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Stimulated transitions
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The evolution of a neutrino traveling through a fluctuating matter
potential is well described by the Stimulated Transition model.

The v state at r is related to the initial state through a matrix S.
S obeys a differential equation

ds
ldT—HS

H is the Hamiltonian, A is an affine parameter.




H is composed of two terms:

» the vacuum contribution,

» the underlying smooth matter potential, } H,
» the perturbing potential 0H

The perturbing potential has one non-zero element which we write as
a Fourier series with wavenumbers {q} and amplitudes {C} .
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a
It is possible to derive an analytic solution for the case of a constant
background potential using the Rotating Wave Approximation.

In the basis of the solutions of H - with eigenvalues {k , k,,...} - we
find a set of integers, one for each wavenumber.



The integers typically try to satisfy

Ok,;+n g +n,q,+...~0

The neutrino behaves like an illuminated polarized molecule.

- It picks out the Fourier modes in the turbulence with frequencies that
match the eigenvalue splitting.

For two flavors the solution is particularly simple:
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- The quantities K and Q are functions of the amplitudes {C} and
wavenumbers {q} of the Fourier modes.



A realization of turbulence created using 50 Fourier modes.
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Generalizing

Can the Stimulated Transition description be used for other
(neutrino flavor) evolution problems?

How does S evolve for an arbitrary Hamiltonian®?

What if H is a function of S?



FromHto S

—




We generalize to an arbitrary perturbing Hamiltonian.
In some basis (f) we write:

NCI
—iq,r iq,r
=Y C,e “"+Cle'"
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We transform to the eigenbasis of H, using a matrix U and solve for
the evolution matrix S  in that basis.

If H_ is a constant then S, = exp(-i Kr) where K is the diagonal
matrix of eigenvalues of H , K = diag(k,k,...).

In the eigenbasis of H , we write S = S A and find A evolves
according to

z— Z R [ C, iq“r+CZe_iq“r]Ue_iKr}A:H(A)A




In general H® has diagonal and offdiagonal elements.
We pull out the diagonal elements of C_ and write them as

1 o,
2i *
Where ®_=diag( @, ,, @,,, ...)and F_=diag(F,,, F_,, ...).

We now write A as A = W B where the diagonal matrix WV given by

W=exp(-i) E,)
F,

= = [cos d —cos ((I)a+ q.r )]
Aq

=, Is also a diagonal matrix: =_ = diag(§,,, §,,, ---)-

diag(U'C,U)= F,

The purpose of W is to remove the diagonal elements of H®,



We also define the matrix G_ by

offdiag(U'C,U)=G,

The matrix B evolves according to

a’B
dr
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The element ij of H®
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The term exp(i[§,, — €, |) needs attention.




In full this term is
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which can be simplified by introducing x,; andy, ,, and then
rewriting it using (z_,)* = (x,, )*+(y,, ) andtan W .=y . /x .

Sp.i—Sp,; =Xp ;i — Zp,;; COS (Qb r+wb,ij)

The term exp(i[§,  — Eb’j]) can be expanded using Jacobi-Anger

ei[%b,i_gb,j]:ei)(b,ij i (_i)mb.]mb(zb,ij)eimb[qbr-l-wb’ij]



And the element ij of H®
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The Hamiltonian for B looks simple © but, again,we cannot obtain
a solution for B without making the Rotating Wave
Approximaiton.

m, +1

bm, ,ij m,

We assume that for each Fourier mode there is only one™ important
contribution to the series — n_.
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Other than a generallzatlon of various terms, the Hamiltonian has
exactly the same form as the fluctuating matter problem!



For the case of two flavors:

| |
B:(elpr[cosQr—i%sinQr] —ie'?" gstr
—je P Estr eiprlcosQr+i%sinQr]}

where

K= Z Ka n, H 7\‘b n,
b#a

2p_k1 k2+znaqa

Q2:p2+K2

The transition probability in the eigenbasis of H is




A simple self-interaction problem

Consider a simple self-interaction problem for monoenergetic
neutrinos and antineutrinos for two flavors

The self-interaction Hamiltonian is

Hy=ulp—ap'j=u(sp(0)s'—a(5p(0)5'))

a is the asymmetry, 1 is the strength of the self-interaction.

We consider first the case a =1.
- This is the first problem found in Hannestad et al PRD 74 105010 (2006).



oe-22 ]

" imag(ViSI[matter][e][mu]) ——
4e-22 | l
o
o
©
£ 2022 | :
()]
5
o
S 0 I
5
@
()
£ -2e22 | -
%
0P
4e-22 | .
Be-22 ' ' ' '
0 1e+06  2e+06  3e+06  4e+06  5e+06

r/cm

There is only one non-zero element in H_, for this case.

We decompose H_ into its Fourier modes.
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Only the odd harmonics of the fundamental g, contribute.
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The RWA does pretty well'.

‘From past experience with the MSW problem, matching the frequency is hard, the amplitude is
easier.



Consider the asymmetric case o = 0.5.
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We can again find a Fourier decomposition which matches the
potential well using ~7 modes.
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The RWA solution with mode 27(n1=0) plus mode 53(n2=-1).

Using just two modes, the frequency is almost right, the amplitude

IS too small.
- We probably need all 7 modes to get the amplitude right and we need to
include all combinations of {n} with the same detuning frequency.



From Sto H

H
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Knowing the general form for S, it is possible to construct a self-
interaction Hamiltonian H_' in the original basis.

» The general form for H_' is very messy involving products of infinite series i.e.
[1(Z...) just as in the derivation of the solution for B.



Self Consistency

L




We are working on the self-consistency question H_ = H_'.

* |n general, we do not have equal numbers of Fourier modes in
H,and H_"

zq #e'" = |‘|1(Z #e'" )

mb—— oo

Nq must be infinite and the wavenumbers cannot be independent.

-  The wavenumbers must form a harmonic series.

Questions we're working on:

» Can we find the fundamental wavenumber q.?

® Why don't all harmonics appear?

® How do we compute the Fourier coefficient matrices?



Summary

» Using the RWA, it is possible to solve for the evolution with the
general perturbing Hamiltonian

SH=Y C,e " +C,e"'

» The RWA predicts the amplitude and frequency of the solution
to the symmetric self-interaction problem.

» Given the general form of the solution we can construct a self-
interaction Hamiltonian from it.

» How do we find a self-consistent solution?
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