Stimulated Transitions and Self Interactions

Jim Kneller Yue Yang Kennedy Perkins NC State University

Stimulated transitions

Patton, Kneller & McLaughlin, PRD **91** 025001 (2015) Patton, Kneller & McLaughlin, PRD **89** 073022 (2014) Kneller, McLaughlin & Patton, JPG **40** 055002 (2013)

The evolution of a neutrino traveling through a fluctuating matter potential is well described by the Stimulated Transition model.

The v state at r is related to the initial state through a matrix S. *S* obeys a differential equation

$$
i\frac{dS}{d\lambda} = HS
$$

H is the Hamiltonian, λ is an affine parameter.

H is composed of two terms:

- the vacuum contribution. \bullet
- H_{\circ} the underlying smooth matter potential, o
- the perturbing potential δH . \bullet

The perturbing potential has one non-zero element which we write as a Fourier series with wavenumbers $\{q\}$ and amplitudes $\{C\}$.

$$
\delta H_{ee} = \sum G_a \sin(q_a r + \eta_a)
$$

It is possible to derive an analytic solution for the case of a constant background potential using the Rotating Wave Approximation.

In the basis of the solutions of H_0 - with eigenvalues $\{k_1, k_2,...\}$ - we find a set of integers, one for each wavenumber.

The integers typically try to satisfy

$$
\delta k_{ij} + n_1 q_1 + n_2 q_2 + \ldots \approx 0
$$

The neutrino behaves like an illuminated polarized molecule.

- It picks out the Fourier modes in the turbulence with frequencies that match the eigenvalue splitting.

For two flavors the solution is particularly simple:

$$
P_{12} = \frac{\kappa^2}{Q^2} \sin^2(Qr)
$$

- The quantities κ and Q are functions of the amplitudes {C} and wavenumbers {q} of the Fourier modes.

A realization of turbulence created using 50 Fourier modes. Patton, Kneller & McLaughlin, PRD **89** 073022 (2014)

Can the Stimulated Transition description be used for other (neutrino flavor) evolution problems?

How does S evolve for an arbitrary Hamiltonian?

What if H is a function of S ?

From H to S

We generalize to an arbitrary perturbing Hamiltonian.

In some basis (f) we write:

$$
\delta H^{(f)} = \sum_{a=1}^{N_q} C_a e^{-iq_a r} + C_a^{\dagger} e^{iq_a r}
$$

We transform to the eigenbasis of $\mathsf{H}_{_\mathrm{0}}$ using a matrix $\mathsf{\mathsf{U}}$ and solve for the evolution matrix $\mathbf{S}_{_{\mathbf{0}}}$ in that basis.

If H_0 is a constant then $S_0 = exp(-i K r)$ where K is the diagonal matrix of eigenvalues of H_0 , K = diag(k₁,k₂,...).

In the eigenbasis of H_0 , we write $S = S_0 A$ and find A evolves according to

$$
i\frac{dA}{dr} = \sum_a \left\{ e^{iKr} U^{\dagger} \left[C_a e^{iq_a r} + C_a^{\dagger} e^{-iq_a r} \right] U e^{-iKr} \right\} A = H^{(A)} A
$$

In general H(A) has diagonal *and* offdiagonal elements.

We pull out the diagonal elements of $\mathsf{C}_{_\text{a}}$ and write them as

$$
diag(U^{\dagger}C_a U) = \frac{1}{2i} e^{i\Phi_a} F_a
$$

Where Φ_{a} = diag($\phi_{a,1}$, $\phi_{a,2}$, ...) and F_{a} = diag($F_{a,1}$, $F_{a,2}$, ...) We now write A as $A = W B$ where the diagonal matrix W given by

$$
W = \exp(-i \sum_{a} \Xi_{a})
$$

$$
\Xi_{a} = \frac{F_{a}}{q_{a}} [\cos \Phi_{a} - \cos(\Phi_{a} + q_{a}r)]
$$

 Ξ _a is also a diagonal matrix: Ξ _a = diag(ξ_{a,1}, ξ_{a,2}, ...). The purpose of W is to remove the diagonal elements of $H^(A)$. We also define the matrix $\mathbf{G}_{_{\mathbf{a}}}$ by

$$
offdiag(U†CaU)=Ga
$$

The matrix B evolves according to

$$
i\frac{dB}{dr}=e^{iKr+i\sum_{b}\Xi_{b}}\left(\sum_{a}\left\{G_{a}e^{iq_{a}r}+G_{a}^{\dagger}e^{-iq_{a}r}\right\}\right)e^{-iKr-i\sum_{b}\Xi_{b}}B=H^{(B)}B
$$

The element ij of $H^{(B)}$ is

$$
H_{ij}^{(B)} = \sum_{a} \{ G_{a,ij} e^{i \left(\left[q_a + (k_i - k_j) \right] r + \sum_{b} \left[\xi_{b,i} - \xi_{b,j} \right] \right)} + c.c \}
$$

The term $\exp(i[\xi_{b,i} - \xi_{b,j}])$ needs attention.

In full this term is

$$
\xi_{b,i} - \xi_{b,j} = \frac{\left[F_{b,i}\cos\varphi_{b,i} - F_{b,j}\cos\varphi_{b,j}\right]}{q_b} \left(1 - \cos\left(q_b r\right)\right)
$$

$$
+ \left[F_{b,i}\sin\varphi_{b,i} - F_{b,j}\sin\varphi_{b,j}\right] \sin\left(q_b r\right)
$$

which can be simplified by introducing $x_{b,ij}$ and $y_{b,ij}$, and then rewriting it using $(\mathsf{z}_{\flat,\mathsf{i}\mathsf{j}})^2$ = $(\mathsf{x}_{\flat,\mathsf{i}\mathsf{j}})^2$ +($\mathsf{y}_{\flat,\mathsf{i}\mathsf{j}})^2$ and tan $\boldsymbol{\Psi}_{\flat,\mathsf{i}\mathsf{j}}$ = $\mathsf{y}_{\flat,\mathsf{i}\mathsf{j}}$ / $\mathsf{x}_{\flat,\mathsf{i}\mathsf{j}}$

$$
\xi_{b,i} - \xi_{b,j} = x_{b,ij} - z_{b,ij} \cos(q_b r + \psi_{b,ij})
$$

The term $exp(i[\xi_{b,i} - \xi_{b,i}])$ can be expanded using Jacobi-Anger

$$
e^{i[\xi_{b,i}-\xi_{b,j}]} = e^{i\chi_{b,ij}} \sum_{m_b=-\infty}^{+\infty} (-i)^{m_b} J_{m_b}(z_{b,ij}) e^{im_b[q_b r + \psi_{b,ij}]}
$$

And the element ij of $H^{(B)}$ is

$$
H_{ij}^{(B)} = -i e^{i[k_i - k_j]r} \sum_{a} \left(\sum_{m_a} \kappa_{am_a,ij} e^{im_a q_a r} \{ \prod_{b \neq a} \sum_{m_b} \lambda_{bm_b,ij} e^{im_b q_b r} \} \right)
$$

$$
\kappa_{am_a,ij} = (-i)^{m_a} e^{i[\chi_{a,ij} + m_a \psi_{a,ij}]} \Big[G_{a,ij} e^{-i \psi_{a,ij}} J_{m_a - 1} - G_{a,ij}^* e^{i \psi_{a,ij}} J_{m_a + 1} \Big]
$$

$$
\lambda_{bm_b,ij} = (-i)^{m_b} e^{i[\chi_{b,ij} + m_b \psi_{b,ij}]} J_{m_b}
$$

The Hamiltonian for B looks simple \odot but, again, we cannot obtain a solution for B without making the Rotating Wave Approximaiton.

We assume that for each Fourier mode there is only one^{*} important contribution to the series $- n_a$.

$$
H_{ij}^{(B)} = -i e^{i[k_i - k_j]r} \sum_a \kappa_{an_a,ij} e^{in_a q_a r} \prod_{b \neq a} \lambda_{b,n_b,ij} e^{in_b q_b r}
$$

Other than a generalization of various terms, the Hamiltonian has exactly the same form as the fluctuating matter problem!

For the case of two flavors:

$$
B = \begin{pmatrix} e^{i pr} \left[\cos Qr - i \frac{p}{Q} \sin Qr \right] & -i e^{i pr} \frac{\kappa}{Q} \sin Qr \\ -i e^{-i pr} \frac{\kappa}{Q} \sin Qr & e^{-i pr} \left[\cos Qr + i \frac{p}{Q} \sin Qr \right] \end{pmatrix}
$$

where

$$
\kappa = \sum_{a} \kappa_{a,n_a} \prod_{b \neq a} \lambda_{b,n_b}
$$

2p = k₁ - k₂ + \sum_{a} n_aq_a

$$
Q^2 = p^2 + \kappa^2
$$

The transition probability in the eigenbasis of $\mathsf{H}_{_\mathrm{0}}$ is

$$
P_{12} = \frac{\kappa^2}{Q^2} \sin^2(Qr)
$$

A simple self-interaction problem

Consider a simple self-interaction problem for monoenergetic neutrinos and antineutrinos for two flavors

The self-interaction Hamiltonian is

$$
H_{SI} = \mu \left(\rho - \alpha \overline{\rho}^* \right) = \mu \left(S \rho(0) S^{\dagger} - \alpha \left(\overline{S} \overline{\rho}(0) \overline{S}^{\dagger} \right)^* \right)
$$

 α is the asymmetry, μ is the strength of the self-interaction.

We consider first the case $\alpha = 1$.

- This is the first problem found in Hannestad et al PRD **74** 105010 (2006).

There is only one non-zero element in H_{st} for this case.

We decompose $H_{\rm SI}$ into its Fourier modes.

Only the odd harmonics of the fundamental q_1 contribute.

The RWA does pretty well*.

*From past experience with the MSW problem, matching the frequency is hard, the amplitude is easier.

Consider the asymmetric case α = 0.5.

We can again find a Fourier decomposition which matches the potential well using ~7 modes.

The spacing between the harmonics is 13 q_1 (?!)

Using just two modes, the frequency is almost right, the amplitude is too small.

- We probably need all 7 modes to get the amplitude right and we need to include all combinations of {n} with the same detuning frequency.

From S to H

Knowing the general form for S, it is possible to construct a selfinteraction Hamiltonian $H_{\rm SI}$ ' in the original basis.

• The general form for H_{sl} ' is very messy involving products of infinite series i.e. $\Pi(\Sigma...)$ just as in the derivation of the solution for B.

Self Consistency

We are working on the self-consistency question $H_{\rm SI} = H_{\rm SI}$.

- In general, we do not have equal numbers of Fourier modes in $H_{\rm SI}$ and $H_{\rm SI}$. $\sum_{q=1}^{N_q} (\# e^{iq_q r}) = \prod_{b=1}^{N_q} \left(\sum_{m=-\infty}^{+\infty} \# e^{im_b q_b r} \right)$
- N_a must be infinite and the wavenumbers cannot be independent.
	- The wavenumbers must form a harmonic series.

Questions we're working on:

- Can we find the fundamental wavenumber q_1 ?
- Why don't all harmonics appear?
- How do we compute the Fourier coefficient matrices?

Summary

Using the RWA, it is possible to solve for the evolution with the \bullet general perturbing Hamiltonian

$$
\delta H = \sum_{a} C_a e^{-iq_a r} + C_a^{\dagger} e^{iq_a r}
$$

- The RWA predicts the amplitude and frequency of the solution to the symmetric self-interaction problem.
- Given the general form of the solution we can construct a self- \bullet interaction Hamiltonian from it.
- How do we find a self-consistent solution?