

PROBING LORENTZ INVARIANCE VIOLATION WITH HIGH-ENERGY ASTROPHYSICAL NEUTRINOS

based on PRD 87 116009 (2013)

Enrico Borriello

Department of Physics Arizona State University Enrico.Borriello@asu.edu

June 8th, 2015

In collaboration with: S. Chakraborty, A. Mirizzi, P.D. Serpico

- Lorentz invariance violation (LIV) might be generated by quantum-gravity (QG) effects.
- As a consequence, particles may not travel at the universal speed of light.
- In particular, superluminal extragalactic neutrinos would rapidly lose energy via bremsstrahlung of electron-positron pairs ($\nu \rightarrow \nu e^+ e^-$).
- The three PeV cascade neutrino events recently detected by IceCube –if attributed to extragalactic diffuse events– can place the strongest bound on LIV in the neutrino sector:

$$\delta = (v^2 - 1) < \mathcal{O}(10^{-18})$$

▲母▶ ▲国▶ ▲国▶ 三国 - のQ@

Quantum gravity effects are expected at the Planck scale

$$M_{PL} = \sqrt{\hbar c/G_N} \approx 1.22 \times 10^{13} \text{PeV}/c^2$$

Earth-based experiments: 4×10^{-3} PeV per beam (LHC, 2012)

Cosmic-rays: 6×10^4 PeV (GZK cutoff at HiRes, 2007)

Nonetheless:

Low-energy Relic Signatures of QG: e.g. Liberati and Maccione 2009 for a recent review

- Quantum decoherence and state collapse
- QG imprint on initial cosmological perturbations
- Cosmological variation of couplings
- TeV black holes that are related to extra dimensions
- Violation of discrete symmetries
- Violation of spacetime symmetries
- . . .

E ► < E ►</p>

E

Quantum gravity effects are expected at the Planck scale

$$M_{PL} = \sqrt{\hbar c/G_N} \approx 1.22 \times 10^{13} \text{PeV}/c^2$$

Earth-based experiments: 4×10^{-3} PeV per beam (LHC, 2012)

Cosmic-rays: 6×10^4 PeV (GZK cutoff at HiRes, 2007)

Nonetheless:

LOW-ENERGY RELIC SIGNATURES OF QG: e.g. LIBERATI AND MACCIONE 2009 for a recent review

- Quantum decoherence and state collapse
- QG imprint on initial cosmological perturbations
- Cosmological variation of couplings
- TeV black holes that are related to extra dimensions
- Violation of discrete symmetries
- Violation of spacetime symmetries
- ...

< 注 → < 注 →

Quantum gravity effects are expected at the Planck scale

$$M_{PL} = \sqrt{\hbar c/G_N} \approx 1.22 \times 10^{13} \text{PeV}/c^2$$

Earth-based experiments: 4×10^{-3} PeV per beam (LHC, 2012)

Cosmic-rays: 6×10^4 PeV (GZK cutoff at HiRes, 2007)

Nonetheless:

LOW-ENERGY RELIC SIGNATURES OF QG: e.g. LIBERATI AND MACCIONE 2009 for a recent review

- Quantum decoherence and state collapse
- QG imprint on initial cosmological perturbations
- Cosmological variation of couplings
- TeV black holes that are related to extra dimensions
- Violation of discrete symmetries
- Violation of spacetime symmetries
- ...

< 注)→ < 注)→

Lorentz invariance is a key hypothesis of the CPT theorem.

ANTI-CPT THEOREM	Greenberg 2002
In any unitary, local, relativistic point-particle field theory:	
CPT breaking \Rightarrow Lorentz violation	

Lorentz invariance might be **violated** in a candidate theory of QG. As a consequence highly boosted energetic particles might propagate at speed greater than the speed of light.

PARAMETRIZATION

$$\delta = v^2 - 1 \,, \qquad v = \frac{\partial E}{\partial p} \,, \qquad E = p(1 + \delta/2) \label{eq:delta_eq}$$

(B) (B)

photons

Core collapse (Type II) supernova:		
Neutrino emission: It occurs simultaneously with core collapse.	few hours later	Emission of visible light: It occurs only after the shock wave reaches the stellar surface.

February 23, 1987: ν arrival time - γ arrival time = few hours

 $d = 163\,000\,\mathrm{ly}$

$$\begin{array}{rcl} \Delta t_{\nu} & = & d/v_{\nu} \\ \Delta t_{\gamma} & = & d/c \, d \end{array}$$

Limit from SN1987A: $\delta \lesssim 4 imes 10^{-9}$

★ 문 ► ★ 문 ►

LIV PROCESSES

Superluminal propagation allows for processes otherwise kinematically forbidden:

LIV PROCESSES (NEUTRINO SECTOR)

Cohen & Glashow 2011

- neutrino Cherenkov radiation $(\nu \rightarrow \nu \gamma)$
- neutrino splitting $(\nu \to \nu \, \nu \, \bar{\nu})$
- bremsstrahlung of electron-positron pairs $(\nu \rightarrow \nu e^+ e^-)$

All these processes would produce a depletion of the high-energy neutrino fluxes during their propagation

DECAY LAW

observed flux $= e^{-\Gamma L}$ initial flux

 $\nu \rightarrow \nu \nu \bar{\nu}$ is neglected (it brings only minor modifications).

Neutrino pair production $(\nu \rightarrow \nu e^+ e^-)$ has been recognized as the fastest energy-loss process for LIV neutrinos.

If $\nu \to \nu e^+ e^-$ is forbidden (threshold effects) $\nu \to \nu \gamma$ is anyway operational and a channel for energy losses, although two orders of magnitude less efficient (W-loop diagram...) than $\nu \to \nu e^+e^-$.

BREMSSTRAHLUNG OF ELECTRON-POSITRON PAIRS

For $\delta > 0$ the process $\nu \rightarrow \nu e^+ e^-$ is kinematically allowed provided that

Energy Treshold Cohen & Glashow 2011

$$E_{\nu} > \frac{2 m_e}{\sqrt{\delta}} \simeq \text{PeV} \sqrt{10^{-18}/\delta}$$

LI conservation is assumed in the electron sector.

DECAY RATE

COHEN & GLASHOW 2011

A B K A B K

$$\Gamma_{e^{\pm}} = \frac{1}{14} \frac{G_F^2 E^5 \delta^3}{192 \, \pi^3} = 2.55 \times 10^{53} \delta^3 E_{\rm PeV}^5 \ {\rm Mpc}^{-1}$$

BREMSSTRAHLUNG OF ELECTRON-POSITRON PAIRS

For $\delta > 0$ the process $\nu \rightarrow \nu e^+ e^-$ is kinematically allowed provided that

Energy Treshold Cohen & Glashow 2011

$$E_{\nu} > \frac{2 \, m_e}{\sqrt{\delta}} \simeq {\rm PeV} \sqrt{10^{-18}/\delta}$$

LI conservation is assumed in the electron sector.

DECAY RATE

Cohen & Glashow 2011

A B K A B K

$$\Gamma_{e^{\pm}} = \frac{1}{14} \frac{G_F^2 E^5 \delta^3}{192 \, \pi^3} = 2.55 \times 10^{53} E_{\rm PeV}^5 \, {\rm Mpc}^{-1}$$

BREMSSTRAHLUNG OF ELECTRON-POSITRON PAIRS

DECAY RATE

For $\delta > 0$ the process $\nu \rightarrow \nu e^+ e^-$ is kinematically allowed provided that

Energy Treshold Cohen & Glashow 2011

$$E_{\nu} > \frac{2 \, m_e}{\sqrt{\delta}} \simeq {\rm PeV} \sqrt{10^{-18}/\delta}$$

LI conservation is assumed in the electron sector.

Cohen & Glashow 2011

A B K A B K

$$\Gamma_{e^{\pm}} = \frac{1}{14} \frac{G_F^2 E^5 \delta^3}{192 \, \pi^3} = 2.55 \times 10^{53} \delta^3 \boxed{E_{\rm PeV}^5} \, {\rm Mpc}^{-1}$$

COUNTERARGUMENT AGAINST OPERA'S CLAIM

In July 2012 the OPERA Collaboration reported evidence of superluminal neutrino propagation:

CERN: CNGS: ν_{μ} pulses with mean energy 17.5 GeV	730 km	LNGS: OPERA: neutrinos are detected 60 ns earlier than expected
\mathbf{IF} neutrinos travel faster than light		10 ⁻⁵ CERN
$\nu \to \nu e^+ e^-$ treshold: 14 decay rate: Γ		2011
No neutrino of 17.5 should have been detec		

4 日本

э

COUNTERARGUMENT AGAINST OPERA'S CLAIM

In July 2012 the OPERA Collaboration reported evidence of superluminal neutrino propagation:

CERN: CNGS: ν_{μ} pulses with mean energy 17.5 GeV	730 km	LNGS: OPERA: neutrinos are detected 60 ns earlier than expected
\mathbf{IF} neutrinos travel faster than light	Adam et al. t: $\delta = 5 \times$ & Glashow	10 ⁻⁵
$\nu \rightarrow \nu e^+ e^-$ treshold: 14 decay rate: Γ energy loss per process: ~	$10 \text{ MeV} = 1.69 \text{ m}^{-1}$	LNGS
No neutrino of 17.5 should have been detect		

< ⊒ →

æ

COUNTERARGUMENT AGAINST OPERA'S CLAIM

In July 2012 the OPERA Collaboration reported evidence of superluminal neutrino propagation:

- The OPERA collaboration then announced the identification of two sources of error.
- In particular, a faulty connection in the optical fiber cable that brings the external GPS signal to the experiment master clock.
- Systematic error of about 70 ns in the determination of the time of flight of neutrinos.

< ∃⇒

SUPER-KAMIOKANDE, 1 GEV Ashie et. al. 2005, Coehen & Glashow 2011

probes:	upward-going atmospheric νs
energy:	$1 \mathrm{GeV}$
baseline:	10 000 km
bound:	$\delta < 1.4 \times 10^{-8}$

IceCube, 16 TeV

Abbasi et. al. 2011, Coehen & Glashow 201

probes:	upward-going atmospheric νs
energy:	16 TeV
baseline:	500 km
bound:	$\delta < 1.7 \times 10^{-11}$

RE-ANALYIS OF CR PROPAGATION IN THE ATMOSPHERE

Cowsik et al. 2012

Self-consistent re-analysi of CR propagation in the atmosphere including: (i) ν superluminal effects on μ and π decay; (ii) and the energy losses due to the Cohen-Glashow process; (iii) comprehensive and up to date data from underground detectors.

bound: $\delta < 10^{-13}$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

observed flux = $e^{-\Gamma L}$ initial flux

$$\begin{array}{c|c} \hline \textbf{DECAY RATE} & COHEN \& \text{ GLASHOW 2011} \\ \hline \textbf{\Gamma}_{e^{\pm}} = \frac{1}{14} \frac{G_F^2 E^5 \delta^3}{192 \, \pi^3} = 2.55 \times 10^{53} \delta^3 E_{\rm PeV}^5 \, \text{Mpc}^{-1} \\ \hline \delta \gtrsim 10^{-18} E_{\rm PeV}^{-2} \end{array}$$

In order for this process to be effective $(\Gamma L \gtrsim 1)$ for **PeV extragalactic** ν s $(L \sim Mpc)$, it must be

 $\delta\gtrsim 10^{-18}$

.

observed flux = $e^{-\Gamma L}$ initial flux

Decay Rate	Cohen & Glashow 2011	Treshold
$\Gamma_{e^{\pm}}=\frac{1}{14}\frac{G_{F}^{2}E^{5}\delta^{3}}{192\pi^{3}}$	$= 2.55 \times 10^{53} \delta^3 E_{\rm PeV}^5 \ {\rm Mpc}^{-1}$	$\delta \gtrsim 10^{-18} E_{\rm PeV}^{-2}$

GeV galactic neutrinos ($L \sim 10$ kpc):

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ シタペ

observed flux = $e^{-\Gamma L}$ initial flux

PeV extragalactic neutrinos ($L \sim 1 \text{ Mpc}$):

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

observed flux = $e^{-\Gamma L}$ initial flux

Decay Rate	Cohen & Glashow 2011	Treshold
$\Gamma_{e^{\pm}} = \frac{1}{14} \frac{G_F^2 E^5 \delta^3}{192 \pi^3}$	$\dot{F} = 2.55 \times 10^{53} \delta^3 E_{\rm PeV}^5 {\rm Mpc}^{-1}$	$\delta\gtrsim 10^{-18}E_{\rm PeV}^{-2}$

What if δ is slightly bigger? e.g. $\delta \rightarrow 2\delta$

 Γ scales like δ^3 , then

 $\Delta \delta \sim \mathcal{O}(1) \quad \Rightarrow \quad \Delta(\text{initial flux}) \sim \mathcal{O}(10^3)$

(the observed flux is kept constant)

★ E ► ★ E ►

observed flux = $e^{-\Gamma L}$ initial flux

$$\begin{array}{c|c} \hline \textbf{DECAY RATE} & \hline \textbf{COHEN \& GLASHOW 2011} & \hline \textbf{TRESHOLD} \\ \hline \Gamma_{e^{\pm}} = \frac{1}{14} \frac{G_F^2 E^5 \delta^3}{192 \, \pi^3} = 2.55 \times 10^{53} \delta^3 E_{\rm PeV}^5 \, \, {\rm Mpc}^{-1} & \delta \gtrsim 10^{-18} E_{\rm PeV}^{-2} \\ \hline \end{array}$$

What if δ is much bigger? e.g. $\delta \to 10 \,\delta$

 Γ scales like $\delta^3,$ then

 $\Delta \delta \sim \mathcal{O}(10) \Rightarrow$ totally unphysical! Δ (initial flux) $\sim \mathcal{O}(10^{434})$

(the observed flux is kept constant)

▲御▶ ▲臣▶ ★臣▶ 三臣

EXPECTATIONS:

The observation of PeV **extragalactic** neutrinos can put bounds on δ as strong as 10^{-18} with little or none assumption on their source.

To make this argument more robust:

- Detection of PeV neutrinos
- Arguments in favour of their extragalactic origin - in the best scenario, the identification of the source
- A physical argument to constraint the initial flux
 - either a theoretical model for the source or
 - indirect constraints on the associated secondary emission

A B K A B K

э.

ICECUBE EVENTS

< ∃ >

After the first two years of data taking (May 2010 – May 2012) the IceCube collaboration reported the detection of two cascade ν events with PeV energy:

∃ ⊳

The full 988-day sample (May 2014) reported the detection of a third PeV cascade event:

Atmospheric Neutrinos?

Collisions of cosmic rays with atmospheric nuclei produce many unstable hadrons:

PIONS Predominantly. neutrinos: They dominate at the lowest energies.	KAONS Small fraction. neutrinos: They dominate at intermediate energies.	MESONS AND BARYONS WITH HEAVY QUARKS (CHARM) Very small fraction. neutrinos: They dominate at the highest energies $(E_{\nu} > \text{PeV})$.
Conventional A	TMOSPHERIC ν S	Prompt Atmospheric ν s
0 0	le dependence, due oth of atmosphere.	Closer to isotropic.
	10 ⁻¹	

7

5 6 log₁₀ E [GeV]

з

Atmospheric Neutrinos?

The origin of these events is not settled. But:

(2 year analyis)

PROMT ATMOSPHERIC NEUTRINO BACKGROUND

ENBERG et al. 2008

Adding prompt atmospheric neutrinos from decays of charmed mesons:

$$(8.2 \pm 0.4(\text{stat})^{+4.1}_{-5.7}(\text{syst})) \times 10^{-2}$$

The hypothesis that two events in two years are fully explained by atmospheric background including the prompt atmospheric neutrinos had a p value of 2.9×10^{-3} (2.8σ).

NOTES: The prompt component has large theoretical uncertainties. But even using an extreme prompt flux which covers a potential unknown contribution from intrinsic charm the two events were not atmospheric at (2.3σ) .

포 제 표

포 제 표

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ 三豆 - のへで

$Main\ features:$

Excess with Respect to the Background

The evidence for **extraterrestrial** neutrinos is now at the level of 5.7σ .

"Extraterrestrial" but "galactic"?

ARRIVAL DIRECTIONS

The arrival directions of the 37 events show no significant clustering. In particular, there is no statistical association with the galactic plane!

Energy Spectrum

Up to 3 PeV the excess is compatible with an E^{-2} spectrum:

$$E_{\nu}^{2} \frac{d\varphi_{E}}{dE} = (0.95 \pm 0.3) \times 10^{-8} \text{ GeV cm}^{-2} \text{s}^{-1} \text{sr}^{-1}$$

The extrapolated energy spectrum deduced from $\mathcal{O}(100)$ TeV events predicts three PeV neutrinos in three years.

A NOVEL BOUND

Diffuse Flux from IceCube Pev νs

AARTSEN et al. 2014

Up to 3 PeV the excess is compatible with an E^{-2} spectrum:

$$E_{\nu}^{2} \frac{d\varphi_{E}}{dE} = (0.95 \pm 0.3) \times 10^{-8} \text{ GeV cm}^{-2} \text{s}^{-1} \text{sr}^{-1}$$

Observed Integrated Energy Density:

$$\omega_{\nu}^{\rm obs} = \frac{4\pi}{c} \int_{1\,{\rm PeV}}^{3\,{\rm PeV}} \frac{d\varphi_E}{dE} \,\mathrm{d}E \sim 10^{-9}\,\mathrm{eV/cm^3}\,,$$

The initial ν energy density is depleted at the expense of ICS photons (Cohen & Glashow e^{\pm} propagate only few kpc before scattering off the CMB) that populate a γ -ray flux between $E_1 \sim \mathcal{O}(1)$ GeV and $E_2 \mathcal{O}(100)$ GeV. This flux is constrained by Fermi data:

A NOVEL BOUND

Diffuse Flux from IceCube Pev νs

AARTSEN et al. 2014

▲ 臣 ▲ 臣 ▲ 臣 ● � � �

Up to 3 PeV the excess is compatible with an E^{-2} spectrum:

$$E_{\nu}^{2} \frac{d\varphi_{E}}{dE} = (0.95 \pm 0.3) \times 10^{-8} \text{ GeV } \text{cm}^{-2} \text{s}^{-1} \text{sr}^{-1}$$

Observed Integrated Energy Density:

$$\omega_{\nu}^{\rm obs} = \frac{4\pi}{c} \int_{1\,{\rm PeV}}^{3\,{\rm PeV}} \frac{d\varphi_E}{dE} \,\mathrm{d}E \sim 10^{-9}\,\mathrm{eV/cm^3}\,,$$

initial flux $\lesssim 10^2$ observed flux

Reversing the previous argument:

$$\Delta(\text{flux}) < \mathcal{O}(10^3) \quad \Rightarrow \quad \Delta(\delta) < \mathcal{O}(1)$$

$$\delta \lesssim \mathcal{O}(10^{-18})$$

- A very stringent bound on LIV in the neutrino sector, $\delta \lesssim \mathcal{O}(10^{-18})$, has been derived from the observations of three PeV neutrinos at IceCube and remarkably few other assumptions.
- The main (only?) hypothesis being the **extragalactic** nature of the observed PeV flux.
- Once additional information will be available (e.g. number density and redshift distribution of the sources) an improved calculation will be possible.
- In summary, it has been argued that a confirmation of the extragalactic nature of the PeV events detected at IceCube would not only open a new window to the high-energy universe, but also allow a significant jump (six orders of magnitune) in testing **fundamental physics**.