Collective neutrino oscillations

A.B. Balantekin

INT-15-2a Neutrino Astrophysics and Fundamental Properties June 2015

The origin of elements

Neutrinos not only play a crucial role in the dynamics of these sites, but they also control the value of the electron fraction, the parameter determining the yields of the rprocess.

Possible sites for the r-process

 $\begin{array}{rl} \bullet M_{prog} \geq & 8 \ M_{sun} \Rightarrow \Delta E \approx 10^{53} \ ergs \approx \\ & 10^{59} \ MeV \end{array}$

•99% of the energy is carried away by neutrinos and antineutrinos with $10 \le E_v \le 30 \text{ MeV} \implies 10^{58} \text{ neutrinos}$

For example understanding a core-collapse supernova requires answers to a variety of questions some of which need to be answered by nuclear physics, both theoretically and experimentally.

If we want to catch a supernova with neutrinos we'd better know what neutrinos do inside a supernova. For example understanding a core-collapse supernova requires answers to a variety of questions some of which need to be answered by nuclear physics, both theoretically and experimentally.

The second term makes the physics of a neutrino gas in a core-collapse supernova a very interesting many-body problem, driven by weak interactions.

Neutrino-neutrino interactions lead to novel collective and emergent effects, such as conserved quantities and interesting features in the neutrino energy spectra (spectral "swaps" or "splits").

Many neutrino system

This is the only many-body system driven by the weak interactions:

Table: Many-body systems

Nuclei	Strong	at most ${\sim}250$ particles
Condensed matter	E&M	at most N_A particles
u's in SN	Weak	$\sim 10^{58}$ particles

Astrophysical extremes allow us to test physics that cannot be tested elsewhere!

$$\hat{J}_{+} = a_{e}^{\dagger}a_{\mu} \qquad \hat{J}_{-} = a_{\mu}^{\dagger}a_{e}$$
$$\hat{J}_{0} = \frac{1}{2}\left(a_{e}^{\dagger}a_{e} - a_{\mu}^{\dagger}a_{\mu}\right)$$

These operators can be written in either mass or flavor basis

Free neutrinos (only mixing) $\hat{H} = \frac{m_1^2}{2E} a_1^{\dagger} a_1 + \frac{m_2^2}{2E} a_2^{\dagger} a_2 + (\cdots)\hat{1}$ $= \frac{\delta m^2}{4E} \cos 2\theta \left(-2\hat{J}_0\right) + \frac{\delta m^2}{4E} \sin 2\theta \left(\hat{J}_+ + \hat{J}_-\right) + (\cdots)'\hat{1}$

Interacting with background electrons

$$\hat{H} = \left[\frac{\delta m^2}{4E}\cos 2\theta - \frac{1}{\sqrt{2}}G_F N_e\right] \left(-2\hat{J}_0\right) + \frac{\delta m^2}{4E}\sin 2\theta \left(\hat{J}_+ + \hat{J}_-\right) + \left(\cdots\right)''\hat{1}$$

Neutrino-Neutrino Interactions

Smirnov, Fuller and Qian, Pantaleone, McKellar, Friedland, Lunardini, Raffelt, Duan, Balantekin, Kajino, Pehlivan ...

This term makes the physics of a neutrino gas in a core-collapse supernova a genuine many-body problem

$$\hat{H} = \int dp \left(\frac{\delta m^2}{2E} \vec{\mathbf{B}} \cdot \vec{\mathbf{J}}_p - \sqrt{2} G_F N_e \mathbf{J}_p^0 \right) + \frac{\sqrt{2} G_F}{V} \int dp \, dq \left(1 - \cos \theta_{pq} \right) \vec{\mathbf{J}}_p \cdot \vec{\mathbf{J}}_q$$
$$\vec{\mathbf{B}} = \left(\sin 2\theta, \ 0, -\cos 2\theta \right)$$

Neutrino-neutrino interactions lead to novel collective and emergent effects, such as conserved quantities and interesting features in the neutrino energy spectra (spectral "swaps" or "splits").

Conserved quantities of the collective motion in the singleangle limit

$$h_{p} = \vec{\mathbf{B}} \cdot \vec{\mathbf{J}}_{p} + \frac{4\sqrt{2}G_{F}}{\delta m^{2}V} \sum_{p \neq q} qp \frac{\vec{\mathbf{J}}_{p} \cdot \vec{\mathbf{J}}_{q}}{q - p}$$

- There is a second set of conserved quantities for antineutrinos.
- Note the presence of volume. In fact h_p/V are the conserved quantities for the neutrino densities.
- For three flavors a similar expression is written in terms of SU(3) operators.

Duan, Friedland, McLaughlin, Surman

Single-angle approximation Hamiltonian:

$$H = \sum_{p} \frac{\delta m^2}{2p} J_p^0 + 2\mu \sum_{\substack{p, q \ p \neq q}} \mathbf{J}_p \bullet \mathbf{J}_q$$

Eigenstates:

$$|x_{i}\rangle = \prod_{i=1}^{N} \sum_{k} \frac{J_{k}^{\dagger}}{\left(\delta m^{2}/2k\right) - x_{i}} |0\rangle$$
$$-\frac{1}{2\mu} - \sum_{k} \frac{j_{k}}{\left(\delta m^{2}/2k\right) - x_{i}} = \sum_{j \neq i} \frac{1}{x_{i} - x_{j}}$$

Bethe ansatz equations

$$\mu = \frac{G_F}{\sqrt{2}V} \left\langle 1 - \cos \Theta \right\rangle$$

Pehlivan, ABB, Kajino, & Yoshida Phys. Rev. D 84, 065008 (2011)

To understand spectral splits consider a simple model with two neutrino energies

$$H = \sum_{p=1,2} \omega_p J_p^0 + 2\mu \sum_{\substack{p, q=1,2 \\ p \neq q}} \mathbf{J}_p \bullet \mathbf{J}_q \Rightarrow \begin{cases} \mu \to \infty \quad H = 2\mu \sum_{\substack{p, q=1,2 \\ p \neq q}} \mathbf{J}_p \bullet \mathbf{J}_q \\ \mu \to 0 \quad H = \sum_{p=1,2} \omega_p J_p^0 \end{cases}$$

Wavefunctions

$\underline{\mu \to \infty}$	$\underline{\mu \rightarrow 0}$
$\frac{1}{\sqrt{2}} \left(J_1^+ + J_2^+ \right) \left 0 \right\rangle$	$J_{1}^{*}ig 0ig angle$
$\frac{1}{\sqrt{2}} \left(J_1^+ - J_2^+ \right) \left 0 \right\rangle$	$J_2^+ \left 0 \right\rangle$
$J_1^{-} 0\rangle = 0, J_2^{-} 0\rangle = 0$	

To understand spectral splits consider a simple model with two neutrino energies

$$H = \sum_{p=1,2} \omega_p J_p^0 + 2\mu \sum_{\substack{p, q=1,2 \\ p \neq q}} \mathbf{J}_p \bullet \mathbf{J}_q \Rightarrow \begin{cases} \mu \to \infty \quad H = 2\mu \sum_{\substack{p, q=1,2 \\ p \neq q}} \mathbf{J}_p \bullet \mathbf{J}_q \\ \mu \to 0 \quad H = \sum_{p=1,2} \omega_p J_p^0 \end{cases}$$

Wavefunctions

$$\underline{\mu \rightarrow \infty} \qquad \underline{\mu \rightarrow 0}$$

$$\frac{1}{\sqrt{2}} \left(J_1^+ + J_2^+ \right) \left| 0 \right\rangle \qquad J_1^+ \left| 0 \right\rangle$$

$$\frac{1}{\sqrt{2}} \left(J_1^+ - J_2^+ \right) \left| 0 \right\rangle \qquad J_2^+ \left| 0 \right\rangle$$

$$J_1^- \left| 0 \right\rangle = 0, \quad J_2^- \left| 0 \right\rangle = 0$$

To determine the corresponding states use the solutions of Bethe ansatz equations

To understand spectral splits consider a simple model with two neutrino energies

$$H = \sum_{p=1,2} \omega_p J_p^0 + 2\mu \sum_{\substack{p, q=1,2 \\ p \neq q}} \mathbf{J}_p \bullet \mathbf{J}_q \Rightarrow \begin{cases} \mu \to \infty \quad H = 2\mu \sum_{\substack{p, q=1,2 \\ p \neq q}} \mathbf{J}_p \bullet \mathbf{J}_q \\ \mu \to 0 \quad H = \sum_{p=1,2} \omega_p J_p^0 \end{cases}$$

Wavefunctions

$$\begin{array}{ccc}
\underline{\mu \rightarrow \infty} & \underline{\mu \rightarrow 0} \\
\frac{1}{\sqrt{2}} \left(J_{1}^{+} + J_{2}^{+} \right) | 0 \rangle & J_{1}^{+} | 0 \rangle \\
\frac{1}{\sqrt{2}} \left(J_{1}^{+} - J_{2}^{+} \right) | 0 \rangle & J_{2}^{+} | 0 \rangle \\
J_{1}^{-} | 0 \rangle = 0, \quad J_{2}^{-} | 0 \rangle = 0
\end{array}$$

$$\left\langle N_{e}(\omega_{1})\right\rangle_{\text{before}} = \frac{N}{2} \quad \left\langle N_{e}(\omega_{1})\right\rangle_{\text{after}} = 0$$

$$\left\langle N_{e}(\omega_{2})\right\rangle_{\text{before}} = \frac{N}{2} \quad \left\langle N_{e}(\omega_{2})\right\rangle_{\text{after}} = N$$

$$\left\langle N_{x}(\omega_{1})\right\rangle_{\text{before}} = \frac{N}{2} \quad \left\langle N_{x}(\omega_{1})\right\rangle_{\text{after}} = N$$

$$\left\langle N_{x}(\omega_{2})\right\rangle_{\text{before}} = \frac{N}{2} \quad \left\langle N_{x}(\omega_{2})\right\rangle_{\text{after}} = 0$$

What is the mean-field approximation?

$$\begin{split} \left[\hat{O}_{1}, \hat{O}_{2} \right] &\cong 0 \\ \hat{O}_{1}\hat{O}_{2} \approx \hat{O}_{1} \left\langle \hat{O}_{2} \right\rangle + \left\langle \hat{O}_{1} \right\rangle \hat{O}_{2} - \left\langle \hat{O}_{1}\hat{O}_{2} \right\rangle \\ \text{Expectation values should be calculated} \\ \text{with a state } \left| \Psi \right\rangle \text{chosen to satisfy:} \\ \left\langle \hat{O}_{1}\hat{O}_{2} \right\rangle &= \left\langle \hat{O}_{1} \right\rangle \left\langle \hat{O}_{2} \right\rangle \end{split}$$

This reduces the two-body problem to a one-body problem: $a^{\dagger}a^{\dagger}aa \Rightarrow \langle a^{\dagger}a \rangle a^{\dagger}a + \langle a^{\dagger}a^{\dagger} \rangle aa + h.c.$

$$\hat{H}_{vv} = \frac{\sqrt{2}G_F}{V} \int dp \, dq \left(1 - \cos\theta_{pq}\right) \vec{\mathbf{J}}_p \cdot \vec{\mathbf{J}}_q \cong \frac{\sqrt{2}G_F}{V} \int dp \, dq \left(1 - \cos\theta_{pq}\right) \left\langle \vec{\mathbf{J}}_p \right\rangle \cdot \vec{\mathbf{J}}_q$$

Mean field

Neutrino-neutrino interaction

$$\overline{\psi}_{\nu L}\gamma^{\mu}\psi_{\nu L}\overline{\psi}_{\nu L}\gamma_{\mu}\psi_{\nu L} \Rightarrow \overline{\psi}_{\nu L}\gamma^{\mu}\psi_{\nu L}\left\langle\overline{\psi}_{\nu L}\gamma_{\mu}\psi_{\nu L}\right\rangle + \cdots$$

Antineutrino-antineutrino interaction

$$\bar{\psi}_{\bar{\nu}R}\gamma^{\mu}\psi_{\bar{\nu}R}\bar{\psi}_{\bar{\nu}R}\gamma_{\mu}\psi_{\bar{\nu}R} \Rightarrow \bar{\psi}_{\bar{\nu}R}\gamma^{\mu}\psi_{\bar{\nu}R}\left\langle\bar{\psi}_{\bar{\nu}R}\gamma_{\mu}\psi_{\bar{\nu}R}\right\rangle + \cdots$$

Neutrino-antineutrino interaction

$$\overline{\psi}_{\nu L}\gamma^{\mu}\psi_{\nu L}\overline{\psi}_{\overline{\nu}R}\gamma_{\mu}\psi_{\overline{\nu}R} \Rightarrow \overline{\psi}_{\nu L}\gamma^{\mu}\psi_{\nu L}\left\langle\overline{\psi}_{\overline{\nu}R}\gamma_{\mu}\psi_{\overline{\nu}R}\right\rangle + \cdots$$

Balantekin and Pehlivan, JPG 34,1783 (2007)

Neutrino-antineutrino can also have an additional mean field

$$\begin{split} & \overline{\psi}_{\nu L} \gamma^{\mu} \psi_{\nu L} \overline{\psi}_{\overline{\nu}R} \gamma_{\mu} \psi_{\overline{\nu}R} \Rightarrow \overline{\psi}_{\nu L} \gamma^{\mu} \left\langle \psi_{\nu L} \overline{\psi}_{\overline{\nu}R} \gamma_{\mu} \right\rangle \psi_{\overline{\nu}R} + \cdots \\ & \text{However note that} \\ & \left\langle \psi_{\nu L} \overline{\psi}_{\overline{\nu}R} \gamma_{\mu} \right\rangle \propto m_{\nu} \quad \text{(negligible if the medium is isotropic)} \end{split}$$

Fuller *et al.* Volpe

Polarization vectors

$$\hat{H} \sim \hat{H}^{\text{RPA}} = \sum_{p} \omega_{p} \hat{B} \cdot \vec{J}_{p} + \vec{P} \cdot \vec{J}$$

$$\vec{P}_{p,s} = 2\langle \vec{J}_{p,s} \rangle$$
Eqs. of motion: $\frac{d}{d\tau} \vec{J}_{p} = -i[\vec{J}_{p}, \hat{H}^{\text{RPA}}] = (\omega_{p} \hat{B} + \vec{P}) \times \vec{J}_{p}$
RPA Consistency requirement $\Rightarrow \frac{d}{d\tau} \vec{P}_{p} = (\omega_{p} \hat{B} + \vec{P}) \times \vec{P}_{p}$
Invariants $I_{p} = 2\langle \hat{h}_{p} \rangle = \hat{B} \cdot \vec{P}_{p} + \sum_{q(\neq p)} \frac{\vec{P}_{p} \cdot \vec{P}_{q}}{\omega_{p} - \omega_{q}} \Rightarrow \frac{d}{d\tau} I_{p} = 0$

Polarization vectors

$$\hat{H} \sim \hat{H}^{\text{RPA}} = \sum_{p} \omega_{p} \hat{B} \cdot \vec{J}_{p} + \vec{P} \cdot \vec{J}$$
Calculated
using SU(2)
coherent
states
$$\vec{P}_{p,s} = 2\langle \vec{J}_{p,s} \rangle$$
Eqs. of motion:

$$\frac{d}{d\tau} \vec{J}_{p} = -i[\vec{J}_{p}, \hat{H}^{\text{RPA}}] = (\omega_{p} \hat{B} + \vec{P}) \times \vec{J}_{p}$$
RPA Consistency requirement $\Rightarrow \frac{d}{d\tau} \vec{P}_{p} = (\omega_{p} \hat{B} + \vec{P}) \times \vec{P}_{p}$
Invariants

$$l_{p} = 2\langle \hat{h}_{p} \rangle = \hat{B} \cdot \vec{P}_{p} + \sum_{q(\neq p)} \frac{\vec{P}_{p} \cdot \vec{P}_{q}}{\omega_{p} - \omega_{q}} \Rightarrow \frac{d}{d\tau} l_{p} = 0$$

Equilibrium electron fraction with the inclusion of vv interactions in the mean-field picture

L⁵¹ = 0.001, 0.1, 50

Balantekin and Yuksel New J.Phys. 7 (2005) 51

 X_{α} = 0, 0.3, 0.5 (thin, medium, thick lines)

RECALL

Single-angle approximation Hamiltonian:

$$H = \sum_{p} \frac{\delta m^2}{2p} J_p^0 + 2\mu \sum_{\substack{p, q \ p \neq q}} \mathbf{J}_p \bullet \mathbf{J}_q$$

Eigenstates:

$$|x_{i}\rangle = \prod_{i=1}^{N} \sum_{k} \frac{J_{k}^{\dagger}}{\left(\delta m^{2}/2k\right) - x_{i}} |0\rangle$$
$$-\frac{1}{2\mu} - \sum_{k} \frac{j_{k}}{\left(\delta m^{2}/2k\right) - x_{i}} = \sum_{j \neq i} \frac{1}{x_{i} - x_{j}}$$

Bethe ansatz equations

Invariants:

$$h_{p} = J_{p}^{0} + 2\mu \sum_{\substack{p, q \ p \neq q}} \frac{\mathbf{J}_{p} \cdot \mathbf{J}_{q}}{\delta m^{2} \left(\frac{1}{p} - \frac{1}{q}\right)}$$

Pehlivan, ABB, Kajino, & Yoshida Phys. Rev. D 84, 065008 (2011)

- Solutions of the Bethe ansatz equations for 250 neutrinos. Same behavior as the mean-field.
- Two flavors only
- Inverted hierarchy, no matter effect

Factorization of the CP-violating phase if there are no sterile neutrinos

$$H(\delta) = H_{v} + H_{vv} = \mathbf{S}H(\delta = 0)\mathbf{S}^{\dagger}$$
$$\mathbf{S} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & e^{i\delta} \end{pmatrix}$$

Holds if neutrino magnetic moment is ignored.

- MSW Hamiltonian: Balantekin, Gava, Volpe, Phys. Lett B662, 396 (2008).
- Collective Hamiltonian in the mean-field approximation: Gava, Volpe, Phys. Rev. D78, 083007 (2008).
- Exact collective Hamiltonian: Pehlivan, Balantekin, Kajino, Phys. Rev. D90, 065011 (2014).

