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The evolution of a neutrino traveling through a fluctuating matter 
potential is well described by the Stimulated Transition model. 

The  state at r is related to the initial state through a matrix S.

S obeys a differential equation

H is the Hamiltonian, λ is an affine parameter.

i
dS
d λ

=H S

Stimulated transitionsStimulated transitions





  

The integers typically try to satisfy

The neutrino behaves like an illuminated polarized molecule. 

- It picks out the Fourier modes in the turbulence with frequencies that 
match the eigenvalue splitting.

For two flavors the solution is particularly simple: 

P12=
κ

2

Q 2
sin2(Qr )

- The quantities κ and Q are functions of the amplitudes {C} and 
wavenumbers {q} of the Fourier modes.

 

δ k ij+n1 q1+n2 q2+…≈0



  

A realization of turbulence created using 50 Fourier modes. 
Patton, Kneller & McLaughlin, PRD 89 073022 (2014)



  



  

GeneralizingGeneralizing

Can the Stimulated Transition description be used for other 
(neutrino flavor) evolution problems?

How does S evolve for an arbitrary Hamiltonian?

What if H is a function of S?



  

From From HH to  to SS
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We generalize to an arbitrary perturbing Hamiltonian. 

In some basis (f) we write:

δH (f )=∑
a=1

N q

Ca e
−i qa r+Ca

† e
i qa r

We transform to the eigenbasis of H
0
 using a matrix U and solve for 

the evolution matrix S
0
 in that basis. 

If H
0
 is a constant then S

0
 = exp(-i K r) where K is the diagonal 

matrix of eigenvalues of H
0
, K = diag(k

1
,k

2
,...).

In the eigenbasis of H
0
, we write S = S

0
 A and find A evolves 

according to 

 

i
dA
dr

=∑a
{ei K rU † [Ca e

i qar+Ca
† e

−i qar ]U e−i K r
}A=H ( A) A



  

In general H(A) has diagonal and offdiagonal elements. 

We pull out the diagonal elements of C
a
 and write them as

diag(U †CaU )=
1
2i
e
iΦa Fa

Where Φ
a
 = diag( φ

a,1
, φ

a,2
, ...) and F

a
 = diag(F

a,1
, F

a,2
, ...). 

We now write A as A = W B where the diagonal matrix W given by 

W=exp (−i∑
a

Ξa)

Ξa=
Fa
qa

[cos Φa−cos (Φa+qar )]

Ξ
a
 is also a diagonal matrix: Ξ

a
 = diag(ξ

a,1
, ξ

a,2
, …).

The purpose of W is to remove the diagonal elements of H(A).



  

We also define the matrix G
a
 by 

offdiag (U †CaU )=G a

i
dB
dr

=e
iK r+i∑

b

Ξb

(∑a {Ga e
i qa r+G a

† e−i qar})e
−i K r−i∑

b

Ξb

B=H (B )B

The matrix B evolves according to

The element ij of H(B) is 

H ij
(B)

=∑
a

{G a ,ij e
i([q a+(k i−k j) ]r+∑

b

[ξb ,i−ξb , j ])
+c.c}

The term exp(i[ξ
b,i

 – ξ
b,j

]) needs attention.



  

In full this term is 

ξb ,i−ξb , j=
[Fb , icos ϕb ,i−Fb , j cos ϕb , j ]

qb
(1−cos (qb r) )

+[Fb , isin ϕb ,i−Fb , j sinϕb , j ]
qb

sin(qb r )

ξb ,i−ξb , j=xb ,ij−zb ,ij cos (qb r+ψb ,ij)

which can be simplified by introducing x
b,ij

 and y
b,ij

, and then 
rewriting it using (z

b,ij
)2 = (x

b,ij 
)2+( y

b,ij
)2 and tan Ψ

b,ij 
= y

b,ij
 / x

b,ij

The term exp(i[ξ
b,i

 – ξ
b,j

]) can be expanded using Jacobi-Anger

e i[ ξb , i−ξb , j]=e i xb , ij ∑
mb=−∞

+∞

(−i)m b Jmb(zb , ij)e
imb [qb r+ψb , ij ]



  

And the element ij of H(B) is 

H ij
(B)

=−i e
i [k i−k j ]r∑

a (∑m a

κama ,ij e
imaqa r {∏

b≠a
∑
mb

λbmb ,ij e
imbqb r})

κama , ij=(−i)ma e
i [xa ,ij+ma ψa ,ij ][Ga ,ij e−i ψa,ij Jma−1−Ga , ij

 e iψa ,ij Jm a+1]

The Hamiltonian for B looks simple ☺ but, again,we cannot obtain 
a solution for B without making the Rotating Wave 
Approximaiton.

We assume that for each Fourier mode there is only one* important 
contribution to the series – n

a
.

H ij
(B)=−i e

i [k i−k j ]r∑
a

κana , ije
i naqa r∏

b≠a

λb ,nb , ij e
i nbq b r

Other than a generalization of various terms, the Hamiltonian has 
exactly the same form as the fluctuating matter problem!

λbmb ,ij=(−i)m b e
i [xb , ij+mb ψb, ij ]Jmb



  

For the case of two flavors:

P12=
κ

2

Q 2 sin2
(Qr )

κ=∑
a

κa ,na∏
b≠ a

λb , nb

2p=k1−k 2+∑
a

naqa

Q2= p2+κ2

B=(e
i p r[cosQr−i

p
Q

sinQr ] −i ei p r κ
Q

sinQr

−i e−i p r κ


Q
sinQr e−i p r[cosQr+i

p
Q

sinQr])
where

The transition probability in the eigenbasis of H
0
 is



  

A simple self-interaction problem A simple self-interaction problem 

α is the asymmetry, μ is the strength of the self-interaction.

We consider first the case α =1.

- This is the first problem found in Hannestad et al PRD 74 105010 (2006).

 

Consider a simple self-interaction problem for monoenergetic 
neutrinos and antineutrinos for two flavors

The self-interaction Hamiltonian is 

HSI=μ (ρ−αρ̄
)=μ (S ρ(0)S†

−α (S̄ ρ̄(0) S̄† )
)









  

Consider the asymmetric case α = 0.5.



  

We can again find a Fourier decomposition which matches the 
potential well using ~7 modes.



  

13 q
1

The spacing between the harmonics is 13 q
1
 (?!)



  

Using just two modes, the frequency is almost right, the amplitude 
is too small. 

- We probably need all 7 modes to get the amplitude right and we need to 
include all combinations of {n} with the same detuning frequency.





  

Self ConsistencySelf Consistency
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