Recent results on the theoretical expectations of the flavor composition of astrophysical neutrinos

Mauricio Bustamante

1506.02645, In collaboration with John Beacom and Walter Winter

Center for Cosmology and Astroparticle Physics (CCAPP) The Ohio State University

INT 15-2a Program "Neutrino Astrophysics and Fundamental Properties" Seattle, June 19, 2015

High-energy astrophysical neutrinos: they exist!

The era of neutrino astronomy has begun!

- IceCube has reported 54 events with 30 TeV - 2 PeV in 4 years

... and 51 more events > 30 TeV

Mauricio Bustamante (CCAPP OSU)

High-energy astrophysical neutrinos: they exist!

The era of neutrino astronomy has begun!

- IceCube has reported 54 events with 30 TeV - 2 PeV in 4 years

Diffuse flux compatible with extragalactic origin [WAXMAN & BAHCALL 1997]:

$$E^2 \Phi_{
u} = (0.95 \pm 0.3) \times 10^{-8} \text{ GeV cm}^{-2} \text{ s}^{-1} \text{ sr}^{-1}$$
 (per flavor)

High-energy astrophysical neutrinos: they exist!

The era of neutrino astronomy has begun!

- IceCube has reported 54 events with 30 TeV - 2 PeV in 4 years

Arrival directions compatible with an isotropic distribution -

Flavor composition of neutrinos: an open question

What is the proportion of ν_e , ν_μ , ν_τ in the diffuse flux?

Knowing this can reveal two important pieces of information:

- the physical conditions at the neutrino sources; and
- whether there is new physics, and of what kind

So it will pay off to explore what to expect from theory

[Barenboim, Quigg, PRD 67, 073024 (2003)] [Winter, PRD 88, 083007 (2013)] [Mena, Palomares, Vincent, PRL 113, 091103 (2014)] [Palomares, Vincent, Mena, PRD 91, 103008 (2015)] [Palladino, Pagliaroli, Villante, Vissani, PRL 114, 171101 (2015)]

A quick review of neutrino mixing (I)

Two bases:

Flavor eigenstate ν_α (α = e, μ, τ): accompanies the charged anti-lepton I⁺_α that is created in a charged-current weak interaction:

• Mass eigenstate ν_i (i = 1, 2, 3): has a definite mass

Bases connected by a rotation U:

$$\begin{pmatrix} \nu_{e} \\ \nu_{\mu} \\ \nu_{\tau} \end{pmatrix} = U \begin{pmatrix} \nu_{1} \\ \nu_{2} \\ \nu_{3} \end{pmatrix}$$

► *U* is a 3 × 3 rotation matrix (PMNS matrix):

$$U = \left(egin{array}{cccc} U_{e1} & U_{e2} & U_{e3} \ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \ U_{ au 1} & U_{ au 2} & U_{ au 3} \ \end{array}
ight)$$

- Parametrise it with three angles and one CP-violating phase
- From solar, atmospheric, reactor, and accelerator experiments:

$$\theta_{12} \approx 37^{\circ} \,, \; \theta_{23} \approx 45^{\circ} \,, \; \theta_{13} \approx 9^{\circ} \,, \; \delta_{CP}$$
 unknown

"Flavor triangle" or Dalitz/Mandelstam plot

Assumes underlying unitarity: sum of projections on each axis is 1 How to read it: follow the tilt of the tick marks, *e.g.*,

The mass hierarchy is also unknown:

- Normal hierarchy (NH): ν_1 is lightest
- Inverted hierarchy (IH): ν₃ is lightest

Using latest fits from GONZÁLEZ-GARCÍA *et al.*, *JHEP* **1411**, 052 (2014):

- θ_{12} and θ_{13} are well-determined
- Little NH/IH difference for θ₁₂ and θ₁₃
- Large error and NH/IH difference for θ₂₃
- At 3σ, NH and IH regions are equal

Flavor content of the mass eigenstates ν_1 , ν_2 , ν_3

A different way to show this information is via ternary plots:

Flavor mixing in high-energy astrophysical neutrinos

Probability of $\overline{\nu}_{\alpha} \rightarrow \overline{\nu}_{\beta}$ transition:

$$\boldsymbol{P}_{\overrightarrow{\nu}_{\alpha} \rightarrow \overrightarrow{\nu}_{\beta}} = \delta_{\alpha\beta} - 4\sum_{k>j} \operatorname{Re}\left(J_{\alpha\beta jk}\right) \sin^{2}\left(\frac{\Delta m_{kj}^{2}L}{4E}\right) \pm 2\sum_{k>j} \operatorname{Im}\left(J_{\alpha\beta jk}\right) \sin\left(\frac{\Delta m_{kj}^{2}L}{2E}\right)$$

- The Δm_{kj}^2 are very small: $\sim 10^{-4}, 10^{-3} \, {
 m eV}^2$
- Therefore, oscillations are very rapid
- They average out after only a few oscillations lengths:

$$sin^2\left(\ldots\right)\to 1/2\;,\;\;sin\left(\ldots\right)\to 0$$

Hence, for astrophysical neutrinos:

$$P_{\overrightarrow{\nu}_{\alpha} \to \overrightarrow{\nu}_{\beta}} = \sum_{i=1}^{3} |U_{\alpha i}|^2 |U_{\beta i}|^2 \quad \blacktriangleleft \text{ incoherent mixture of mass eigenstates}$$

Flavor ratios

Neutrino production at the source via pion decay:

$$p\gamma
ightarrow \Delta^+$$
(1232) $ightarrow \pi^+ n$ $\pi^+
ightarrow \mu^+
u_\mu
ightarrow e^+
u_e ar
u_\mu
u_\mu$

Flavor ratios at the source: $(f_e: f_\mu: f_\tau)_S \approx (1/3: 2/3: 0)$

At Earth, due to flavor mixing:

$$f_{\alpha,\oplus} = \sum_{\beta} P_{\beta\alpha} f_{\beta,S}$$

 $(1/3:2/3:0)_{S} \xrightarrow{\text{flavor mixing, NH, best-fit}} (0.36:0.32:0.32)_{\oplus}$

Other compositions at the source:

 $\begin{array}{rcl} (0:1:0)_{S} & \longrightarrow & (0.26:0.36:0.38)_{\oplus} \mbox{ ("muon damped")} \\ (1:0:0)_{S} & \longrightarrow & (0.55:0.26:0.19)_{\oplus} \mbox{ ("neutron decay")} \\ (1:1:0)_{S} & \longrightarrow & (0.40:0.31:0.29)_{\oplus} \mbox{ ("charmed decays")} \end{array}$

Below $E_{\nu} \sim 10$ PeV, there are two event topologies:

- Showers: generated by CC ν_e or ν_τ; or by NC ν_x
- Muon tracks: generated by CC ν_μ

(Some muon tracks can be mis-reconstructed as showers)

At \gtrsim 10 PeV (no events so far), all of the above, plus:

- Glashow resonance: CC v
 e e interactions at 6.3 PeV
- Double bangs: CC $\nu_{\tau} \rightarrow \tau \rightarrow \nu_{\tau}$

Flavor ratios must be inferred from the number of showers and tracks

Two IceCube analyses of flavor composition

- Compatible with standard source compositions
- Bounds are weak need more data and better flavor-tagging

- But we do not really know the flavor composition at the source
- So let us be agnostic and assume very general compositions:

1 No ν_{τ} production:

$$(f_{e,S}: f_{\mu,S}: 0)$$

2 Anything goes:

$$(f_{e,S}: f_{\mu,S}: 1 - f_{e,S} - f_{\mu,S})$$
,

with $0 \leq f_{e,S} \leq 1$ and $f_{\mu,S} \leq f_{e,S}$

And we will calculate the flavor ratios at Earth

Std. mixing can access only $\sim 10\%$ of the possible combinations

Mauricio Bustamante (CCAPP OSU)

Std. mixing can access only $\sim 10\%$ of the possible combinations

Mauricio Bustamante (CCAPP OSU)

Std. mixing can access only $\sim 10\%$ of the possible combinations

Mauricio Bustamante (CCAPP OSU)

Selected source compositions

We can look at results for particular choices of ratios at the source:

Selected source compositions

We can look at results for particular choices of ratios at the source:

Selected source compositions

We can look at results for particular choices of ratios at the source:

Perfect knowledge of mixing angles

In a few years, we might know all the mixing parameters except δ_{CP} :

Energy dependence of the composition at the source

Different ν production channels are accessible at different energies

- TP13: pγ model, target photons from co-accelerated electrons [HÜMMER et al., Astropart. Phys. 34, 205 (2010)]
- Equivalent to different sources types contributing to the diffuse flux
- Will be difficult to resolve

[Kashti, Waxman, *PRL* 95, 181101 (2005)] [Lipari, Lusignoli, Meloni, *PRD* 75, 123005 (2007)]

New physics: effect on the flavor composition

- New physics in the neutrino sector could affect the
 - production; and/or
 - propagation; and/or
 - detection
- Detection: probe NP in the ν interaction length via the angular dependence of the flux [MARFATIA, MCKAY, WEILER, 1502.06337]
- NP at production and propagation could modify the incoherent mixture of v₁, v₂, v₃
- Example: neutrino decay

[Barenboim, Quigg, *PRD* **67**, 073024 (2003)] [Beacom, Bell, Hooper, Pakvasa, Weiler, *PRL* **90**, 181301 (2003)] [Maltoni, Winter, *JHEP* **07**, 064 (2008)] [Baerwald, MB, Winter, *JCAP* **1210**, 020 (2012)] [Pagliaroli, Palladino, Vissani, Villante 1506.02624]

Neutrino decay: example of mild new physics

- SM: ν lifetimes are > 10³⁶ yr
- Via new-physics decay modes, they could be shorter
- Consider two possibilities:
 - NH: ν_1 stable; ν_2 , ν_3 decay
 - IH: ν_3 stable; ν_1 , ν_2 decay
- There are experimental bounds on the lifetime τ_i/m_i

[MB, BEACOM, MURASE, IN PREP.]

Decay changes the flavor ratios at Earth:

$$f_{\alpha,\oplus} = \sum_{\beta} \sum_{i} |U_{\alpha i}|^2 |U_{\beta i}|^2 \mathbf{e}^{-\frac{\tau_i}{m_i} \frac{L}{E}} f_{\beta,\mathsf{S}}$$

Neutrino decay: complete vs. incomplete

• Complete decay: only ν_1 (ν_3) reach Earth assuming NH (IH)

▶ Incomplete decay: incoherent mixture of ν_1 , ν_2 , ν_3 reaches Earth

New physics — of the mild kind

Region of all linear combinations of ν_1 , ν_2 , ν_3 :

Mild NP can access only $\sim 25\%$ of the possible combinations

Mauricio Bustamante (CCAPP OSU)

New physics — of the mild kind

Region of all linear combinations of ν_1 , ν_2 , ν_3 :

Mild NP can access only $\sim 25\%$ of the possible combinations

Mauricio Bustamante (CCAPP OSU)

New physics — of the mild kind

Region of all linear combinations of ν_1 , ν_2 , ν_3 :

Mild NP can access only \sim 25% of the possible combinations

Mauricio Bustamante (CCAPP OSU)

Decay: seeing the energy dependence?

- The effect of decay shows up at low energies
- ► e.g., for a model of AGN cores [HUMMER et al., Astropart. Phys. 34, 205 (2010)],

MB, BEACOM, WINTER, 1506.02645

What kind of NP lives outside the blue region?

- > NP that changes the values of the mixing parameters, e.g.,
 - violation of Lorentz and CPT invariance

[MB, GAGO, PEÑA-GARAY, JHEP 1004, 005 (2010)]

violation of equivalence principle

[GASPERINI, PRD 39, 3606 (1989)] [GLASHOW et al., PRD 56, 2433 (1997)]

coupling to a torsion field

[DE SABBATA, GASPERINI, *Nuovo. Cim.* **A65**, 479 (1981)]

renormalization-group running of mixing parameters

[MB, GAGO, JONES, JHEP 1105, 133 (2011)]

- active-sterile mixing [AEIKENS et al., 1410.0408]
- flavor-violating physics
- ▶ $\nu \bar{\nu}$ mixing (if ν , $\bar{\nu}$ flavor ratios are considered separately)

New physics — of the truly exotic kind (I)

What kind of NP lives outside the blue region?

- > NP that changes the values of the mixing parameters, *e.g.*,
 - violation of Lorentz and CPT invariance

[MB, GAGO, PEÑA-GARAY, JHEP 1004, 005 (2010)]

violation of equivalence principle

[GASPERINI, PRD 39, 3606 (1989)] [GLASHOW et al., PRD 56, 2433 (1997)]

coupling to a torsion field

[DE SABBATA, GASPERINI, Nuovo. Cim. A65, 479 (1981)]

renormalization-group running of mixing parameters

[MB, GAGO, JONES, JHEP 1105, 133 (2011)]

- active-sterile mixing [AEIKENS et al., 1410.0408]
- flavor-violating physics
- ▶ $\nu \overline{\nu}$ mixing (if ν , $\overline{\nu}$ flavor ratios are considered separately)

New physics — of the truly exotic kind (II)

Add a new-physics term to the standard oscillation Hamiltonian:

 $H_{\rm tot} = H_{\rm std} + H_{\rm NP}$

Standard Hamiltonian:

$$H_{\mathrm{std}} = rac{1}{2E} U^{\dagger} \operatorname{diag} \left(0, \Delta m_{21}^2, \Delta m_{31}^2
ight) U,$$

with U the PMNS matrix

NP Hamiltonian:

$$H_{\rm NP} = \sum_{n} \left(\frac{E}{\Lambda_n}\right)^n U_n^{\dagger} \operatorname{diag}\left(O_{n,1}, O_{n,2}, O_{n,3}\right) U_n,$$

with U_n a PMNS-like matrix and Λ_n the scale of *n*-th order NP

New physics — of the *truly exotic* kind (III)

$$H_{\rm NP} = \sum_{n} \left(\frac{E}{\Lambda_n}\right)^n U_n^{\dagger} \operatorname{diag}\left(O_{n,1}, O_{n,2}, O_{n,3}\right) U_n$$

n = 0

- coupling to a torsion field
- CPT-odd Lorentz violation

n = 1

- equivalence principle violation
- CPT-even Lorentz violation

Experimental upper bounds from atmospheric ν 's:

 $O_0 \lesssim 10^{-23}~{
m GeV}$ $O_1/\Lambda_1 \lesssim 10^{-27}~{
m GeV}$

[ICECUBE COLL., *PRD* **82**, 112003 (2010)] [SUPER-K COLL., *PRD* **91**, 052003 (2015)] [Argüelles, Katori, Salvadó, 1506.02043]

New physics — of the *truly exotic* kind (IV)

Truly exotic new physics is indeed able to populate the white region:

- use current bounds on O_{n,i}
 - sample the unknown NP mixing angles

[Argüelles, Katori, Salvadó 1506.02043]

Mauricio Bustamante (CCAPP OSU)

- The flavor composition is arguably the second-most interesting unknown after the identification of sources
- The space of allowed flavor compositions is surprisingly small:
 - ► Standard mixing: ~ 10% of all possibilities
 - ► *Mild* new physics: ~ 25% (*e.g.*, decay)
- Only truly exotic new physics (*e.g.*, CPT-violation) can access all compositions
- IceCube searches could use these theoretical considerations to improve constraints
- More, better data on the particle-physics and astrophysics fronts are needed (*e.g.*, IceCube-Gen2, DUNE)

Extra: GRB neutrinos from multiple collisions

[MB, BAERWALD, MURASE, WINTER, Nature Commun. 6, 6783 (2015)]

Cumulative UHE $\nu,$ CR, $\gamma\text{-ray}$ emission from multiple collisions of plasma shells in a GRB jet

Spoiler: we found a fairly robust minimal GRB diffuse ν flux

Mauricio Bustamante (CCAPP OSU)

Backup slides

Flavor combinations from flavor mixing: NH vs. IH

MB, BEACOM, WINTER, 1506.02645

Selected source compositions: NH vs. IH

MB, BEACOM, WINTER, 1506.02645

 $(f_e:f_u:f_\tau)_S$

all free

(1:2:0)

(0:1:0)

(1:0:0)

(1:1:0)

f_{µ,⊕}

0.3

0.2

0.1

1

∑-0

0.6

0.5

0.8 0.9

0.4

Perfect knowledge of mixing angles: NH vs. IH

MB, BEACOM, WINTER, 1506.02645

MB, BEACOM, WINTER, 1506.02645

MB, BEACOM, WINTER, 1506.02645