NEUTRINOS AND GAMMA RAYS FROM THE FERMI BUBBLES

Cecilia Lunardini Arizona State University

C.L., Soebur Razzaque, and Lili Yang, arXiv:1504.07033

Table of contents

- The Fermi Bubbles as multi-messenger candidates
 - a hadronic model: gamma rays and neutrinos
 - seen at IceCube?
- The near future: HAWC and IceCube
 - fluxes and event rates
 - multi-messenger potential
- Discussion: what can be learned?

The Fermi Bubbles as multi-messenger candidates

The Very High Energy sky

- gamma ray astronomy: a mature field
 - 1989 : first detection of ~ TeV gamma rays

Weekes et al. [Whipple Observatory] ApJ 342, 1989, 379-395

revealed sites of hadron acceleration

$$p + N(\gamma) \to \pi^0 + \pi^{\pm} + \dots$$

$$\searrow \gamma + \gamma \qquad \searrow \mu^{\pm} + \nu_{\mu}(\bar{\nu}_{\mu})$$

$$\searrow e^+ + \nu_e + \bar{\nu}_{\mu} \ (e^- + \bar{\nu}_e + \nu_{\mu})$$

neutrino counterpart expected

Berezinsky & Zatsepin, PLB28 (1969) 423-424

- neutrino astronomy: an infant field
 - 2013 : first detection of PeV astrophysical neutrinos

Aartsen et al. [IceCube coll.], PRL 111 (2013) 021103, Science 342 (2013) 1242856, PRL113 (2014) 101101

- looking for single source for multi-messenger study
 - case-study to develop in detail
 - close, bright candidates: Galactic Center, Fermi Bubbles

Fermi Bubbles: a new galactic structure

- Fermi-LAT discovery
 - spheroids, D≈8 kpc
 - 0.5 500 GeV γ rays

Su, Slatyer & Finkbeiner, ApJ. 724, 1044 (2010)

- possible origins
 - exotic
 - leptonic
 - hadronic → neutrino counterpart!

Artist's concept, NASA/GSFC

Hadronic model

Su, Slatyer & Finkbeiner, ApJ. 724, 1044 (2010)

Neutrinos from (hadronic) Fermi Bubbles

- New signal for Km³ detectors Crocker and Aharonian, PRL 106, 2011
- detectable for multi-PeV proton cutoff

C.L. and S. Razzaque, PRL 108, 221102 (2012) Adrian-Martinez et al. [ANTARES coll.] EPJ. C74 (2014)

Already detected?

- 5 IceCube data strongly correlated
 - central value within the FB solid angle S. Razzaque, PRD 88, 081302 (2013)
 - consistent with Fermi-LAT data with hadronic model, multi-PeV
 C.L., Razzaque, Theodoseau and Yang, PRD90, 023016 (2014).

References

S. Razzaque, Phys. Rev. D 88, 081302 (2013)

J. C. Joshi, W. Winter and N. Gupta, MNRAS (April 21, 2014) 439 (4): 3414-3419, Erratum: MNRAS (January 2015) 446 (1): 892

M. Ahlers and K. Murase, Phys. Rev. D 90, no. 2, 023010 (2014)

A. M. Taylor, S. Gabici and F. Aharonian, Phys. Rev. D 89, no. 10, 103003 (2014)

Adrian-Martinez et al. [Km3NeT], Astropart.Phys. 42 (2013) 7-14

The first neutrino-gamma connection?

- the Fermi Bubbles could be the *first* individual source seen in both VHE neutrinos and gamma rays
- energy gap: connection is *indirect*

- new data at 0.1- 100 TeV highly desirable
 - bridge gap, study γ and v spectrum in same energy window

The near future: HAWC and IceCube

High Altitude Water Cherenkov¹ (HAWC) Observatory

- air shower array
 - Mexico, 4100 m altitude, 300 water tanks, 22000 m²
 - completed and *running* since March 2015.
- photon-induced airshowers
 - 0.1 100 TeV window
 - 0.1° resolution for E>5 TeV
 - effective area ~ 10^5 m^2 for E>3 TeV
- large field of view
 - 2 π sr ,~60° zenith aperture

from https://hawc.wipac.wisc.edu/

Observing the N bubble for ~2-3 hrs/day

Fluxes and event rates at HAWC and IceCube

Flux calculation: ingredients

- Parent proton spectrum: $dN_p/dE \propto E^{-k} \exp(-E/E_0)$
 - For Supernova Remnants (SNR) : $k \sim 2.1 2.3$, $E_0 \sim 1-30$ PeV
 - Remains hard due to saturation ($t_{acc} < t_{loss} < t_{esc}$)

Crocker and Aharonian, PRL 106, 2011

- Avg. gas density: $\langle n_H \rangle \sim 10^{-2} \text{ cm}^{-3}$
 - favored by ROSAT data

M. Su, T. R. Slatyer and D. P. Finkbeiner, ApJ 724, 1044 (2010)

- Numerical calculation needed above 10 GeV
 - Parameterization of SYBILL code was used

Kelner, Aharonian and Bugayov, PRD 74, 034018 (2006)

- Fit to Fermi-LAT data: $\chi^2/dof = 13/40$ after penalizing for violation of upper limits
- IceCube errors: Poisson statistics (C.L. > 55%)

CDF collaboration, statistics committee, note number 6438.

Number of events in zenith bin

 $\Omega_{\rm FB} \simeq 0.808 \ {
m sr}$ solid angle subtended by the bubbles (assume constant emission per solid angle)

HAWC: effective areas and zenith bins

j	interval of $\cos \theta$	$\langle f_\Omega angle$
	[0.6, 0.7]	4.5×10^{-2}
	[0.7, 0.8]	3.5×10^{-2}
	[0.8, 0.9]	4.1×10^{-2}
	[0.9, 1.0]	1.0×10^{-2}

D. Zaborov [HAWC Collaboration], PoS GRB 2012, 122 (2012).

background

- Dominant : cosmic ray hadrons
 - Signal/Background ~ 10⁻⁵ 10⁻⁴
 - hadron rejection efficiency : ~ 5 10^{-3} for E>10 TeV

Bernlohr et al. Astr. Part. Phys. 43, 2013, p. 171–188 Abeysekara et al., Astropart. Phys. 50-52, 26 (2013) [arXiv:1306.5800]

- subdominant: diffuse gamma rays
 - measured by Fermi-LAT for the inner Galaxy region, high and low intermediate latitude region
 - ^SS^Z4^R20^T150^C5 model, extrapolated

M. Ackermann et al. [Fermi-LAT Collaboration], Astro- phys. J. 750, 3 (2012)

IceCube: effective areas

M. G. Aartsen et al., Science 342, 1242856 (2013).

- down-going neutrinos
- From South Pole, full view all day: f_Ω≈1

Background

- Atmospheric muons veto-able
- atmospheric neutrinos
 - muon/electron ~ 14, zenith-symmetric

```
M. Honda et al., Phys.Rev. D75, 043006 (2007)
```

Included for FB shape + 15° around

Results: event rates

Bins of gamma/neutrino energy

Significance at HAWC

 $\sigma = \sqrt{T} \sum_{i} w_i S_i / \sqrt{\sum_{i} w_i^2 (B_i + S_i)}$ $w_i = S_i / B_i$

potential for discovery in few months!

HAWC + IceCube : constrain model

		Observed at IceCube?		
		Υ	Ν	
Observed at HAWC?	Y	Hadronic origin Multi-PeV cutoff Hard spectrum	Sub-PeV cutoff or Soft spectrum or leptonic origin	
	Ν	???Hadronic origin with opaque bubbles ?Exotic physics?(tension with Fermi-LAT?)	Sub-TeV cutoff (tension with Fermi-LAT?)	

Discussion: the Fermi Bubbles as a multimessenger case study

neutrino-gamma complementarity

IceCube

- Both bubbles
 - 15° resolution
 - Test symmetry

- E ~ 0.03 10 PeV
 - Beyond gamma ray sensitivity
- few yrs operation needed

HAWC

- North Bubble mostly
 - 0.1° resolution → detailed map
 - Detailed spectrum
 - test uniform emission
- E ~ 0.1 100 TeV
 - Bridges Fermi-LAT and IceCube, with partial overlap
- < 1 yr operation needed</p>

What can be learned?

- The Hadronic model of the Fermi Bubbles can be confirmed...
 - measure max energy of supernova remnant proton spectrum
 - favor ~ 10^9 years long star formation in the Galaxy
- but not excluded!
 - strong constraints on maximum acceleration energy

Future developments

gamma rays: IceTop surface detector array (@IceCube)

- neutrinos : Km3NeT
 - larger effective area \rightarrow significant excess in ~1 year (E₀ > 100 TeV)

Adrian-Martinez et al. [Km3NeT], Astropart.Phys. 42 (2013) 7-14

Credit: NASA/DOE/Fermi LAT/D. Finkbein

Backup

- Spatially correlated with:
 - microwave haze (WMAP)
 - Thermal X-rays (ROSAT)

Finkbeiner, ApJ. 614, 186 (2004) Snowden et al., ApJ. 485, 125 (1997).

Origin of the gamma rays in the FB?

- Compton scattering of accelerated electrons
- Collisions of accelerated protons
- Stars capture on central black hole
- Faint millisecond pulsars
- Dark matter annihilation

Dobler, et al., ApJ. 717, 825 (2010) Su, Slatyer & Finkbeiner, ApJ. 724, 1044 (2010) Malyshev, Cholis & Gelfand, ApJ. 722, 1939 (2010) Crocker and F. Aharonian, PRL 106, 101102 (2011) P. Mertsch and S. Sarkar, PRL 107, 091101 (2011)Guo & Mathews, arxiv:1103.0055 Cheng et al., arXiv:1103.1002

Electrons or protons?

<u>High energy electrons</u>

Su, Slatyer & Finkbeiner, ApJ. 724, 2010 Mertsch & Sarkar, PRL 107, 2011

- From central black hole activity (shocks)
- $e^- + \gamma \rightarrow e^- \gamma$
- Requires ~ 10⁶ years activity
- unnatural acceleration and diffusion
 - explains WMAP haze

<u>High energy protons</u>

Crocker and Aharonian, PRL 106, 2011

- From supernova remnants
- $p + p \rightarrow \pi^0 + any$, $\pi^0 \rightarrow \gamma \gamma$
- Requires ~ 10⁹ 10¹⁰ years activity (star formation)

- Large timescale, distinct from WMAP haze?
- Explains GeV bump, natural energetics

Main numbers

- Total number of protons in bubbles: $\sim 10^{57}$
- Total energy in protons: ~ $10^{55} 10^{56}$ ergs
- Energy of gamma rays from bubbles: ~ 10⁵⁴ ergs
 - Over few 10⁹ years lifetime
 - Few % efficiency, typical of hadronic models

• 3 σ significance at IceCube in ~ 7 years

C.L., Razzaque, Theodoseau and Yang, PRD90, 023016 (2014).

Flavor composition

Before oscillations

 $\nu_e : \nu_\mu : \nu_\tau = \epsilon : 1 : 0$

- $\epsilon \sim 0.57 0.88$ for E = TeV PeV (pion decay kinematics)
- After oscillations : equilibration, within 30%

 $\nu_e : \nu_\mu : \nu_\tau = 1:1:1$

• Delta function approximation ($E_{\pi}/E_{p} = K_{\pi}$, const.)

$$\Phi_{\gamma}(E_{\gamma}) = \frac{\varphi \langle n_H \rangle}{4\pi D^2 K_{\pi}} \int_{E_{\pi, \text{th}}}^{\infty} dE_{\pi} \, \frac{\sigma_{pp}(E_c)}{\sqrt{E_{\pi}^2 - m_{\pi}^2}} N_p(E_c)$$

$$K_{\pi} \approx 0.17$$

 $E_c = E_{\pi}/K_{\pi} + m_p$
 $E_{\pi,\text{th}} = E_{\gamma} + m_{\pi}^2/4E_{\gamma}$

- Full calculation is needed above 10 GeV
 - Parameterization of SYBILL code was used

Kelner, Aharonian and Bugayov, PRD 74, 034018 (2006)