons go?

The EOS of asymmetric matter
[
α≡(N−Z )/A, x≡(ρ−ρ0)/3ρ0

]
E(ρ, α) ≈ E0(ρ) + α2S(ρ) ≈

(
ε0 +

1
2

K0x2
)
+

(
J + L x +

1
2

Ksymx2
)
α2

In 208Pb, 82 protons/neutrons form an isospin symmetric spherical core
Where do the extra 44 neutrons go?

Competition between surface tension and density dependence of S(ρ)
Surface tension favors placing them in the core where S(ρ0) is large
Symm. energy favors pushing them to the surface where S(ρsurf) is small

If difference S(ρ0)−S(ρsurf)∝L is large, then neutrons move to the surface
The larger the value of L the thicker the neutron skin of 208Pb
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Heaven and Earth: Nuclear Physics Informing Neutron Stars
Maximum neutron-star mass sensitive to EOS at high density

Best—perhaps unique—available constraint at ρ�ρ0

Accurate mass measurements:
M =(1.97±0.04)M�
M =(2.01±0.04)M�

parameters, withMCMC error estimates, are given in Table 1. Owing to
the high significance of this detection, our MCMC procedure and a
standard x2 fit produce similar uncertainties.
From the detected Shapiro delay, we measure a companion mass of

(0.50060.006)M[, which implies that the companion is a helium–
carbon–oxygenwhite dwarf16. The Shapiro delay also shows the binary

system to be remarkably edge-on, with an inclination of 89.17u6 0.02u.
This is the most inclined pulsar binary system known at present. The
amplitude and sharpness of the Shapiro delay increase rapidly with
increasing binary inclination and the overall scaling of the signal is
linearly proportional to the mass of the companion star. Thus, the
unique combination of the high orbital inclination and massive white
dwarf companion in J1614-2230 cause a Shapiro delay amplitude
orders of magnitude larger than for most other millisecond pulsars.
In addition, the excellent timing precision achievable from the pulsar
with the GBT and GUPPI provide a very high signal-to-noise ratio
measurement of both Shapiro delay parameters within a single orbit.
The standardKeplerian orbital parameters, combinedwith the known

companionmass and orbital inclination, fully describe the dynamics of a
‘clean’ binary system—one comprising two stable compact objects—
under general relativity and therefore also determine the pulsar’s mass.
Wemeasure a pulsar mass of (1.976 0.04)M[, which is by far the high-
est preciselymeasured neutron star mass determined to date. In contrast
with X-ray-based mass/radius measurements17, the Shapiro delay pro-
videsno informationabout theneutron star’s radius.However, unlike the
X-ray methods, our result is nearly model independent, as it depends
only on general relativity being an adequate description of gravity.
In addition, unlike statistical pulsar mass determinations based on
measurement of the advance of periastron18–20, pure Shapiro delay mass
measurements involve no assumptions about classical contributions to
periastron advance or the distribution of orbital inclinations.
The mass measurement alone of a 1.97M[ neutron star signifi-

cantly constrains the nuclear matter equation of state (EOS), as shown
in Fig. 3. Any proposed EOS whose mass–radius track does not inter-
sect the J1614-2230 mass line is ruled out by this measurement. The
EOSs that produce the lowestmaximummasses tend to be thosewhich
predict significant softening past a certain central density. This is a
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Figure 1 | Shapiro delay measurement for PSR
J1614-2230. Timing residual—the excess delay
not accounted for by the timing model—as a
function of the pulsar’s orbital phase. a, Full
magnitude of the Shapiro delay when all other
model parameters are fixed at their best-fit values.
The solid line shows the functional form of the
Shapiro delay, and the red points are the 1,752
timingmeasurements in ourGBT–GUPPI data set.
The diagrams inset in this panel show top-down
schematics of the binary system at orbital phases of
0.25, 0.5 and 0.75 turns (from left to right). The
neutron star is shown in red, the white dwarf
companion in blue and the emitted radio beam,
pointing towards Earth, in yellow. At orbital phase
of 0.25 turns, the Earth–pulsar line of sight passes
nearest to the companion (,240,000 km),
producing the sharp peak in pulse delay.We found
no evidence for any kind of pulse intensity
variations, as from an eclipse, near conjunction.
b, Best-fit residuals obtained using an orbitalmodel
that does not account for general-relativistic effects.
In this case, some of the Shapiro delay signal is
absorbed by covariant non-relativistic model
parameters. That these residuals deviate
significantly from a random, Gaussian distribution
of zero mean shows that the Shapiro delay must be
included to model the pulse arrival times properly,
especially at conjunction. In addition to the red
GBT–GUPPI points, the 454 grey points show the
previous ‘long-term’ data set. The drastic
improvement in data quality is apparent. c, Post-fit
residuals for the fully relativistic timing model
(including Shapiro delay), which have a root mean
squared residual of 1.1ms and a reduced x2 value of
1.4 with 2,165 degrees of freedom. Error bars, 1s.
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observing time. Therefore, we are unlikely to see a significant improvement on
these results with currently available telescopes and instrumentation.
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Instead, stellar radii sensitive to EOS at intermediate densities
Not possible to adjust EOS at ρ&2ρ0 without affecting laboratory observables
Unique synergy between laboratory experiments and astronomical observations

Neutron-star radii sensitive to one fundamental parameter of the EOS
The slope of the symmetry energy at saturation density L∝PPNM

Same pressure creates neutron-rich skin and NStar radius
Correlation among observables differing by 18 orders of magnitude!

common feature of models that include the appearance of ‘exotic’
hadronic matter such as hyperons4,5 or kaon condensates3 at densities
of a few times the nuclear saturation density (ns), for example models
GS1 and GM3 in Fig. 3. Almost all such EOSs are ruled out by our
results. Our mass measurement does not rule out condensed quark
matter as a component of the neutron star interior6,21, but it strongly
constrains quark matter model parameters12. For the range of allowed
EOS lines presented in Fig. 3, typical values for the physical parameters
of J1614-2230 are a central baryondensity of between 2ns and 5ns and a
radius of between 11 and 15 km, which is only 2–3 times the
Schwarzschild radius for a 1.97M[ star. It has been proposed that
the Tolman VII EOS-independent analytic solution of Einstein’s
equations marks an upper limit on the ultimate density of observable
cold matter22. If this argument is correct, it follows that our mass mea-
surement sets an upper limit on this maximum density of
(3.746 0.15)3 1015 g cm23, or ,10ns.
Evolutionary models resulting in companion masses.0.4M[ gen-

erally predict that the neutron star accretes only a few hundredths of a
solar mass of material, and result in a mildly recycled pulsar23, that is
one with a spin period.8ms. A few models resulting in orbital para-
meters similar to those of J1614-223023,24 predict that the neutron star
could accrete up to 0.2M[, which is still significantly less than the
>0.6M[ needed to bring a neutron star formed at 1.4M[ up to the
observed mass of J1614-2230. A possible explanation is that some
neutron stars are formed massive (,1.9M[). Alternatively, the trans-
fer of mass from the companion may be more efficient than current
models predict. This suggests that systems with shorter initial orbital
periods and lower companion masses—those that produce the vast
majority of the fully recycled millisecond pulsar population23—may
experience even greater amounts of mass transfer. In either case, our
mass measurement for J1614-2230 suggests that many other milli-
second pulsars may also have masses much greater than 1.4M[.
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Figure 3 | Neutron star mass–radius diagram. The plot shows non-rotating
mass versus physical radius for several typical EOSs27: blue, nucleons; pink,
nucleons plus exoticmatter; green, strange quarkmatter. The horizontal bands
show the observational constraint from our J1614-2230 mass measurement of
(1.976 0.04)M[, similar measurements for two other millisecond pulsars8,28

and the range of observed masses for double neutron star binaries2. Any EOS
line that does not intersect the J1614-2230 band is ruled out by this
measurement. In particular, most EOS curves involving exotic matter, such as
kaon condensates or hyperons, tend to predict maximum masses well below
2.0M[ and are therefore ruled out. Including the effect of neutron star rotation
increases themaximum possiblemass for each EOS. For a 3.15-ms spin period,
this is a=2% correction29 and does not significantly alter our conclusions. The
grey regions show parameter space that is ruled out by other theoretical or
observational constraints2. GR, general relativity; P, spin period.
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The Enormous Reach of the Neutron Skin: Covariance Analysis

Neutron skin as proxy for neutron-star radii . . . and more!
Calibration of nuclear functional from optimization of a quality measure
New era: predictability typical – uncertainty quantification demanded
Neutron skin strongly correlated to a myriad of neutron star properties:

Radii, Enhanced Cooling, Moment of Inertia, . . .
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PREX: The Lead Radius EXperiment Abrahamyan et al., PRL 108, (2012) 112502

Ran for 2 months: April-June 2010
First electroweak observation of a neutron-rich skin in 208Pb
Promised a 0.06 fm measurement of R208

n ; error 3 times as large!
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“One of the main science drivers of FRIB is the study of
nuclei with neutron skins 3-4 times thicker than is
currently possible ... Studies of neutron skins at JLab and
FRIB will help pin down the behavior of nuclear matter at
densities below twice typical nuclear density”

A Physics case for PREX-II, CREX, and ...
Coherent ν-nucleus scattering
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“Heaven and Earth” Guillot et al., ApJ, 772:7 (2013)

Same pressure creates neutron skin and NS radius
Correlation among observables differing by 18 orders of magnitude!

“Using conservative assumptions, we found: RNS =9.1+1.3
−1.4km”

... theory of dense nuclear matter may need to be revisited

Very difficult to reconcile small stellar radii with large R 208
skin

May be evidence of a softening due to phase transition (quark matter?)

Very difficult to reconcile small stellar radii with large limiting mass
EOS must stiffen again to account for large neutron-star massesThe Neutron Star Radius
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Guillot et al (2013)
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M-R by J. 
Lattimer

WFF1=
Wiring, Fiks 

and Fabrocini 
(1988) 

Contains 
uncertainties from:

Distance
All spectral 
parameters
Calibration

0.15 0.20 0.25 0.30 0.35 0.40
Rskin

208 (fm)

8

9

10

11

12

13

14

15

R 1
.4

(k
m

)
phase transition?

FSUGold

NL3
Models

qL
M

X
B

PREX-II

Tension between theory/experiment/observation
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Addressing the Tension ... W.-C. Chen and JP (arXiv:1505.07436)

Guillot et al., assumes all neutron stars have a common radius!
Assumption on observable MR rather than on EOS

One-to-one correspondence between MR and EOS
TOV equation + EOS→ MR

“Lindblom’s inversion algorithm” proves the inverse [APJ 398, 569 (1992)]

TOV equation + MR→ EOS
Tension in reconciling NS with large masses and small radii

Is the resulting EOS causal or superluminal?
Stellar radius of 1.4 M� must exceed 10.7 km!

Astrophysical observations are imposing similar upper limits!
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Conclusions and Outlook: The Physics of Neutron Stars
Astrophysics: What is the minimum mass of a black hole?
Atomic Physics: Pure neutron matter as a Unitary Fermi Gas
Condensed-Matter Physics: Signatures for the liquid to crystalline transition?
General Relativity: Rapidly rotating neutrons stars as a source of gravitational waves?
Nuclear Physics: What are the limits of nuclear existence and the EOS of nuclear matter?
Particle Physics: QCD made simple — the CFL phase of dense quark matter
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Quantum chromodynamics,
familiarly called QCD, is

the modern theory of the
strong interaction.1 Historic-
ally its roots are in nuclear
physics and the description of
ordinary matter—understand-
ing what protons and neu-
trons are and how they inter-
act. Nowadays QCD is used to
describe most of what goes on at high-energy accelerators.

Twenty or even fifteen years ago, this activity was
commonly called “testing QCD.” Such is the success of the
theory, that we now speak instead of “calculating QCD
backgrounds” for the investigation of more speculative
phenomena. For example, discovery of the heavy W and Z
bosons that mediate the weak interaction, or of the top
quark, would have been a much more difficult and uncer-
tain affair if one did not have a precise, reliable under-
standing of the more common processes governed by
QCD. With regard to things still to be found, search
strategies for the Higgs particle and for manifestations of
supersymmetry depend on detailed understanding of pro-
duction mechanisms and backgrounds calculated by
means of QCD.

Quantum chromodynamics is a precise and beautiful
theory. One reflection of this elegance is that the essence
of QCD can be portrayed, without severe distortion, in the
few simple pictures at the bottom of the box on the next
page. But first, for comparison, let me remind you that the
essence of quantum electrodynamics (QED), which is a
generation older than QCD, can be portrayed by the sin-
gle picture at the top of the box, which represents the
interaction vertex at which a photon responds to the pres-
ence or motion of electric charge.2 This is not just a
metaphor. Quite definite and precise algorithms for calcu-
lating physical processes are attached to the Feynman
graphs of QED, constructed by connecting just such inter-
action vertices.

In the same pictorial language, QCD appears as an
expanded version of QED. Whereas in QED there is just
one kind of charge, QCD has three different kinds of
charge, labeled by “color.” Avoiding chauvinism, we might
choose red, green, and blue. But, of course, the color
charges of QCD have nothing to do with physical colors.
Rather, they have properties analogous to electric charge.
In particular, the color charges are conserved in all phys-
ical processes, and there are photon-like massless parti-
cles, called color gluons, that respond in appropriate ways

to the presence or motion of
color charge, very similar to
the way photons respond to
electric charge.

Quarks and gluons
One class of particles that
carry color charge are the
quarks. We know of six differ-
ent kinds, or “flavors,” of

quarks—denoted u, d, s, c, b, and t, for:  up, down,
strange, charmed, bottom, and top. Of these, only u and d
quarks play a significant role in the structure of ordinary
matter. The other, much heavier quarks are all unstable.
A quark of any one of the six flavors can also carry a unit
of any of the three color charges. Although the different
quark flavors all have different masses, the theory is per-
fectly symmetrical with respect to the three colors. This
color symmetry is described by the Lie group SU(3). 

Quarks are spin-1/2 point particles, very much like
electrons. But instead of electric charge, they carry color
charge. To be more precise, quarks carry fractional elec-
tric charge (+ 2e/3 for the u, c, and t quarks, and – e/3 for
the d, s, and b quarks) in addition to their color charge.

For all their similarities, however, there are a few
crucial differences between QCD and QED. First of all,
the response of gluons to color charge, as measured by the
QCD coupling constant, is much more vigorous than the
response of photons to electric charge. Second, as shown
in the box, in addition to just responding to color charge,
gluons can also change one color charge into another. All
possible changes of this kind are allowed, and yet color
charge is conserved. So the gluons themselves must be
able to carry unbalanced color charges. For example, if
absorption of a gluon changes a blue quark into a red
quark, then the gluon itself must have carried one unit of
red charge and minus one unit of blue charge.

All this would seem to require 3 × 3 = 9 different
color gluons. But one particular combination of gluons—
the color-SU(3) singlet—which responds equally to all
charges, is different from the rest. We must remove it if
we are to have a perfectly color-symmetric theory. Then
we are left with only 8 physical gluon states (forming a
color-SU(3) octet). Fortunately, this conclusion is vindicat-
ed by experiment!

The third difference between QCD and QED, which is
the most profound, follows from the second. Because glu-
ons respond to the presence and motion of color charge
and they carry unbalanced color charge, it follows that
gluons, quite unlike photons, respond directly to one
another. Photons, of course, are electrically neutral.
Therefore the laser sword fights you’ve seen in Star Wars
wouldn’t work. But it’s a movie about the future, so maybe
they’re using color gluon lasers.

We can display QCD even more compactly, in terms of
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QCD MADE SIMPLE
Quantum chromodynamics is

conceptually simple. Its realization
in nature, however, is usually
very complex. But not always.

Frank Wilczek

Neutron Stars are the natural meeting place for
fundamental and interesting Physics
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