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High-energy astrophysical neutrinos: they exist!

The era of neutrino astronomy has begun!

– IceCube has reported 54 events with 30 TeV – 2 PeV in 4 years

“Bert”, 1.04 PeV “Ernie”, 1.14 PeV “Big Bird”, 2 PeV

. . . and 51 more events > 30 TeV
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High-energy astrophysical neutrinos: they exist!

The era of neutrino astronomy has begun!

– IceCube has reported 54 events with 30 TeV – 2 PeV in 4 years

Diffuse flux compatible with extragalactic origin [WAXMAN & BAHCALL 1997]:

E2Φν = (0.95± 0.3)× 10−8 GeV cm−2 s−1 sr−1 (per flavor)

ICECUBE, PRL 111, 021103 (2013)
ICECUBE, Science 342, 1242856 (2013)
ICECUBE, PRL 113, 101101 (2014)
J O. BOTNER, IPA 2015
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High-energy astrophysical neutrinos: they exist!

The era of neutrino astronomy has begun!

– IceCube has reported 54 events with 30 TeV – 2 PeV in 4 years

Arrival directions compatible with an isotropic distribution –

– no association with sources found yet

+: shower
×: muon track

ICECUBE, PRL 111, 021103 (2013)
ICECUBE, Science 342, 1242856 (2013)
ICECUBE, PRL 113, 101101 (2014)

J O. BOTNER, IPA 2015
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Flavor composition of neutrinos: an open question

What is the proportion of νe, νµ, ντ in the diffuse flux?

Knowing this can reveal two important pieces of information:

I the physical conditions at the neutrino sources; and

I whether there is new physics, and of what kind

So it will pay off to explore what to expect from theory

[BARENBOIM, QUIGG, PRD 67, 073024 (2003)]
[WINTER, PRD 88, 083007 (2013)]
[MENA, PALOMARES, VINCENT, PRL 113, 091103 (2014)]
[PALOMARES, VINCENT, MENA, PRD 91, 103008 (2015)]
[PALLADINO, PAGLIAROLI, VILLANTE, VISSANI, PRL 114, 171101 (2015)]
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A quick review of neutrino mixing (I)

I Two bases:
{νe, νµ, ντ}︸ ︷︷ ︸ 6= {ν1, ν2, ν3}︸ ︷︷ ︸

flavor eigenstates mass eigenstates
I Flavor eigenstate να (α = e, µ, τ ): accompanies the charged

anti-lepton l+α that is created in a charged-current weak interaction:

I Mass eigenstate νi (i = 1,2,3): has a definite mass

I Bases connected by a rotation U:

 νe
νµ
ντ

 = U

 ν1
ν2
ν3


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A quick review of neutrino mixing (II)

I U is a 3× 3 rotation matrix (PMNS matrix):

U =

 Ue1 Ue2 Ue3
Uµ1 Uµ2 Uµ3
Uτ1 Uτ2 Uτ3


I Parametrise it with three angles and one CP-violating phase
I From solar, atmospheric, reactor, and accelerator experiments:

θ12 ≈ 37◦ , θ23 ≈ 45◦ , θ13 ≈ 9◦ , δCP unknown
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“Flavor triangle” or Dalitz/Mandelstam plot

Assumes underlying unitarity: sum of projections on each axis is 1

How to read it: follow the tilt of the tick marks, e.g.,
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Normal vs. inverted mass hierarchy
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The mass hierarchy is also unknown:

I Normal hierarchy (NH): ν1 is lightest

I Inverted hierarchy (IH): ν3 is lightest

Using latest fits from GONZÁLEZ-GARCÍA et al.,
JHEP 1411, 052 (2014):

I θ12 and θ13 are well-determined

I Little NH/IH difference for θ12 and θ13

I Large error and NH/IH difference for θ23

I At 3σ, NH and IH regions are equal
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Flavor content of the mass eigenstates ν1, ν2, ν3

A different way to show this information is via ternary plots:
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Flavor mixing in high-energy astrophysical neutrinos
Probability of (

_
)

ν α →
(
_

)

ν β transition:

P
(
_

)

ν α→
(
_

)

ν β

= δαβ−4
∑
k>j

Re (Jαβjk ) sin2

(
∆m2

kjL
4E

)
±2
∑
k>j

Im (Jαβjk ) sin

(
∆m2

kjL
2E

)

I The ∆m2
kj are very small: ∼ 10−4, 10−3 eV2

I Therefore, oscillations are very rapid
I They average out after only a few oscillations lengths:

sin2 (. . .)→ 1/2 , sin (. . .)→ 0

Hence, for astrophysical neutrinos:

P (
_

)

ν α→
(
_

)

ν β
=

3∑
i=1

|Uαi |2|Uβi |2 J incoherent mixture of mass eigenstates
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Flavor ratios

I Neutrino production at the source via pion decay:

pγ → ∆+(1232)→ π+n π+ → µ+νµ → e+νeν̄µνµ

I Flavor ratios at the source: (fe : fµ : fτ )S ≈ (1/3 : 2/3 : 0)

I At Earth, due to flavor mixing:

fα,⊕ =
∑
β

Pβαfβ,S

(1/3 : 2/3 : 0)S
flavor mixing, NH, best-fit−−−−−−−−−−−−−−→ (0.36 : 0.32 : 0.32)⊕

I Other compositions at the source:

(0 : 1 : 0)S −→ (0.26 : 0.36 : 0.38)⊕ (“muon damped”)
(1 : 0 : 0)S −→ (0.55 : 0.26 : 0.19)⊕ (“neutron decay”)
(1 : 1 : 0)S −→ (0.40 : 0.31 : 0.29)⊕ (“charmed decays”)
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How can IceCube identify flavor?

Below Eν ∼ 10 PeV, there are two event topologies:
I Showers: generated by CC νe or ντ ; or by NC νx

I Muon tracks: generated by CC νµ

(Some muon tracks can be mis-reconstructed as showers)

At & 10 PeV (no events so far), all of the above, plus:
I Glashow resonance: CC ν̄ee interactions at 6.3 PeV
I Double bangs: CC ντ → τ → ντ

Flavor ratios must be inferred from the number of showers and tracks
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Two IceCube analyses of flavor composition

Using contained events only
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Best fit: (0 : 0.2 : 0.8)⊕

Using contained events +
throughgoing muons

Best fit: (0.49 : 0.51 : 0)⊕

I Compatible with standard source compositions
I Bounds are weak – need more data and better flavor-tagging

ICECUBE COLL., PRL 114, 171102 (2015)

MORIOND 2015, IPA 2015
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Flavor combinations at Earth from flavor mixing

I But we do not really know the flavor composition at the source

I So let us be agnostic and assume very general compositions:

1 No ντ production:
(fe,S : fµ,S : 0)

2 Anything goes:
(fe,S : fµ,S : 1− fe,S − fµ,S) ,

with 0 ≤ fe,S ≤ 1 and fµ,S ≤ fe,S

I And we will calculate the flavor ratios at Earth I
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Flavor combinations at Earth from flavor mixing

MB, BEACOM, WINTER, 1506.02645

Std. mixing can access only ∼ 10% of the possible combinations

theory: maximal µ-τ mixing

experiment: e-τ degeneracy
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Selected source compositions

We can look at results for particular choices of ratios at the source:

challenging to tell them apart

(1:0:0) disfavored at 2σ

MB, BEACOM, WINTER, 1506.02645
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Perfect knowledge of mixing angles

In a few years, we might know all the mixing parameters except δCP:

MB, BEACOM, WINTER, 1506.02645
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Energy dependence of the composition at the source

Different ν production channels are accessible at different energies
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I TP13: pγ model, target photons from co-accelerated electrons
[HÜMMER et al., Astropart. Phys. 34, 205 (2010)]

I Equivalent to different sources types contributing to the diffuse flux
I Will be difficult to resolve

[KASHTI, WAXMAN, PRL 95, 181101 (2005)] [LIPARI, LUSIGNOLI, MELONI, PRD 75, 123005 (2007)]

MB, BEACOM, WINTER, 1506.02645
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New physics: effect on the flavor composition

I New physics in the neutrino sector could affect the
I production; and/or
I propagation; and/or
I detection

I Detection: probe NP in the ν interaction length via the angular
dependence of the flux [MARFATIA, MCKAY, WEILER, 1502.06337]

I NP at production and propagation could modify the incoherent
mixture of ν1, ν2, ν3

I Example: neutrino decay I

[BARENBOIM, QUIGG, PRD 67, 073024 (2003)]
[BEACOM, BELL, HOOPER, PAKVASA, WEILER, PRL 90, 181301 (2003)]
[MALTONI, WINTER, JHEP 07, 064 (2008)]
[BAERWALD, MB, WINTER, JCAP 1210, 020 (2012)]
[PAGLIAROLI, PALLADINO, VISSANI, VILLANTE 1506.02624]
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Neutrino decay: example of mild new physics

I SM: ν lifetimes are > 1036 yr

I Via new-physics decay modes,
they could be shorter

I Consider two possibilities:

I NH: ν1 stable; ν2, ν3 decay
I IH: ν3 stable; ν1, ν2 decay

I There are experimental bounds
on the lifetime τi/mi
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Decay changes the flavor ratios at Earth:

fα,⊕ =
∑
β

∑
i

|Uαi |2|Uβi |2e−
τi
mi

L
E fβ,S

[MB, BEACOM, MURASE, IN PREP.]
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Neutrino decay: complete vs. incomplete

I Complete decay: only ν1 (ν3) reach Earth assuming NH (IH)

I Incomplete decay: incoherent mixture of ν1, ν2, ν3 reaches Earth

α( )+β( )+γ( )

or
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New physics — of the mild kind

Region of all linear combinations of ν1, ν2, ν3:

Complete decay in NH
disfavored at > 2σ
[MB, BEACOM, MURASE, IN PREP.]

What kind of NP lives outside?
The truly exotic kind!

Mild NP can access only ∼ 25% of the possible combinations

MB, BEACOM, WINTER, 1506.02645
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Decay: seeing the energy dependence?

I The effect of decay shows up at low energies
I e.g., for a model of AGN cores [HÜMMER et al., Astropart. Phys. 34, 205 (2010)],

MB, BEACOM, WINTER, 1506.02645
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New physics — of the truly exotic kind (I)

What kind of NP lives outside the blue region?

I NP that changes the values of the mixing parameters, e.g.,
I violation of Lorentz and CPT invariance

[MB, GAGO, PEÑA-GARAY, JHEP 1004, 005 (2010)]

I violation of equivalence principle
[GASPERINI, PRD 39, 3606 (1989)] [GLASHOW et al., PRD 56, 2433 (1997)]

I coupling to a torsion field
[DE SABBATA, GASPERINI, Nuovo. Cim. A65, 479 (1981)]

I renormalization-group running of mixing parameters
[MB, GAGO, JONES, JHEP 1105, 133 (2011)]

I active-sterile mixing [AEIKENS et al., 1410.0408]

I flavor-violating physics
I ν–ν̄ mixing (if ν, ν̄ flavor ratios are considered separately)
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New physics — of the truly exotic kind (II)

I Add a new-physics term to the standard oscillation Hamiltonian:

Htot = Hstd + HNP

I Standard Hamiltonian:

Hstd =
1

2E
U† diag

(
0,∆m2

21,∆m2
31

)
U ,

with U the PMNS matrix

I NP Hamiltonian:

HNP =
∑

n

(
E
Λn

)n

U†n diag
(
On,1,On,2,On,3

)
Un ,

with Un a PMNS-like matrix and Λn the scale of n-th order NP

Mauricio Bustamante (CCAPP OSU) Neutrino flavors from theory 24 / 28



New physics — of the truly exotic kind (III)

HNP =
∑

n

(
E
Λn

)n

U†n diag
(
On,1,On,2,On,3

)
Un

n = 0
I coupling to a torsion field
I CPT-odd Lorentz violation

O0 . 10−23 GeV

n = 1
I equivalence principle violation
I CPT-even Lorentz violation

O1/Λ1 . 10−27 GeV

[ICECUBE COLL., PRD 82, 112003 (2010)]
[SUPER-K COLL., PRD 91, 052003 (2015)]
[ARGÜELLES, KATORI, SALVADÓ, 1506.02043]

Experimental upper bounds from atmospheric ν’s:
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New physics — of the truly exotic kind (IV)

Truly exotic new physics is indeed able to populate the white region:
I use current bounds on On,i
I sample the unknown NP mixing angles
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Conclusions . . . and the future

I The flavor composition is arguably the second-most interesting
unknown after the identification of sources

I The space of allowed flavor compositions is surprisingly small:
I Standard mixing: ∼ 10% of all possibilities
I Mild new physics: ∼ 25% (e.g., decay)

I Only truly exotic new physics (e.g., CPT-violation) can access all
compositions

I IceCube searches could use these theoretical considerations to
improve constraints

I More, better data on the particle-physics and astrophysics fronts
are needed (e.g., IceCube-Gen2, DUNE)
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Extra: GRB neutrinos from multiple collisions

[MB, BAERWALD, MURASE, WINTER, Nature Commun. 6, 6783 (2015)]

Cumulative UHE ν, CR, γ-ray emission from multiple collisions of plasma
shells in a GRB jet

the shells merge and particles are emitted

two shells collide

plasma shells propagate at different speeds
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Spoiler: we found a fairly robust minimal GRB diffuse ν flux
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Backup slides
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Flavor combinations from flavor mixing: NH vs. IH
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Selected source compositions: NH vs. IH
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Perfect knowledge of mixing angles: NH vs. IH

MB, BEACOM, WINTER, 1506.02645
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New physics: NH vs. IH

MB, BEACOM, WINTER, 1506.02645

Mauricio Bustamante (CCAPP OSU) Neutrino flavors from theory 33 / 28



New physics: decay in the IH

MB, BEACOM, WINTER, 1506.02645
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