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Introduction

Supernova Neutrinos

@ SN neutrino physics has a
rich history of study

@ Oscillations in
turbulence, collective
oscillations and shock
effects

o Contribution to explosion
mechanism

o Effects on
nucleosynthesis ot

o Actual data! i }M }

@ Thousands of hits on any
database you care to
search...
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Introduction

What about before the SN?

@ Large amounts of
neutrinos are
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produced in the lead ot )
up to the SN S iﬂ\

@ Some recent work A G N
suggests these : -
“presupernova’ = | L
neutrinos could be w b ) S,
detected = Stemems, SN OO
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o Insight to interior
of the star before Figure from Odrzywolek and Heger Acta Physica Polonica B 41 2010
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Introduction

What about before the SN?

@ Lots of questions to
look at

o What contributes
to the v
production?

o What energies
are reached?

e How many v are
detectable?

@ Answering these
questions requires
information about
the spectrum, not
just the energy
output
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Elements of Spectrum

What contributes to the spectrum?

@ Two main categories of production

@ Thermal processes

°
Nuclear processes o Plasmon decay

e * decay o Photoneutrino
e e* capture production
e Pair annihilation



Elements of Spectrum

@ All processes depend on temperature (T), density (p), and
electron fraction (Ye)

@ Nuclear processes also depend on isotopic abundances

@ We use MESA to calculate all of these quantities (paxton eta:
arXiv:1301:0319v2 )

e Track variables either as a function of time or radial position
in star

@ Ex. 25 Mg during Si burning
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Elements of Spectrum

Example Calculation

@ Chose a single point in the 25 M, star to focus on

e T=45x%x10°K
® pYe=1.6x108 g/cm®
@ About 100 km from center of star
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Elements of Spectrum

Nuclear Processes

AN,Z) = AIN—=1,Z+1)+ e + 7,
AN,Z) 5 AIN+1,Z 1)+ e + 1,
AN, Z)+e - AN+1,Z—1)+ve
AN, Z)+e" = AIN—-1,Z+1) + 7,

@ Electron flavor neutrinos and antineutrinos created through
B* decays and e* captures

@ Rates of these processes are calculated and published in
tables

@ G. M. Fuller, W. A. Fowler and M. J. Newman, ApJ 293 1 (1985)

o K. Langanke and G. Martinez-Pinedo, Nucl. Phys. A, 673 481
(2000)

@ T. Oda et al., Atomic Data and Nuclear Data Tables 56 231 (1994)
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Elements of Spectrum

Nuclear Processes: Spectrum

E2(E, — Q)?
1+exp((E, — Q— ue)/KT)
B E2(Q - E,)?
1+ exp((E, — Q+ ue)/KT)’

dec.pc(Ev) = N

¢5(Ev)

@ Spectral shape is related to the phase space factors (and a
normalization factor)

@ To calculate the spectrum, we need the Q-values



Elements of Spectrum

Nuclear Processes: Effective Q

@ If excitation states of the parent and daughter are known,
Q is easy to find

@ We have many transitions to and from different energy
levels

@ Define an effective Q value to account for different
excitation states

e Treat Q as fit variable (K. Langanke, G. Martinez-Pinedo and J. M. Sampaio, Phys.

Rev. C 64 055801 (2001))
e Vary until average energy matches that from rate table



Elements of Spectrum

Nuclear Processes: Summing Over Isotopes

@ Individual spectra are
normalized so that rates T=45x10°K
match values from tables pYe=1.6x 108 g/cm?®

Deta ———
1 x10%

N - / #:dE, i=EC,PC,3*
0

1 x10%

1 x10%2 b

@ Weighted sum of isotopes
gives total spectrum

1 x10% p

dR/dE, (1/(MeV cm?® s))

1 x10™
0.1
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Elements of Spectrum

Thermal Processes - Itoh et al. Formulas

@ ltoh et al. put out a series of papers with formulas for
calculating the neutrino emissivities of thermal processes

at different T and p values

@ But, we want differential rates and emissivities
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Elements of Spectrum

Basic Calculation for Thermal Processes

R= / (incoming momenta) « (incoming distributions)

X / (outgoing momenta) « (outgoing distributions)

x|M|25*(energy conservation)

@ Basically the same calculation needs to be done for each
process

@ Matrix elements will change, as will details of the
integration



Elements of Spectrum

Plasmon Decay
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@ Excitations in the plasma (plamsons) decay into
neutrino/antineutrino pairs
e Two types of plasmons (transverse and longitudinal) have
different spectra

S. Ratkovi¢, S. |. Dutta, and M. Prakash, Phys. Rev. D 67 123002 (2003)
A. Odrzywolek, Eur. Phys. J. C 52 425-434 (2007)
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Elements of Spectrum

Plasmon Decay

@ Braaten-Segel approximations for plasma parameters
simplify integral to one that can be done analytically (e. sraaten

and D. Segel, Phys. Rev. D 48 1478 (1993) )
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Elements of Spectrum

Photoneutrino Process

300 Log T (K) = 9.0 (n=2)
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@ Modified Compton scattering: Electron scatters from a

photon, producing a neutrino/antineutrino pair
S. |. Dutta, S. Ratkovi¢, and M. Prakash, Phys. Rev. D 69 023005 (2004)
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Elements of Spectrum

Photoneutrino Process

@ Matrix elements take a full page to write out in Dutta et al.
(with simplifying definitions)

@ Additional simplification is possible through approximations
for dispersion relations and judicious choice of coordinate
system

ph‘ot()
1 x10% ¢

1 x10%

T=45x10°K
pYe=1.6x 108 g/cm?
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Elements of Spectrum

Pair Neutrino Process

E’,+ Ve F+ De.p“r
W Z"
e Ve e/ Ve, p,m
W leT®-00wd
@ Similar to familiar process T Plasma
ofet +e- v+~ £
(=4
@ Dominant at high T s
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M. Misiaszek. A. Odrzvwolek. and M. Kutschera. Phvs. R&eS. D 74 043006(2006)



Elements of Spectrum

Pair Neutrino Process

@ Getting from generic matrix element to a form that’s useful
for calculating the spectrum involves a lot of “tedious
algebl’a” (explanation of which can be found in S. Hannestad and J. Madsen, Phys. Rev. D 52 1764

(1995))

. . 1 x10% L pei
@ Final result is
another integral
done through Monte

Carlo integration

1 x10%

1 x10%

1 x10%

dR/dE, (1/(MeV cm? s))
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pYe=1.6x10% g/cm®
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Elements of Spectrum

Put it all together...
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What's Next

What does the (T,p) space look like?

T —
301 Log T (K) = 9.0 (n=2)

@ Itoh et al. produced a great picture of
the total energy outputs as neutrinos for
various processes in (T,p) space
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@ No real idea of what energies those neutrinos have

@ Goal: create Itoh-like plot for neutrinos above a certain
energy

e Which process really dominates in detectable energies?

@ Include the Nuclear processes, which Itoh et al. does not
take into account
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What's Next

Detectability

@ Odrzywolek et al. predicted O(10)
events in Super Kamiokande, and
O(500) in next generation detectors for
star 1 kpc away

e That calculation only considered pair
neutrinos (A. Odrzywolek, M. Misiaszek, and M.

Kutschera arXiv:astro-ph/0311012v2 )

@ We have more complete picture of the spectrum, need to
redo detectability calculation

@ Other indirect signals?

bl



What's Next

Conclusion

@ Foundation is down: Spectra calculations for four dominant
processes in late stage stellar evolution

@ Plenty more to do

e Evolution of spectrum over star’s lifetime?
o Map of detectable neutrinos in (T,p) space
o Detectability
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