

Open Quantum Many-Body Systems

Dissipative formation of quantum spin dimers

INT discussion, April 6 2015

This talk: Chiral Spin Networks

driven two-level atoms / spins

wave guide

Wave guide for ...

- photons ✓ optical photonic nanostructures
 - ✓ microwave superconducting circuits
- phonons
 ✓ spin-orbit coupled BEC
 ✓ nano-mechanics
- spin-waves
- ✓ Rydberg atoms
 ✓ trapped ions

Dissipative formation of quantum spin dimers

Equilibrium vs. Non-Equilibrium Quantum Many-Body Physics

thermodynamic equilibrium

What "condensed matter physicists / theorists" get excited about

Toy Models (1D)

• Majumdar-Ghosh (spin-1/2):-parent-Hamiltonian

$$H_{\rm MG} = \sum_{i} \left(S_i S_{i+1} + \frac{1}{2} S_i S_{i+2} + \frac{3}{8} \right) \quad \text{with} \quad S_i = \frac{1}{2} \sum_{\tau, \tau' = \uparrow, \downarrow} c_{i\tau}^{\dagger} \boldsymbol{\sigma}_{\tau\tau'} c_{i\tau'}$$

$$\left|\psi_{\mathrm{MG}}^{\mathrm{even}}\right\rangle = \prod_{\substack{i \text{ even} \\ (i \text{ odd})}} \left(c_{i\uparrow}^{\dagger}c_{i+1\downarrow}^{\dagger} - c_{i\downarrow}^{\dagger}c_{i+1\uparrow}^{\dagger}\right) \left|0\right\rangle = \qquad \qquad \mathsf{quantum dimers}$$

"

valence bond solid

• AKLT, Haldane Shastry, SU(N) models, ...

Below we will show that *pure spin dimers* can also form as *steady state* of driven-dissipative (open system / non-equilibrium) dynamics.

New generation of quantum optics experiments:

Atoms [& Solid State Emitters] Coupled to Photonic Nanostructures

... challenges in theory

Driven-Dissipative Many-Body Quantum Systems

Trapping Atoms Close to Photonic Nanostructures

 doi:10.1038/nature13188

 Nanophotonic quantum phase switch with a single atom

 T. G. Tiecke^{1,2}*, J. D. Thompson¹*, N. P. de Leon^{1,3}, L. R. Liu¹, V. Vuletić² & M. D. Lukin¹

 APPLIED PHYSICS LETTERS 104, 111103 (2014)

Nanowire photonic crystal waveguides for single-atom trapping and strong light-matter interactions

S.-P. Yu,^{1,2,a)} J. D. Hood,^{1,2,a)} J. A. Muniz,^{1,2} M. J. Martin,^{1,2} Richard Norte,^{2,3} C.-L. Hung,^{1,2} Seán M. Meenehan,^{2,3} Justin D. Cohen,^{2,3} Oskar Painter,^{2,3,b)} and H. J. Kimble^{1,2,c)}

We present a comprehensive study of dispersion-engineered nanowire photonic crystal waveguides suitable for experiments in quantum optics and atomic physics with optically trapped atoms.

"alligator" photonic crystal wave guide

Chiral Nanophotonic Waveguide Interface

NANOPHOTONICS

Directional nanophotonic atom-waveguide interface based on spin-orbit interaction of light

R. Mitsch, C. Sayrin, B. Albrecht, P. Schneeweiss, and A. Rauschenbeutel

Vienna Center for Quantum Science and Technology, Atominstitut, TU Wien, Stadionallee 2, 1020 Vienna, Austria

A chiral spin-photon interface for scalable on-chip quantum-information processing

Immo Söllner,^{*} Sahand Mahmoodian,^{*} Alisa Javadi, and Peter Lodahl[†] Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, DK-2100 Copenhagen, Denmark (Dated: June 18, 2014)

- why?
 - quantum info / non-equilibrium cond mat (quantum phases)
- how? physical realization
 - photonic & phononic (here cold gases realization) & 1D spin-wave guide

Equilibrium vs. Non-Equilibrium Quantum Many-Body Physics

• non-equilibrium

Many body Quantum Optics

• Dynamics: Master equation

$$\dot{\rho}(t) = -\frac{i}{\hbar} [H_{\rm sys}, \rho(t)] + \mathcal{L}\rho(t)$$

validity ...

• Steady state:

$$\rho(t) \xrightarrow{t \to \infty} \rho_{ss} \stackrel{!}{=} |\Psi\rangle \langle \Psi|$$

pure & (interesting) entangled state (dark state of dissipative dynamics)

Examples: Engineered Dissipative Atomic Systems

Topology via dissipation

Majorana edge modes S. Diehl et al., Nature Phys. 2012; PRL 2013 J. Budich et al., preprint

Diss. Quantum Phase transitions

BCS-pairing from dissipation

d-wave pairing

S. Diehl et al., PRL 2010

Entangled States from Dissipation

Exp. ions: Blatt et al., Nature '11; Nat Phys '13 Exp. neutral atoms: DeMarco, Oberthaler, ... [Polzik et al., PRL '11]

This Talk: Chiral Spin Chain

Plain-Vanilla Markovian :-) Theory: Master Equation for *Chiral* Spin Chains

Master equation for cascaded (purely unidirectional) quantum systems N=2: C.W. Gardiner, PRL 1993; H. Carmichael, PRL 1993; CW Gardiner & AS Parkins, PRA 1994

Spins coupled to a **chiral** waveguide

Spins coupled to a chiral waveguide

Spins coupled to a **chiral** waveguide $\gamma_L \neq \gamma_R$

"Dicke" master equation for 1D: D E Chang et al 2012 New J. Phys. 14 063003

Spins coupled to a **chiral** waveguide

Spins coupled to a **chiral** waveguide $\gamma_L \neq \gamma_R$

Steady states for a chiral waveguide

- Unique, pure steady state: $\rho(t) \xrightarrow{t \to \infty} |\Psi\rangle \langle \Psi|$.
- Quantum Dimers

$$\begin{split} |\Psi\rangle &= \bigotimes_{i=1}^{N} |D\rangle_{2i-1,2i} & \text{singlet fraction} \\ |D\rangle &= \frac{1}{\sqrt{1+|\alpha|^2}} \Big[|gg\rangle + \frac{\alpha}{\sqrt{2}} \left(|ge\rangle - |eg\rangle \right) \Big] & \alpha &= \frac{\sqrt{2}\Omega}{\delta - i(\gamma_R - \gamma_L)/2} \end{split}$$

• Note: only for *N* even

Understanding dark states for N=2 spins

Imperfections & Dark States: N=2

Physical Realizations of *Chiral* Spin Networks

Wave guide for ...

- photons
- ✓ optical photonic nanostructures
 ✓ microwave superconducting circuits
- phonons
- ✓ spin-orbit coupled BEC✓ nano-mechanics

phonons

1D Chiral Spin Chains with Cold Atoms

T. Ramos, H. Pichler, A.J. Daley, P.Z., PRL Dec 3 2014

- BEC as a "phonon reservoir"
 - quantum reservoir engineering

master equation

- reduced system dynamics
- Quantum Markov process

inelastic scattering from BEC as "spontaneous emission"

A Griessner, AJ Daley, SR Clark, D Jaksch, and PZ, PRL 2006 & NJPhys 2007 S Diehl, A Micheli, A Kantian, B Kraus, HP Buechler, and PZ, NatPhys 2008

- BEC as a "phonon reservoir"
 - quantum reservoir engineering

• Atoms in a 1D optical lattice

• Dynamics analogous to ...

- BEC as a "phonon reservoir"
 - quantum reservoir engineering

• Atoms in a 1D optical lattice

• Dynamics analogous to ...

- BEC as a "phonon reservoir"
 - quantum reservoir engineering

• N Atoms in a 1D optical lattice

• Dynamics analogous to ...

Q.: How to get a chiral reservoir?

Two-species mixture of cold quantum gases

Spin-Chain:

atoms in 1D optical lattice

AJ Daley et al., PRA 69, 022306 (2004); A Griessner et al., PRL 97, 220403 (2006).

Two-species mixture of cold quantum gases

Spin-Chain:

atoms in 1D optical lattice

AJ Daley et al., PRA 69, 022306 (2004); A Griessner et al., PRL 97, 220403 (2006).

Two-species mixture of cold quantum gases

Spin-Chain:

atoms in 1D optical lattice

Quantum Reservoir:

1D quasi-BEC

Bogoliubov spectrum

 $\gamma_L = \gamma_R$

Dicke superradiance & phase transition

Chiral Reservoir = Spin-Orbit Coupled BEC

Two species mixtures of cold atoms

thanks to the collaborators

Tomas Ramos

Hannes Pichler

Benoit Vermersch

Philipp Hauke

Hugo Tercas

Andrew Daley