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❏   The solar abundance problem and CN neutrinos

❏   Measurement opportunities

Neutrinos and Solar Metalicity



❏  Origin of solar neutrino physics: desire to test a model
     of low-mass, main-sequence stellar evolution
       − local hydrostatic equilibrium: gas pressure gradient counteracting
           gravitational force
       − hydrogen burning:  pp chain, CN cycle
       − energy transport by radiation (interior) and convection (envelope)
       − boundary conditions: today’s mass, radius, luminosity

❏  The implementation of this physics requires
       − electron gas EOS
       − low-energy nuclear cross sections
       − radiative opacity  
       − some means of fixing the composition at ZAMS, including the 
          ratios X:Y:Z

The Standard Solar Model



Composition/metallicity in the SSM: 

❏  Standard picture of pre-solar contraction, evolution 
        − Sun forms from a contracting primordial gas cloud
        − passes through the Hayashi phase:  cool, highly opaque, large
           temperature gradients, slowly contracting ↔ convective (mixed)
        − radiative transport becomes more efficient at star’s center:
           radiative core grows from the center outward
        − when dense and hot enough, nuclear burning starts...

❏  Because the Hayashi phase fully mixes the proto-Sun, a chemically 
     homogeneous composition is traditionally assumed at ZAMS
        − Xini + Yini + Zini =1
        − relative metal abundances taken from a combination of photospheric
           (volatile) and meteoritic (refractory) abundances
        − Zini fixed by model’s present-day ZS, corrected for diffusion
        − Yini and αMLT adjusted to produce present-day L⦿ and R⦿  



Model tests:

❏  Solar neutrinos:  direct measure of core temperature to ∼ 0.5%
       − once the flavor physics has been sorted out

❏  Helioseismology:  inversions map out the local sound speed, properties
     of the convective zone
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1. INTRODUCTION
In 1958, Holmgren & Johnston (1958, 1959) found that the cross section for 3He + 4He →
7Be + γ was about 1,000 times larger than anticipated, so that in addition to the sim-
plest 3He + 3He → 4He + 2p proton-proton (pp) I termination of the pp chain (see
Figure 1), there might be significant branches to the pp II and pp III cycles and, thus, significant
fluxes of 7Be and 8B solar neutrinos. Despite the uncertainties that existed in 1958—the solar core
temperature was poorly constrained by theory, and other nuclear physics important to the pp chain
had not been resolved—both Cameron (1958) and Fowler (1958) pointed out that it might be possi-
ble to detect solar neutrinos using a radiochemical method Ray Davis had developed at Brookhaven
(Davis 1955). Although the endpoint of the main source of neutrinos from the pp I cycle, p + p →
d + e+ + νe, is below the 811-keV threshold for νe + 37Cl → 37Ar + e−, most 7Be and 8B neutrinos
are sufficiently energetic to drive this reaction. In 1962 Fowler organized a team of young Caltech
researchers—John Bahcall, Icko Iben, and Dick Sears—to begin the development of a solar model
to more accurately predict the central temperature of the Sun and to estimate the rates of neutrino-
producing reactions (Bahcall et al. 1963). The history of these early developments is summarized
in several sources (Bahcall & Davis 1982, Haxton 2010, Lande 2010). By early 1964, following sig-
nificant advances in the solar model and in the understanding of the nuclear physics of the pp chain
and the 37Cl(νe, e−)37Ar reaction, Davis (1964) and Bahcall (1964) concluded that a measurement
of solar neutrinos would be possible, were Davis to mount a detector 100 times larger than that he
built at Brookhaven, in a site sufficiently deep to reduce backgrounds from high-energy cosmic-ray
muons to an acceptable level. In April 1968, Davis, Harmer & Hoffman (1968) announced an up-
per bound on the solar neutrino capture rate for 37Cl of 3 SNU (1 SNU = 10−36 captures target−1

pp I pp II pp III
CN cycle

99.76% 0.24%

84.6% 15.4% 2.5 × 10–5%

99.89% 0.11%

p + p → 2H + e+ + νe

3He + 3He → 4He + 2p 3He + 4He → 7Be + γ

(p, γ)

(p, γ)

(p, α)

(p, γ)

β+

β+

3He + p → 4He + e+ + νe

7Li + p → 2 4He

2H + p → 3He + γ

p + e– + p → 2H + νe

7Be + e– → 7Li + νe
7Be + p → 8B + γ

8B → 8Be + e+ + νe

13C

13N

12C

14N

15O

15N

a b

Figure 1
(a) The three principal cycles comprising the proton-proton (pp) chain (pp I, pp II, and pp III), the associated neutrinos that “tag” each
of the three branches, and the theoretical branching percentages defining the relative rates of competing reactions (GS98-SFII SSM).
Also shown is the minor branch 3He + p → 4He + e+ + νe, which generates the most energetic neutrinos. (b) The CN I cycle, which
produces the 13N and 15O neutrinos.
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2e� + 4p ! 4He + 2⌫e + 26.73 MeV

∼T4 ∼T11 ∼T22
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By mid-1990s model-independent arguments developed showing that no 
adjustment in the SSM could reproduce observed ν fluxes (Cl, Ga, water exps.)



SNO, Super-Kamiokande, Borexino
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the “solar ν problem” was definitively traced to new physics by SNO
flavor conversion νe →νheavy 

requires an extension of the SM -- Majorana masses or νR  
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Table 2: SSM neutrino fluxes from the GS98-SFII and AGSS09-SFII SSMs, with

associated uncertainties (averaging over asymmetric uncertainties). The solar

values come from a luminosity-constrained analysis of all available data by the

Borexino Collaboration.

⌫ flux Emax
⌫ (MeV) GS98-SFII AGSS09-SFII Solar units

p+p!2H+e++⌫ 0.42 5.98(1 ± 0.006) 6.03(1 ± 0.006) 6.05(1+0.003
�0.011) 1010/cm2s

p+e�+p!2H+⌫ 1.44 1.44(1 ± 0.012) 1.47(1 ± 0.012) 1.46(1+0.010
�0.014) 108/cm2s

7Be+e�!7Li+⌫ 0.86 (90%) 5.00(1 ± 0.07) 4.56(1 ± 0.07) 4.82(1+0.05
�0.04) 109/cm2s

0.38 (10%)

8B!8Be+e++⌫ ⇠ 15 5.58(1 ± 0.14) 4.59(1 ± 0.14) 5.00(1 ± 0.03) 106/cm2s

3He+p!4He+e++⌫ 18.77 8.04(1 ± 0.30) 8.31(1 ± 0.30) — 103/cm2s

13N!13C+e++⌫ 1.20 2.96(1 ± 0.14) 2.17(1 ± 0.14)  6.7 108/cm2s

15O!15N+e++⌫ 1.73 2.23(1 ± 0.15) 1.56(1 ± 0.15)  3.2 108/cm2s

17F!170+e++⌫ 1.74 5.52(1 ± 0.17) 3.40(1 ± 0.16)  59. 106/cm2s

�2/P agr 3.5/90% 3.4/90%

Table 3: Results from global 3⌫ analyses including data through Neutrino2012.

Bari Analysis (Fogli et al. 2012) Valencia Analysis (Forero, Tórtola & Valle 2012)

Parameter/hierarchy Best 1� Fit 2� Range 3� Range Best 1� Fit 2� Range 3� Range

�m2
21(10�5eV2) 7.54+0.26

�0.22 7.15 $ 8.00 6.99 $ 8.18 7.62±0.19 7.27 $ 8.01 7.12 $ 8.20

�m2
31(10�3eV2) NH 2.47+0.06

�0.10 2.31 $ 2.59 2.23 $ 2.66 2.55+0.06
�0.09 2.38 $ 2.68 2.31 $ 2.74

IH �(2.38+0.07
�0.11) �(2.22 $ 2.49) �(2.13 $ 2.57) �(2.43+0.07

�0.06) �(2.29 $ 2.58) �(2.21 $ 2.64)

sin2 ✓12 0.307+0.018
�0.016 0.275 $ 0.342 0.259 $ 0.359 0.320+0.016

�0.017 0.29 $ 0.35 0.27 $ 0.37

sin2 ✓23 NH 0.386+0.024
�0.021 0.348 $ 0.448 0.331 $ 0.637

8
>><

>>:

0.613+0.022
�0.040

0.427+0.034
�0.027

0.38 $ 0.66 0.36 $ 0.68

IH 0.392+0.039
�0.022

8
>><

>>:

0.353 $ 0.484

0.543 $ 0.641

0.335 $ 0.663 0.600+0.026
�0.031 0.39 $ 0.65 0.37 $ 0.67

sin2 ✓13 NH 0.0241 ± 0.0025 0.0193 $ 0.0290 0.0169 $ 0.0313 0.0246+0.0029
�0.0028 0.019 $ 0.030 0.017 $ 0.033

IH 0.0244+0.0023
�0.0025 0.0194 $ 0.0291 0.0171 $ 0.0315 0.0250+0.0026

�0.0027 0.020 $ 0.030 0.017 $ 0.033

high-Z SSM low-Z SSM

luminosity
constrained
fit to data

With the new ν physics added, theory and experiment seem to coincide



Recent Re-evaluations of Photospheric Abundances

❏  SSM requires as input an estimate of core metalicity at t=0, an
     assumes a homogeneous zero-age Sun

❏  The metals have an important influence on solar properties: 
     free-bound transitions important to opacity, influencing local 
     sound speed

❏  The once excellent agreement between SSM and helioseismology
     due in part to this input  (Grevesse & Sauval 1998)      



❏  The classic analyses modeled the photosphere in 1D, without 
     explicit treatments of stratification, velocities, inhomogenieties
                    
❏  New 3D, parameter-free methods were then introduced,
     significantly improving consistency of line analyses:  MPI-Munich



Averaged line profiles
(from Asplund 2007)

❏  Spread in abundances from
     different C, O lines sources
     reduced from ~ 40% to 10%                 

❏  But abundances significantly reduced Z:  0.0169 ⇒ 0.0122 

❏  Makes sun more consistent with similar stars in local neighborhood

❏  Lowers SSM 8B  flux by 20%       



WH, Robertson, Serenelli 2013

But adverse consequences for helioseismology 
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Table 1 Standard solar model characteristics are compared to helioseismic values, as determined
by Basu & Antia (1997, 2004)

Propertya GS98-SFII AGSS09-SFII Solar
(Z/X)S 0.0229 0.0178 –
ZS 0.0170 0.0134 –
YS 0.2429 0.2319 0.2485 ± 0.0035
RCZ/R⊙ 0.7124 0.7231 0.713 ± 0.001
⟨δc/c ⟩ 0.0009 0.0037 0.0
ZC 0.0200 0.0159 –
YC 0.6333 0.6222 –
Zini 0.0187 0.0149 –
Yini 0.2724 0.2620 –

aX, Y, and Z are the mass fractions in H, He, and metals, respectively. The subscripts S, C, and ini denote current
photospheric, current core, and zero-age values, respectively. RCZ is the radius to the convective zone, and ⟨δc/c ⟩ is the
average fractional discrepancy in the sound speed, relative to helioseismic values.

Properties of two SSMs we use in this review are listed in Table 1. The models differ in the
values assumed for the photospheric metallicity ZS, with the GS98-SFII SSM being more metal
rich than the AGSS09-SFII SSM. The table gives the model photospheric helium YS and metal ZS

abundances, the radius of the convective zone RCZ, the mean deviation of the sound speed ⟨δc/c ⟩
from the helioseismic profile, the core helium and heavy element abundances YC and ZC, and the
Sun’s presolar abundances Yini and Zini.

2.2. The Proton-Proton Chain and Carbon-Nitrogen Cycle
Approximately 80% of observed stars lie along a path in the Hertzsprung-Russell diagram char-
acterized by energy generation through proton burning. The Sun provides a unique opportunity
to test our understanding of main-sequence stars, as we can compare model predictions to solar
properties that are precisely known. This has inspired a great deal of laboratory work to reduce
uncertainties in atomic opacities and nuclear cross sections—key SSM input parameters—so that
we can assess the reliability of the more fundamental solar physics and weak interactions aspects
of the model.

In lower mass hydrogen-burning stars, 4He is synthesized primarily through the pp-chain
nuclear reactions shown in Figure 1a. The rates of the pp I, pp II, and pp III cycles comprising
the pp chain can be determined from the fluxes of the pp/pep, 7Be, and 8B neutrinos produced
by those cycles. As the relative rates are very sensitive to TC, the neutrino fluxes are a sensitive
thermometer for the solar core, provided the associated nuclear physics is under control.

Rates depend on the quantity ⟨σv⟩MB, where v is the relative velocity between two colliding
nuclei, σ is the cross section, and ⟨ ⟩MB denotes an average over the Maxwell-Boltzmann relative
velocity distribution in the solar plasma. The optimal energy for a solar reaction, called the
Gamow peak, is determined from the competition between a cross section that rises rapidly as
the energy climbs the Coulomb barrier and a relative-velocity distribution that declines rapidly
on the Maxwell-Boltzmann tail. Two pp I–cycle reactions, d + p and 3He + 3He, have been
measured in their Gamow peaks. Data were obtained down to 2.5 and 16 keV, respectively,
at LUNA (Laboratory for Underground Nuclear Astrophysics), Gran Sasso’s low-background
facility for nuclear astrophysics (Bonetti et al. 1999, Broggini et al. 2010). For other pp-chain

26 Haxton · Robertson · Serenelli

A
nn

u.
 R

ev
. A

str
o.

 A
str

op
hy

s. 
20

13
.5

1:
21

-6
1.

 D
ow

nl
oa

de
d 

fro
m

 w
w

w
.a

nn
ua

lre
vi

ew
s.o

rg
by

 L
aw

re
nc

e 
Be

rk
el

ey
 N

at
io

na
l L

ab
or

at
or

y 
on

 0
6/

08
/1

4.
 F

or
 p

er
so

na
l u

se
 o

nl
y.



Solar abundance problem:   A disagreement between SSMs that are 
optimized to agree with interior properties deduced from our best 
analyses of helioseismology (high Z), and those optimized to agree with 
surface properties deduced from the most complete 3D analyses of 
photoabsorption lines (low Z).

Difference is ∼ 40 M⊕ of metal, when integrated over the Sun’s
convective zone ( which contains about 2.6% of the Sun’s mass)



Figure 5: Elemental abundances measured in the tropospheres of Jupiter (cir-
cles) and Saturn (squares) in units of their abundances in the protosolar nebula.
The elemental abundances for Jupiter are derived from the in situ measurements
of the Galileo probe (e.g. Mahaffy et al. 2000; Atreya et al. 2003). Note that the
oxygen abundance is considered to be a minimum value due to meteorological
effects (Roos-Serote et al. 2004). The abundances for Saturn are spectroscopic
determination (Atreya et al. 2003 and references therein). The solar or pro-
tosolar abundances used as a reference are from Lodders (2003). The arrows
show how abundances are affected by changing the reference protosolar abun-
dances from those of Anders & Grevesse (1989) to those of Lodders (2003).
The horizontal dotted lines indicate the locus of a uniform 2- and 4-times solar
enrichment in all elements except helium and neon, respectively.

17

Galileo data, from Guillot  AREPS 2005

Standard interpretation: late-stage planetary formation in a chemically 
evolved disk over ∼ 1 m.y. time scale

Did the Sun form from a homogeneous gas cloud?



Contemporary picture of metal segregation, accretion 

∼ 5% of nebular gas

Dullemond and Monnier,  ARA&A 2010



❏  processed gas - from which the elements we see concentrated in
     Jupiter were scrubbed  - remains in the solar system, not expelled

❏  the Sun had a well-developed radiative core at the time
     of planetary formation (thus an isolated convective zone)

This (removal of ice, dust) from gas stream could alter Sun if

Numerically the mass of metals extracted by the protoplanetary 
disk is more than sufficient to account for the needed dilution
of the convective zone (40-90 M⊕♁)

Guzik, vol. 624, ESA (2006) 17
Castro, Vauclair, Richard A&A 463 (2007) 755
WH & Serenelli, Ap. J. 687 (2008) 678
Nordlund (2009) arXiv:0908.3479 
Guzik and Mussack, Ap. J. 713 (2010) 1108
Serenelli, WH, Pena-Garay,  Ap. J.  743 (2011) 24



Self-consistent accreting nonstandard SMs

Evolve models with accretion in which the AGSS09 surface composition
is taken as a constraint, Z is varied, but H/He is assumed fixed
                                                                        Serenelli, Haxton, Peña-Garay 2011

Solar models with accretion 

Hypothesis: accretion of chemically processed material from 
the protoplanetary disk – Serenelli, Haxton & Peña-Garay (2011) 

Trento'('19/05/11'

tacc = 5, 15, 30 Myr  
(what matters is Mconv dilution 
factor)  
Dtacc= 10 Myr 

Macc < ~4 MMSN (~ 0.06 M) 
0 < Zacc < 0.03 (~2 Z) 

Maccr < 0.06 Msolar

0 < Zaccr < 0.03 (2 Zsolar)
taccr = 5, 15, 30 Myr

(Mconv(taccr) determines dilution)
Δtaccr < 10 Myr



For measured neutrino fluxes restrict accretion scenarios largely to 
those with modest masses of low-Z material  

neutrino constraints



refractory elements condense

H2O condenses

modeling done to date is 
somewhat naive:

expect in condensation, 
refractory > volatile > He 



Abundances in solar twins

Case for accretion II: abundances in ‘solar twins’ 

Differential analysis of 
abundances in ‘solar twins’ 
with no known planets 
(Melendez et al. 2009 – Ramirez et 
al. 2010) 

Authors claim Sun has a  
photosphere rich in volatiles  
~ 0.05 – 0.10 dex 

Proposed interpretation: 
refractories locked in 
planetesimals & accretion of 
protoplanetary disk material 
enriched in volatiles 

Trento'('19/05/11'

❏  Differential measurements of
     abundances in “solar twins”
     lacking Jupiters:
                   Melendez et al. 2009
                       Ramirez et al. 2010

❏  Claim: solar ratio of volatiles/
     refractories is higher than twin
     ratio by 0.05-0.10 dex

❏  Suggestive of disk chemistry;
     consistent with accretion where
     

❏  Measurements at the limit of
     feasibility:  debated...

⌧ freezeout
Al,Zr < ⌧ freezeout

Fe

< ⌧ freezeout
CNP



Al C
Convective boundary

Surface

This is in accord with expectations ...

A cartoon of
convective

zone 
composition
altered by 
accretion.
Initially:



Al C
Convective boundary

Surface

Depleted
of Al
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Depleted
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Al C

Convective boundary

Surface
Depleted
of Al/C

C/Al enhanced 
in CZ

Both depleted
relative to

primordial core

upper radiative
core altered,

more extensively
for refractories



Using νs to Probe Solar Core Composition Directly

❏  pp chain (primary) vs CN cycle (secondary):  catalysts for CN cycle 
     are pre-existing metals  (except in the case of the first stars)
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1. INTRODUCTION
In 1958, Holmgren & Johnston (1958, 1959) found that the cross section for 3He + 4He →
7Be + γ was about 1,000 times larger than anticipated, so that in addition to the sim-
plest 3He + 3He → 4He + 2p proton-proton (pp) I termination of the pp chain (see
Figure 1), there might be significant branches to the pp II and pp III cycles and, thus, significant
fluxes of 7Be and 8B solar neutrinos. Despite the uncertainties that existed in 1958—the solar core
temperature was poorly constrained by theory, and other nuclear physics important to the pp chain
had not been resolved—both Cameron (1958) and Fowler (1958) pointed out that it might be possi-
ble to detect solar neutrinos using a radiochemical method Ray Davis had developed at Brookhaven
(Davis 1955). Although the endpoint of the main source of neutrinos from the pp I cycle, p + p →
d + e+ + νe, is below the 811-keV threshold for νe + 37Cl → 37Ar + e−, most 7Be and 8B neutrinos
are sufficiently energetic to drive this reaction. In 1962 Fowler organized a team of young Caltech
researchers—John Bahcall, Icko Iben, and Dick Sears—to begin the development of a solar model
to more accurately predict the central temperature of the Sun and to estimate the rates of neutrino-
producing reactions (Bahcall et al. 1963). The history of these early developments is summarized
in several sources (Bahcall & Davis 1982, Haxton 2010, Lande 2010). By early 1964, following sig-
nificant advances in the solar model and in the understanding of the nuclear physics of the pp chain
and the 37Cl(νe, e−)37Ar reaction, Davis (1964) and Bahcall (1964) concluded that a measurement
of solar neutrinos would be possible, were Davis to mount a detector 100 times larger than that he
built at Brookhaven, in a site sufficiently deep to reduce backgrounds from high-energy cosmic-ray
muons to an acceptable level. In April 1968, Davis, Harmer & Hoffman (1968) announced an up-
per bound on the solar neutrino capture rate for 37Cl of 3 SNU (1 SNU = 10−36 captures target−1
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Figure 1
(a) The three principal cycles comprising the proton-proton (pp) chain (pp I, pp II, and pp III), the associated neutrinos that “tag” each
of the three branches, and the theoretical branching percentages defining the relative rates of competing reactions (GS98-SFII SSM).
Also shown is the minor branch 3He + p → 4He + e+ + νe, which generates the most energetic neutrinos. (b) The CN I cycle, which
produces the 13N and 15O neutrinos.
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Using νs to Probe Solar Core Composition Directly

❏  pp chain (primary) vs CN cycle (secondary):  catalysts for CN cycle 
     are pre-existing metals  (except in the case of the first stars)
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7Be + γ was about 1,000 times larger than anticipated, so that in addition to the sim-
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fluxes of 7Be and 8B solar neutrinos. Despite the uncertainties that existed in 1958—the solar core
temperature was poorly constrained by theory, and other nuclear physics important to the pp chain
had not been resolved—both Cameron (1958) and Fowler (1958) pointed out that it might be possi-
ble to detect solar neutrinos using a radiochemical method Ray Davis had developed at Brookhaven
(Davis 1955). Although the endpoint of the main source of neutrinos from the pp I cycle, p + p →
d + e+ + νe, is below the 811-keV threshold for νe + 37Cl → 37Ar + e−, most 7Be and 8B neutrinos
are sufficiently energetic to drive this reaction. In 1962 Fowler organized a team of young Caltech
researchers—John Bahcall, Icko Iben, and Dick Sears—to begin the development of a solar model
to more accurately predict the central temperature of the Sun and to estimate the rates of neutrino-
producing reactions (Bahcall et al. 1963). The history of these early developments is summarized
in several sources (Bahcall & Davis 1982, Haxton 2010, Lande 2010). By early 1964, following sig-
nificant advances in the solar model and in the understanding of the nuclear physics of the pp chain
and the 37Cl(νe, e−)37Ar reaction, Davis (1964) and Bahcall (1964) concluded that a measurement
of solar neutrinos would be possible, were Davis to mount a detector 100 times larger than that he
built at Brookhaven, in a site sufficiently deep to reduce backgrounds from high-energy cosmic-ray
muons to an acceptable level. In April 1968, Davis, Harmer & Hoffman (1968) announced an up-
per bound on the solar neutrino capture rate for 37Cl of 3 SNU (1 SNU = 10−36 captures target−1
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Figure 1
(a) The three principal cycles comprising the proton-proton (pp) chain (pp I, pp II, and pp III), the associated neutrinos that “tag” each
of the three branches, and the theoretical branching percentages defining the relative rates of competing reactions (GS98-SFII SSM).
Also shown is the minor branch 3He + p → 4He + e+ + νe, which generates the most energetic neutrinos. (b) The CN I cycle, which
produces the 13N and 15O neutrinos.
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Using νs to Probe Solar Core Composition Directly

❏  pp chain (primary) vs CN cycle (secondary):  catalysts for CN cycle 
     are pre-existing metals  (except in the case of the first stars)

1 2 3 4 5 6 7 8 9 10
T (107 K)

-4

-2

0

2

4

6

8

10

lo
g 1
0(
L/
L s
ol
ar
)

pp-chain

CN cycle

12C 15N 16O

13N 15O 17F

13C 14N 17O

(p, )

(p, )

+

(p, )

(p, )

+

(p, )

(p, )

+

(p, )

I II

AA51CH02-Haxton ARI 10 July 2013 12:8

1. INTRODUCTION
In 1958, Holmgren & Johnston (1958, 1959) found that the cross section for 3He + 4He →
7Be + γ was about 1,000 times larger than anticipated, so that in addition to the sim-
plest 3He + 3He → 4He + 2p proton-proton (pp) I termination of the pp chain (see
Figure 1), there might be significant branches to the pp II and pp III cycles and, thus, significant
fluxes of 7Be and 8B solar neutrinos. Despite the uncertainties that existed in 1958—the solar core
temperature was poorly constrained by theory, and other nuclear physics important to the pp chain
had not been resolved—both Cameron (1958) and Fowler (1958) pointed out that it might be possi-
ble to detect solar neutrinos using a radiochemical method Ray Davis had developed at Brookhaven
(Davis 1955). Although the endpoint of the main source of neutrinos from the pp I cycle, p + p →
d + e+ + νe, is below the 811-keV threshold for νe + 37Cl → 37Ar + e−, most 7Be and 8B neutrinos
are sufficiently energetic to drive this reaction. In 1962 Fowler organized a team of young Caltech
researchers—John Bahcall, Icko Iben, and Dick Sears—to begin the development of a solar model
to more accurately predict the central temperature of the Sun and to estimate the rates of neutrino-
producing reactions (Bahcall et al. 1963). The history of these early developments is summarized
in several sources (Bahcall & Davis 1982, Haxton 2010, Lande 2010). By early 1964, following sig-
nificant advances in the solar model and in the understanding of the nuclear physics of the pp chain
and the 37Cl(νe, e−)37Ar reaction, Davis (1964) and Bahcall (1964) concluded that a measurement
of solar neutrinos would be possible, were Davis to mount a detector 100 times larger than that he
built at Brookhaven, in a site sufficiently deep to reduce backgrounds from high-energy cosmic-ray
muons to an acceptable level. In April 1968, Davis, Harmer & Hoffman (1968) announced an up-
per bound on the solar neutrino capture rate for 37Cl of 3 SNU (1 SNU = 10−36 captures target−1
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(a) The three principal cycles comprising the proton-proton (pp) chain (pp I, pp II, and pp III), the associated neutrinos that “tag” each
of the three branches, and the theoretical branching percentages defining the relative rates of competing reactions (GS98-SFII SSM).
Also shown is the minor branch 3He + p → 4He + e+ + νe, which generates the most energetic neutrinos. (b) The CN I cycle, which
produces the 13N and 15O neutrinos.

22 Haxton · Robertson · Serenelli

A
nn

u.
 R

ev
. A

str
o.

 A
str

op
hy

s. 
20

13
.5

1:
21

-6
1.

 D
ow

nl
oa

de
d 

fro
m

 w
w

w
.a

nn
ua

lre
vi

ew
s.o

rg
by

 L
aw

re
nc

e 
Be

rk
el

ey
 N

at
io

na
l L

ab
or

at
or

y 
on

 0
6/

08
/1

4.
 F

or
 p

er
so

na
l u

se
 o

nl
y.



solar core

CN burning
in equilibrium
@ T7 ∼ 1.5
ν(13N)+ν(15O)

primordial C 
burned: 

14N(p, γ) bottleneck

present day burning 
of primordial C
ν(13N) - ν(15O)



❏  measurable neutrino fluxes

❏  these fluxes depend on the core temperature T (metal-dependent)
     but also have an additional linear dependence on the total core C+N

❏  absolute fluxes are uncertain, sensitive to small changes in many 
     solar model uncertainties other than total metallicity
     
❏  but an appropriate ratio of the CN and 8B ν flux is independent of
     these other uncertainties:  the measured 8B ν flux can be exploited
     as a solar thermometer

  

– 7 –

mass. Consequently, over a significant portion of the outer core, 12C has been converted to

14N, but further reactions are inhibited by the 14N(p,�) bottleneck.

The BSP08(GS) SSM (Peña-Garay & Serenelli 2008) – which employs values for Z and

the 14N(p,�) S-factor given below – predicts a modest CN-cycle contribution to solar energy

generation of 0.8% but substantial fluxes of neutrinos

13N(�+)13C E⌫ ⇠< 1.199 MeV � = (2.93+0.91
�0.82)⇥ 108

/cm2s

15O(�+)15N E⌫ ⇠< 1.732 MeV � = (2.20+0.73
�0.63)⇥ 108

/cm2s.

Here uncertainties reflect conservative abundance uncertainties as defined empirically in

Bahcall & Serenelli (2005). The first reaction is part of the path from 12C to 14N, while the

latter follows 14N(p,�). Thus neutrinos from 15O � decay are produced in the central core:

95% of the flux comes from the CN-equilibrium region, described above. About 30% of the

13N neutrinos come from outside this region, primarily because of the continued burning of

primordial 12C: this accounts for the somewhat higher flux of these neutrinos. There is also

a small but fascinating contribution from 17F � decay,

17F(�+)17O E⌫ ⇠< 1.740 MeV � = (5.82± 3.04)⇥ 106

/cm2s (1)

a reaction fed by (p,�) on primordial 16O: the cycling time for the second branch of the

CNO bi-cycle, for solar core conditions, is much longer than the solar age. The flux of these

neutrinos appears too small to allow a test of the Sun’s primordial oxygen content by this

means (Bahcall 1989).

The SSM makes several reasonable assumptions, including local hydrostatic equilibrium

(the balancing of the gravitational force against the gas pressure gradient), energy

generation by proton burning, a homogeneous zero-age Sun, and boundary conditions

imposed by the known mass, radius, and luminosity of the present Sun. It assumes no

significant mass loss or accretion. The homogeneity assumption allows the primordial core
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dependence of the CN neutrino flux on the abundance of C+N can be exploited to

relate solar neutrino measurements to the Sun’s primordial C and N abundances

(Serenelli, Haxton & Pena-Garay 2012)

�(15O)

�(15O)SSM
=


�(8B)

�(8B)SSM

�0.729
xC+N

⇥ [1 ± 0.006(solar) ± 0.027(D) ± 0.099(nucl) ± 0.032(✓12)] (37)

where xC+N is the C+N number abundance normalized to its SSM value. The

uncertainties were derived from the SSM’s logarithmic derivatives described in

Sec. 2. The first two of the these represent variations in all SSM parameters

other than the nuclear cross sections – including L�, the opacity, solar age, and

all abundances other than C and N, using abundance uncertainty intervals of

xj ⌘ 1 ±

����
AbundanceGS98

i � AbundanceAGSS09
i

(AbundanceGS98
i + AbundanceAGSS09

i )/2

���� .

Apart from the di↵usion parameter D, the net e↵ect of the variations in these

quantities is an uncertainty of 0.6%: we have formed a ratio of fluxes that is

e↵ectively insensitive to Tc. The di↵usion parameter D is an exception because

our expression relates contemporary neutrino flux measurements to the primor-

dial number densities of C and N, and thus must be corrected for the e↵ects of

di↵usion over 4.6 b.y. The di↵erential e↵ects of di↵usion on the ratio creates an

uncertainty of 2.7%, the only significant nonnuclear solar uncertainty.

Equation (37) is written for instantaneous fluxes, and thus must be corrected

for the energy-dependent e↵ects of oscillations. The SNO combined analysis

result, ✓12 = 34.06+1.16
�0.84, implies a 3.2% uncertainty in the flux comparison of

Eq. (37). Finally, there are nuclear physics uncertainties. These dominate the

overall error budget, with the combined (in quadrature) error reflecting a 7.2%

uncertainty from the 14N(p,�) reaction and a 5.5% uncertainty from 7Be(p,�).

the bottom line
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dependence of the CN neutrino flux on the abundance of C+N can be exploited to

relate solar neutrino measurements to the Sun’s primordial C and N abundances

(Serenelli, Haxton & Pena-Garay 2012)

�(15O)
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�(8B)
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�0.729
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⇥ [1 ± 0.006(solar) ± 0.027(D) ± 0.099(nucl) ± 0.032(✓12)] (37)

where xC+N is the C+N number abundance normalized to its SSM value. The

uncertainties were derived from the SSM’s logarithmic derivatives described in

Sec. 2. The first two of the these represent variations in all SSM parameters

other than the nuclear cross sections – including L�, the opacity, solar age, and

all abundances other than C and N, using abundance uncertainty intervals of

xj ⌘ 1 ±

����
AbundanceGS98

i � AbundanceAGSS09
i

(AbundanceGS98
i + AbundanceAGSS09

i )/2

���� .

Apart from the di↵usion parameter D, the net e↵ect of the variations in these

quantities is an uncertainty of 0.6%: we have formed a ratio of fluxes that is

e↵ectively insensitive to Tc. The di↵usion parameter D is an exception because

our expression relates contemporary neutrino flux measurements to the primor-

dial number densities of C and N, and thus must be corrected for the e↵ects of

di↵usion over 4.6 b.y. The di↵erential e↵ects of di↵usion on the ratio creates an

uncertainty of 2.7%, the only significant nonnuclear solar uncertainty.

Equation (37) is written for instantaneous fluxes, and thus must be corrected

for the energy-dependent e↵ects of oscillations. The SNO combined analysis

result, ✓12 = 34.06+1.16
�0.84, implies a 3.2% uncertainty in the flux comparison of

Eq. (37). Finally, there are nuclear physics uncertainties. These dominate the

overall error budget, with the combined (in quadrature) error reflecting a 7.2%

uncertainty from the 14N(p,�) reaction and a 5.5% uncertainty from 7Be(p,�).

measured to 2% by SuperKamiokande
                      (the solar thermometer)
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dependence of the CN neutrino flux on the abundance of C+N can be exploited to

relate solar neutrino measurements to the Sun’s primordial C and N abundances

(Serenelli, Haxton & Pena-Garay 2012)

�(15O)

�(15O)SSM
=


�(8B)

�(8B)SSM

�0.729
xC+N

⇥ [1 ± 0.006(solar) ± 0.027(D) ± 0.099(nucl) ± 0.032(✓12)] (37)

where xC+N is the C+N number abundance normalized to its SSM value. The

uncertainties were derived from the SSM’s logarithmic derivatives described in

Sec. 2. The first two of the these represent variations in all SSM parameters

other than the nuclear cross sections – including L�, the opacity, solar age, and

all abundances other than C and N, using abundance uncertainty intervals of

xj ⌘ 1 ±

����
AbundanceGS98

i � AbundanceAGSS09
i

(AbundanceGS98
i + AbundanceAGSS09

i )/2

���� .

Apart from the di↵usion parameter D, the net e↵ect of the variations in these

quantities is an uncertainty of 0.6%: we have formed a ratio of fluxes that is

e↵ectively insensitive to Tc. The di↵usion parameter D is an exception because

our expression relates contemporary neutrino flux measurements to the primor-

dial number densities of C and N, and thus must be corrected for the e↵ects of

di↵usion over 4.6 b.y. The di↵erential e↵ects of di↵usion on the ratio creates an

uncertainty of 2.7%, the only significant nonnuclear solar uncertainty.

Equation (37) is written for instantaneous fluxes, and thus must be corrected

for the energy-dependent e↵ects of oscillations. The SNO combined analysis

result, ✓12 = 34.06+1.16
�0.84, implies a 3.2% uncertainty in the flux comparison of

Eq. (37). Finally, there are nuclear physics uncertainties. These dominate the

overall error budget, with the combined (in quadrature) error reflecting a 7.2%

uncertainty from the 14N(p,�) reaction and a 5.5% uncertainty from 7Be(p,�).

what we want to know:  the primordial
core abundance of C + N (in units of SSM
best value)
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dependence of the CN neutrino flux on the abundance of C+N can be exploited to

relate solar neutrino measurements to the Sun’s primordial C and N abundances

(Serenelli, Haxton & Pena-Garay 2012)

�(15O)

�(15O)SSM
=


�(8B)

�(8B)SSM

�0.729
xC+N

⇥ [1 ± 0.006(solar) ± 0.027(D) ± 0.099(nucl) ± 0.032(✓12)] (37)

where xC+N is the C+N number abundance normalized to its SSM value. The

uncertainties were derived from the SSM’s logarithmic derivatives described in

Sec. 2. The first two of the these represent variations in all SSM parameters

other than the nuclear cross sections – including L�, the opacity, solar age, and

all abundances other than C and N, using abundance uncertainty intervals of

xj ⌘ 1 ±

����
AbundanceGS98

i � AbundanceAGSS09
i

(AbundanceGS98
i + AbundanceAGSS09

i )/2

���� .

Apart from the di↵usion parameter D, the net e↵ect of the variations in these

quantities is an uncertainty of 0.6%: we have formed a ratio of fluxes that is

e↵ectively insensitive to Tc. The di↵usion parameter D is an exception because

our expression relates contemporary neutrino flux measurements to the primor-

dial number densities of C and N, and thus must be corrected for the e↵ects of

di↵usion over 4.6 b.y. The di↵erential e↵ects of di↵usion on the ratio creates an

uncertainty of 2.7%, the only significant nonnuclear solar uncertainty.

Equation (37) is written for instantaneous fluxes, and thus must be corrected

for the energy-dependent e↵ects of oscillations. The SNO combined analysis

result, ✓12 = 34.06+1.16
�0.84, implies a 3.2% uncertainty in the flux comparison of

Eq. (37). Finally, there are nuclear physics uncertainties. These dominate the

overall error budget, with the combined (in quadrature) error reflecting a 7.2%

uncertainty from the 14N(p,�) reaction and a 5.5% uncertainty from 7Be(p,�).

the entire solar model dependence:  luminosity, metalicity, solar
age, etc., eliminated -- except for small residual differential
effects of heavy element diffusion (necessary to relate today’s
neutrino measurements to core abundance 4.7 b.y. ago)
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dependence of the CN neutrino flux on the abundance of C+N can be exploited to

relate solar neutrino measurements to the Sun’s primordial C and N abundances

(Serenelli, Haxton & Pena-Garay 2012)

�(15O)

�(15O)SSM
=


�(8B)

�(8B)SSM

�0.729
xC+N

⇥ [1 ± 0.006(solar) ± 0.027(D) ± 0.099(nucl) ± 0.032(✓12)] (37)

where xC+N is the C+N number abundance normalized to its SSM value. The

uncertainties were derived from the SSM’s logarithmic derivatives described in

Sec. 2. The first two of the these represent variations in all SSM parameters

other than the nuclear cross sections – including L�, the opacity, solar age, and

all abundances other than C and N, using abundance uncertainty intervals of

xj ⌘ 1 ±

����
AbundanceGS98

i � AbundanceAGSS09
i

(AbundanceGS98
i + AbundanceAGSS09

i )/2

���� .

Apart from the di↵usion parameter D, the net e↵ect of the variations in these

quantities is an uncertainty of 0.6%: we have formed a ratio of fluxes that is

e↵ectively insensitive to Tc. The di↵usion parameter D is an exception because

our expression relates contemporary neutrino flux measurements to the primor-

dial number densities of C and N, and thus must be corrected for the e↵ects of

di↵usion over 4.6 b.y. The di↵erential e↵ects of di↵usion on the ratio creates an

uncertainty of 2.7%, the only significant nonnuclear solar uncertainty.

Equation (37) is written for instantaneous fluxes, and thus must be corrected

for the energy-dependent e↵ects of oscillations. The SNO combined analysis

result, ✓12 = 34.06+1.16
�0.84, implies a 3.2% uncertainty in the flux comparison of

Eq. (37). Finally, there are nuclear physics uncertainties. These dominate the

overall error budget, with the combined (in quadrature) error reflecting a 7.2%

uncertainty from the 14N(p,�) reaction and a 5.5% uncertainty from 7Be(p,�).

we have some work to do here:  7Be(p, �), 14N(p, �)
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dependence of the CN neutrino flux on the abundance of C+N can be exploited to

relate solar neutrino measurements to the Sun’s primordial C and N abundances

(Serenelli, Haxton & Pena-Garay 2012)

�(15O)
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⇥ [1 ± 0.006(solar) ± 0.027(D) ± 0.099(nucl) ± 0.032(✓12)] (37)

where xC+N is the C+N number abundance normalized to its SSM value. The

uncertainties were derived from the SSM’s logarithmic derivatives described in

Sec. 2. The first two of the these represent variations in all SSM parameters

other than the nuclear cross sections – including L�, the opacity, solar age, and

all abundances other than C and N, using abundance uncertainty intervals of

xj ⌘ 1 ±

����
AbundanceGS98

i � AbundanceAGSS09
i

(AbundanceGS98
i + AbundanceAGSS09

i )/2

���� .

Apart from the di↵usion parameter D, the net e↵ect of the variations in these

quantities is an uncertainty of 0.6%: we have formed a ratio of fluxes that is

e↵ectively insensitive to Tc. The di↵usion parameter D is an exception because

our expression relates contemporary neutrino flux measurements to the primor-

dial number densities of C and N, and thus must be corrected for the e↵ects of

di↵usion over 4.6 b.y. The di↵erential e↵ects of di↵usion on the ratio creates an

uncertainty of 2.7%, the only significant nonnuclear solar uncertainty.

Equation (37) is written for instantaneous fluxes, and thus must be corrected

for the energy-dependent e↵ects of oscillations. The SNO combined analysis

result, ✓12 = 34.06+1.16
�0.84, implies a 3.2% uncertainty in the flux comparison of

Eq. (37). Finally, there are nuclear physics uncertainties. These dominate the

overall error budget, with the combined (in quadrature) error reflecting a 7.2%

uncertainty from the 14N(p,�) reaction and a 5.5% uncertainty from 7Be(p,�).

SNO’s marvelous measurement 
of the weak mixing angle
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relate solar neutrino measurements to the Sun’s primordial C and N abundances

(Serenelli, Haxton & Pena-Garay 2012)
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other than the nuclear cross sections – including L�, the opacity, solar age, and

all abundances other than C and N, using abundance uncertainty intervals of

xj ⌘ 1 ±

����
AbundanceGS98

i � AbundanceAGSS09
i

(AbundanceGS98
i + AbundanceAGSS09

i )/2

���� .

Apart from the di↵usion parameter D, the net e↵ect of the variations in these

quantities is an uncertainty of 0.6%: we have formed a ratio of fluxes that is

e↵ectively insensitive to Tc. The di↵usion parameter D is an exception because

our expression relates contemporary neutrino flux measurements to the primor-

dial number densities of C and N, and thus must be corrected for the e↵ects of

di↵usion over 4.6 b.y. The di↵erential e↵ects of di↵usion on the ratio creates an

uncertainty of 2.7%, the only significant nonnuclear solar uncertainty.

Equation (37) is written for instantaneous fluxes, and thus must be corrected

for the energy-dependent e↵ects of oscillations. The SNO combined analysis

result, ✓12 = 34.06+1.16
�0.84, implies a 3.2% uncertainty in the flux comparison of

Eq. (37). Finally, there are nuclear physics uncertainties. These dominate the

overall error budget, with the combined (in quadrature) error reflecting a 7.2%

uncertainty from the 14N(p,�) reaction and a 5.5% uncertainty from 7Be(p,�).

a future neutrino measurement:  Borexino, SNO+, JinPing....?



Both SNO+ and Borexino have considered such a measurement
Depth crucial:  SNO+/Borexino 11C ratio is 1/70



(from Mark Chen)

an obvious candidate for exploiting JinPing’s depth



this measurement is fundamental

❏  probes the primordial gas from which our solar system formed
      
❏  the first opportunity in astrophysics to directly compare surface and
     deep interior (primordial) compositions

❏  could help motivate “standard solar system models” that would 
     link solar ν physics,  solar system formation, planetary astrochemistry



summary

CN νs, 
primordial 
metallicity,

solar system 
formation

1960s 1990s 2020

new neutrino 
physics:

precise weak 
interaction
parameters

test the solar
model: precise 
determination 

of core 
temperature

Now that we have eliminated the weak interaction uncertainties
that held us back for many years, we can finally use solar neutrinos as

a precise probe of solar physics


