Constraint on Neutrino Decay with Medium-Baseline Reactor Neutrino Oscillation Experiments Hiroshi Nunokawa Department of Physics, Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, Brazil Based on collabration with T. Abrahão, H. hakata, A. A. Quiroga, arXiv:1506.02314 ep-ph INT program 15-2a "Neutrine As physics and Fundamental Proper June 10, 2015, INT

# Outline

# Introduction

# Current bounds on neutrino lifetime

# Why JUNO/RENO-50 can do a good job?

Analysis Procedure

Results

# Summary

# Introduction Open Questions in Neutrino Physics

Dirac or Majorana?

Mass Ordernig (Normal or Inverted)?

Neutrinos violate CP?

if  $\theta_{23}$  is maximal, if not, which octant?

what is the origin of neutrino masses?

Introduction **Open Questions in Neutrino Physics** Neutrinos have some non-standard (or exotic) properties beyond the standard 3 falvor scheme? For example, **Sterile Neutrinos** Non-standard Interactions (Irina's talk) magnetic moment Lorentz/CPT violation (Enrioc's talk) Mass varying neutrinos Neutrino decay decoherence

# Introduction

# Do neutrinos decay?

Since we know that their masses are different and flavors do not conserve, in principle, they could decay

# Introduction

Radiative decay like  $u_i 
ightarrow 
u_j + \gamma$  can be induced by the effective Lagrangian,

$$\mathcal{L} = \frac{1}{2} \bar{\nu}_i \sigma_{\alpha\beta} (\mu_{ij} + \epsilon_{ij} \gamma_5) \nu_j F^{\alpha\beta} + \text{h.c.}$$

μ<sub>ij</sub> (ε<sub>ij</sub>) : magnetic (electric) transition moment

$$\Gamma_{ij} = \frac{1}{\tau} = \frac{|\mu_{ij}|^2 + |\epsilon_{ij}|^2}{8\pi} \left[ \frac{m_i^2 - m_j^2}{m_i} \right]^3$$

Cosmological bounds by Mirizzi et al, PRD76, 053007(2007)

$$\tau > a \text{ few} \times (10^{19} - 10^{20}) \text{ s}$$

too strong to be of practical interest!

# we must consider "invisible" decays

We can consider generic interactions (couplings) between neutrinos and "Majoraon" which allows "fast" invisible neutrino decay

$$\mathcal{L} = g_{ij}\overline{\nu}_i\gamma_5\nu_j J + \text{h.c.}$$

J: Majoron (= golstone boson associated with the spontaenous breaking of the lepton number)

$$\begin{array}{c} (g_{ij} = U_{i\alpha}^T \ g_{\alpha\beta} \ U_{\beta j} \\ \uparrow \\ \\ \text{coupling in mass base} \end{array} \begin{array}{c} (g_{\alpha\beta} \ U_{\beta j} \ flavor \ base \end{array}$$

According to Lessa & Peres, PRD75, 043001 (2007)

## from decays of mesons and leptons

$$egin{aligned} |g_{elpha}| &< 5.5 imes 10^{-6} \ |g_{\mulpha}| &< 4.5 imes 10^{-5} \ |g_{ au lpha}| &< 5.5 imes 10^{-2} \ at 90\%$$
 CL.

# Current bounds on neutrino lifetime If i-th mass eigenstate can decay,

$$E_i = \frac{m_i^2}{2E} - i\frac{\Gamma_i}{2}$$

where,

$$rac{1}{\Gamma_i} = \left(rac{E}{m_i}
ight) au_i$$
 : Lorentz dilated lifetime,

what we can constrain from experiments is  $\tau/m$ 

# Current bounds on neutrino lifetime Order of magnitude estimates $\Gamma L = \left(\frac{m}{\tau}\right) \left(\frac{L}{E}\right) \sim O(1)$

| Neutrino source | Typical $L/E$                              | $\tau/m \; [{ m s/eV}]$ |
|-----------------|--------------------------------------------|-------------------------|
| Accelerator     | 500  km / 1  GeV                           | $\sim 10^{-12}$         |
| Atmospheric     | $10^4$ km/ 1 GeV                           | $\sim 3 	imes 10^{-11}$ |
| Solar           | $1.5 \times 10^8 \text{ km}/5 \text{ MeV}$ | $\sim 10^{-4}$          |
| Supernova       | 10  kpc/10  MeV                            | $\sim 10^5$             |
| AGN             | $100 { m Mpc}/1 { m TeV}$                  | $\sim 10^4$             |

# Current bounds on neutrino lifetime (1) $\tau_1/m_1 \gtrsim 10^5$ s/eV (SN1987A) Frieman, Haber & Freese, PLB200, 115 (1988)

# (2) $\tau_2/m_2 \gtrsim 10^{-4} \text{ s/eV}$ (Solar)

Beacom & Bell, PRD65, 113009 (2002)

# (3) $\tau_3/m_3 \gtrsim 10^{-10} \text{ s/eV}$ (Atmospheric)

Gonzalez-Garcia & Maltoni, PLB663, 405 (2008)

# Oscillation Probability with decay effect

$$P(\bar{\nu}_e \to \bar{\nu}_e) = 1 - c_{13}^4 \sin^2 2\theta_{12} \sin^2 \left(\frac{\Delta m_{21}^2 L}{4E}\right)$$

$$-s_{13}^4 \left(1 - e^{-\Gamma_3 L}\right) - \frac{1}{2} \sin^2 2\theta_{13} \left[1 - \cos\left(\frac{\Delta m_{\rm atm}^2 L}{2E}\right) e^{-\frac{\Gamma_3 L}{2}}\right]$$

$$\Delta m^2_{
m atm} \equiv \Delta m^2_{
m 32} pprox \Delta m^2_{
m 31}$$

# Current bounds on neutrino lifetime Order of magnitude estimates $\Gamma L = \left(\frac{m}{\tau}\right) \left(\frac{L}{E}\right) \sim O(1)$

| Neutrino source                  | Typical $L/E$                              | $\tau/m \; [{ m s/eV}]$ |
|----------------------------------|--------------------------------------------|-------------------------|
| Accelerator                      | 500  km / 1  GeV                           | $\sim 10^{-12}$         |
| Atmospheric                      | $10^4 \text{ km}/ 1 \text{ GeV}$           | $\sim 3 	imes 10^{-11}$ |
| Solar                            | $1.5 \times 10^8 \text{ km}/5 \text{ MeV}$ | $\sim 10^{-4}$          |
| Reactor $(L \sim 1 \text{ km})$  | 1  km/5  MeV                               | $\sim 10^{-12}$         |
| Reactor $(L \sim 50 \text{ km})$ | $50 \mathrm{~km}/5 \mathrm{~MeV}$          | $\sim 5 	imes 10^{-11}$ |
| Supernova                        | $10 \ \mathrm{kpc}/10 \ \mathrm{MeV}$      | $\sim 10^5$             |
| AGN                              | $100 { m Mpc}/1 { m TeV}$                  | $\sim 10^4$             |

# Oscillation Probability with decay effect



#### **JUNO Experiment**

- □ Jiangmen Underground Neutrino Observatory (was Daya Bay II)
- Primary goals: mass hierarchy and precision meas.
  - > 20 kton LS detector,  $3\%/\sqrt{E}$  energy resolution
- Proposed in 2008, approved in Feb.2013. ~300M US\$



#### **Rich Physics**

- Mass hierarchy
- Precision measurement of mixing parameters
  - Supernova neutrinos
- Geo-neutrinos
- Solar neutrinos
- Sterile neutrinos
- Atmospheric neutrinos

5

**Exotic searches** 

slide presented by Liangjian Wen at Neutrino 2014

Mass Spectrum: normal or inverted ? normal hierarchy inverted hierarchy  $\mathbf{V}_3$  $\begin{array}{c} \Delta \ m_{32}^2 \\ \text{atmosphereic} \end{array}$  $m^2$  $\mathbf{V}_2$  $\Delta m_{21}^2$ solar  $\Delta m_{ii}^2 = m_i^2 - m_i^2$ 

#### **Location of JUNO**

| NPP    | Daya Bay    | Huizhou | Lufeng  | Yangjiang          | Taishan                   |
|--------|-------------|---------|---------|--------------------|---------------------------|
| Status | Operational | Planned | Planned | Under construction | <b>Under construction</b> |
| Power  | 17.4 GW     | 17.4 GW | 17.4 GW | 17.4 GW            | 18.4 GW                   |



#### slide presented by Liangjian Wen at Neutrino 2014

How the event spectra look like at JUNO? We compute the number of events induce by the inverse beta decay reaction  $\bar{\nu}_e + p \to e^+ + n$ 

$$\frac{dN(E_{\text{vis}})}{dE_{\text{vis}}} = n_p t_{\exp} \int_{m_e}^{\infty} E_e \int_{E_{\min}}^{\infty} dE \sum_{i=\text{reac,geo}-\nu} \frac{d\phi_i(E)}{dE} \epsilon_{\det}(E_e) \times \frac{d\sigma(E_{\nu}, E_e)}{dE_e} P_i(\bar{\nu}_e \to \bar{\nu}_e; L_i, E) R(E_e, E_{\text{vis}})$$

 $n_p$ : number of free protons  $t_{exp}$ : exposure  $\epsilon_{det}$ : detection efficiency

 $E_e$  : positron energy E : neutrino energy

 $d\sigma(E_{\nu}, E_e)/dE_e$ : IBD cross section

 $d\phi_i(E)/dE$ : differential flux of reactor or geoneutrinos

## How the event spectra look like at JUNO?

# Gaussian energy resolution fuaction

$$R(E_e, E_{\rm vis}) \equiv \frac{1}{\sqrt{2\pi}\sigma(E_e)} \exp\left[-\frac{1}{2}\left(\frac{E_e + m_e - E_{\rm vis}}{\sigma(E_e)}\right)^2\right]$$

$$\frac{\sigma(E_e)}{(E_e + m_e)} = \frac{3\%}{\sqrt{(E_e + m_e)/\text{MeV}}}$$

# How the event spectra look like at JUNO?



### Analysis Procedure



 $\xi_i$ : normalization parameters

## Analysis Procedure

$$\chi^{2}_{\text{param}} \equiv \sum_{i=1}^{4} \left( \frac{x_{i}^{\text{in}} - x_{i}^{\text{fit}}}{\sigma(x_{i})} \right)^{2}$$
$$x_{1} \equiv \sin^{2} \theta_{12}, x_{2} \equiv \Delta m^{2}_{21}, x_{3} \equiv \sin^{2} \theta_{13}, x_{4} \equiv \Delta m^{2}_{32}$$
$$\Delta m^{2}_{21}{}^{\text{in}} = 7.50 \times 10^{-5} \text{eV}^{2}, \quad \sin^{2} \theta_{12}{}^{\text{in}} = 0.304,$$
$$\Delta m^{2}_{31}{}^{\text{in}} = 2.46 \times 10^{-3} \text{eV}^{2}, \quad \sin^{2} \theta_{13}{}^{\text{in}} = 0.0218,$$

$$\sigma(\sin^2 \theta_{12}) = 4.1\%, \ \sigma(\Delta m_{21}^2) = 2.4\%,$$
  
 $\sigma(\sin^2 \theta_{13}) = 4.6\%, \ \sigma(\Delta m_{31}^2) = 1.9\%.$ 

### Analysis Procedure

$$\chi^2_{\rm sys} \equiv \left(\frac{\xi_{\rm reac}^{\rm fit}}{\sigma_{\xi_{\rm reac}}}\right)^2 + \left(\frac{\xi_{\rm U}^{\rm fit}}{\sigma_{\xi_{\rm U}}}\right)^2 + \left(\frac{\xi_{\rm Th}^{\rm fit}}{\sigma_{\xi_{\rm Th}}}\right)^2 + \left(\frac{\eta^{\rm fit}}{\sigma_{\eta}}\right)^2$$

 $\sigma_{\xi_{\text{reac}}} = 3\%$ : reactor flux normalization uncertainty  $\sigma_{\xi_{\text{U}}} = \sigma_{\xi_{\text{Th}}} = 20\%$ : geoneutrino flux norm. uncert.

$$\frac{\sigma(E_e)}{(E_e + m_e)} = \frac{3\% (1+\eta)}{\sqrt{(E_e + m_e)/\text{MeV}}}$$

 $\sigma_\eta = 10\%$ : energy resoluion normalization uncertainty

# Sensitivity (expected bounds on lifetime)



 $\tau_3/m_3 > 7.5$  (5.5) x 10<sup>-11</sup> s/eV at 95 (99)% CL for 5 yrs  $\tau_3/m_3 > 11$  (8.5) x 10<sup>-11</sup> s/eV at 95 (99)% CL for 15 yrs

## Sensitivity (expected bounds on lifetime)

### expected bounds in terms of couplings

 $\tau_3/m_3 > 7.5$  (5.5) x 10<sup>-11</sup> s/eV at 95 (99)% CL

 $\longrightarrow \tau_3 > 7.5 (5.5) \times 10^{-12} \text{ s (m}_3/0.1 \text{eV})$ 

# using the relation

 $\tau_3 \sim \frac{16\pi}{g_{s3}^2 m_3} \text{ (assuming } m_3 \gg m_s)$  $\longrightarrow g_{s3}^2 \lesssim 0.04 \text{ (0.06) } \left[\frac{0.1 \text{eV}}{m_3}\right]^2$ 

Impact of decay on mass hiearchy and oscillation parameter determinations

# We consider (compare) three cases

- (i) No Decay (standard oscillation fit)
- (ii) No Decay for input but allowed in the fit
- (iii) Assume Decay for input (  $\tau_3/m_3 = 10^{-10}$  s/eV ) as well as in fit

#### Impact of decay on mass hiearchy determination



large impact only when decay is considered for input

# Impact of decay on oscillation parameter determinations



no (small) impact for solar (13 sector) parameter

# Impact of decay on oscillation parameter determinations

How precisely the parameters can be determined after 5 years of operation?

| parameter           | prior error (%) |      | fitted error $(\%)$ |       |
|---------------------|-----------------|------|---------------------|-------|
|                     |                 | (i)  | (ii)                | (iii) |
| $\sin^2 	heta_{12}$ | 4.1             | 0.35 | 0.35                | 0.35  |
| $\Delta m^2_{12}$   | 4.1             | 0.21 | 0.21                | 0.21  |
| $\sin^2	heta_{13}$  | 4.6             | 3.7  | 3.8                 | 4.3   |
| $\Delta m^2_{13}$   | 1.9             | 0.12 | 0.12                | 0.16  |
| $1+\xi_{ m reac}$   | 3.0             | 0.50 | 0.50                | 0.51  |
| $1+\xi_{ m U}$      | 20              | 12   | 12                  | 12    |
| $1+\xi_{ m Th}$     | 20              | 13   | 13                  | 13    |
| $1+\eta$            | 10              | 5.5  | 6.0                 | 7.1   |

#### no strong impact of decay in general

# correlation between decay and other parameters (2 examples)



no strong correlations between decay and other param

## All the other combinations



no strong impact of decay

no strong newly induced correlation due to decay

# Conclusions

Medium baseline ( $\sim$ 50 km) reactor oscillation experiments can provide best limit on  $\tau_3/m_3$  among all experiments which utilize artificial neutrino sources for 5 years of operation, JUNO can get bound as  $\tau_3/m_3 > 7.5$  (5.5) x 10<sup>-11</sup> s/eV at 95 (99)% CL for 15 years of operation, JUNO can get bound as  $\tau_3/m_3 > 11$  (8.5) x 10<sup>-11</sup> s/eV at 95 (99)% CL

comparable to bounds by atmospheric neutrinos

Thank you very much for your attention!