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As the massive star
nears itsend, ittakes
2million on an onion-layer structure

, Kllometers of chemical elements

Iron does not undergo nuclear fusion, so the core
becomes unable to generate heat. The gas pressure
drops, and overlying material suddenly rushes in

Within a second,
the core collapses

I a
to form a neutron star. s : Neutron

Hellum star

Material rebounds off the < .
neutron star, settingup a “F % Shock
shock wave

Neutrinos pouring out of the
nascent neutron star propel the
shockwave outward, unevenly

The shocksweeps
through the entire
star, blowing it apart

Hillebrandt & Janka 2006 (Sci Am)
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Neutrino trapping

During stellar core collapse, the neutrino opacity is
dominated by coherent scattering on nuclei.
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Electron-neutrino mean free path decreases much more rapidly with
density than does the core size, and the neutrinos become trapped in

the core.

Degenerate electron-neutrino Fermi sea develops (EF > 100 MeV)
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Important neutrino emissivities/opacities

“Standard” Emissivities/Opacities

e +pA<v,+nA
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Bruenn, Ap.J. Suppl. (1985)

e Nucleons in nucleus independent. (N>40 --> e capture quenched)
» No energy exchange in nucleonic scattering.

Langanke, ..., Messer, et al. PRL, 90, 241102 (2003)
e |nclude correlations between nucleons in nuclei.

Reddy, Prakash, and Lattimer, PRD, 58, 013009 (1998)
Burrows and Sawyer, PRC, 59, 510 (1999)
e (Small) Energy is exchanged due to nucleon recaoil.
 Many such scatterings.

* N+ NoN+N+v,  +Veur

e,u,t

V,+Ve >V, + Vi —

Hannestad and Raffelt, Ap.J. 507, 339 (1998)

Hanhart, Phillips, and Reddy, Phys. Lett. B, 499, 9 (2001)
» New source of neutrino-antineutrino pairs.

Janka et al. PRL, 76, 2621 (1996)

Buras et al. Ap.J., 587, 320 (2003)
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Spherically symmetric collapse
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Post-bounce profile

gain radius
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Essential physical realism in neutrino

transport
Lentz et al. Ap.J. 747, 73 (2012)
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ReducOp = Bruenn (1985) — NES + Bremsstrahlung (no neutrino energy scattering, IPM for nuclei)

See also B. Mueller et al. 2012. Ap.J. 756, 84 for a comparison in the
context of 2D models, with similar conclusions. %O AK RIDGE | oA rioce
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Lentz et al. (2012) ApJ, 760, 94

GR: Higher luminosity, harder spectrum
ReducOp opacities: Narrower breakout burst

No Observer Corrections: Greatly reduced breakout burst and
luminosity in accretion phase
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Late-time signal dependent on progenitor

structure
* O'Connor & Ott ApJ 730, 70 (2011)
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* Non-exploding 1D models - v emission relates inner stellar structure and composition
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CHIMERA

e “Ray-by-ray-Plus” MGFLD Neutrino Transport
- O(v/c), GR time dilation and redshift, GR aberration

e PPM Hydrodynamics (finite-volume)
- GR time dilation, effective gravitational potential
- adaptive radial grid

o Lattimer-Swesty EOS + low-density BCK EOS
- K=220 MeV

- low-density EOS (BCK+NSE solver) “bridges”
LS to network

e Nuclear (Alpha) Network
- 14 alpha nuclei between helium and zinc

o Effective Gravitational Potential
- Marek et al. A&A, 445, 273 (2006)

e Neutrino Emissivities/Opacities

- “Standard” + Elastic Scattering on Nucleons + Nucleon—
Nucleon Bremsstrahlung
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Bruenn et al. 2013. ApdJ, 767L, 6B.
Chimera model: B15-WHO/ Pl e

Entropy. (k_b/nucieon)
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Explosion energy & neutrino heating/cooling

Chimera model; B15-WHO/

Dicignosiic Energy (ergs/qg) Meuirino Heaiing Raie (ergs/g/s)
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Example of observables: Anatomy of a GW signature

Yakunin, ..., Messer, et al. 2010. Class. Quantum Grav. 27,194005.

Gravitational Wave Signal (S15 LS EoS 256x256)
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15 solar mass 3D run R LR T ||

~6 months on ~48,000 cores

*15 solar mass WHO7 progenitor
* 540 radial zones covering inner 11000 km
* 180 phi zones (2 degree resolution)

» 180 theta zones in "constant mu" grid, from 2/3 degree
at equator to one 8.5 degree zone at pole.

*“Full” opacities

*0.1% density perturbations (10-30 km) applied at 1.3 ms
after bounce in transition from 1D.
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http://eagle.phys.utk.edu/chimera/trac/wiki/progenitors/WH07
http://eagle.phys.utk.edu/chimera/trac/wiki/progenitors/WH07
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Lentz et al. 2015. In press, ApJL
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Max: 26.6 Time= 3825 ms Lentz et al. 2015. In press, ApJL
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3D vs 2D luminosities

Lentz et al. 2015. In press, ApJL
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1D vs. 2D vs. 3D

Lentz et al. 2015. In press, ApJL
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Recovering “realistic” v fluxes from RbR
simulations

-

1 polar ray

raw
vy . dA/@ Tamborra, et al.
N s Phys.Rev. D90 (2014) 045032
R “In principle, I(R,6) can be extracted
from the numerical results, but would B
require a vast amount of post-

processing of huge data files.
Instead, we fall back on a simple average

approximation... %OAK RIDGE (L)éa/;(Drélf?SGHE]P
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Recovering “realistic” v fluxes from RbR
simulations

Sanchez, Messer, et al. in prep.
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Recovering “realistic” v fluxes from RbR
simulations
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Sanchez, Messer, et al. in prep.
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Summary

* There is evidence that sufficiently realistic,
multidimensional CC SNe simulations can produce
explosions that match observations in several multi-
messenger channels.

* Necessary realism for CCSNe simulation: Multifrequency
neutrino transport with relativistic effects, a state-of-the-art
weak interaction set, and general relativity

» Self-consistent CHIMERA simulations point to a successful
neutrino-reheating mechanism, with the explosion delayed
by 300 ms or more after bounce and with outcomes
consistent with observations, in 2D.

* A three-dimensional simulation for a 15 Mo progenitor also

produces a neutrino-driven explosion, but delayed relative
to 2D.
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