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This talk: Chiral Spin Networks

• photons

Wave guide for …

• phonons

• spin-waves

✓ optical - photonic nanostructures
✓microwave - superconducting circuits

✓ spin-orbit coupled BEC
✓ nano-mechanics

✓ Rydberg atoms
✓ trapped ions

driven two-level atoms / spins

wave guide

Dissipative formation of quantum spin dimers



Equilibrium vs. Non-Equilibrium Quantum Many-Body Physics

• thermodynamic equilibrium
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• Majumdar-Ghosh (spin-½): parent Hamiltonian
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Toy Models (1D)

physical space but rather relate to SU!3" rotations in an in-
ternal space spanned by three degenerate “colors” the atom
may assume, subject to the requirement that the number of
atoms of each color is conserved. A possible way to realize
such a system experimentally is described in Appendix A.
Moreover, it has been suggested recently that an SU!3" tri-
mer state might be realized approximately in a spin tetrahe-
dron chain.61,62

Motivated by both this prospect as well as the mathemati-
cal challenges inherent to the problem, we propose several
exact models for SU!3" spin chains in this paper. The models
are similar in spirit to the MG or the AKLT model for SU!2"
and consist of parent Hamiltonians and their exact ground
states. There is no reason to expect any of these models to be
integrable, and none of the excited states are known exactly.
We generalize several of our models to SU!n" and use the
emerging rules to investigate and motivate which SU!n" spin
chains exhibit spinon confinement and a Haldane gap.

The paper is organized as follows. Following a brief re-
view of the MG model in Sec. II, we introduce the trimer
model for SU!3" spin chains in Sec. III. This model consists
of a translationally invariant Hamiltonian involving four-site
interactions, with a threefold degenerate ground state, in
which triples of neighboring sites form SU!3" singlets !or
trimers". In Sec. IV, we review the representations of SU!3",
which we use to verify the trimer model in Sec. V. In this
section, we further provide numerical evidence that the el-
ementary excitations of this model transform under represen-
tation 3̄ of SU!3" if the original spins of the model transform
under representation 3. We proceed by introducing
Schwinger bosons in Sec. VI and a review of the AKLT
model in Sec. VII. In Sec. VIII, we formulate a family of
parent Hamiltonians for valence bond solids of SU!3" chains
with spin representations 6, 10, and 8 on each lattice site and
prove their validity. We argue that only the representation 10
and the representation 8 model, which are in a wider sense
generalizations of the AKLT model to SU!3", exhibit spinon
confinement and, hence, a Haldane-type gap in the excitation
spectrum. In Sec. IX, we generalize three of our models from
SU!3" to SU!n". In Sec. X, we use the rules emerging from
the numerous valence bond solid !VBS" models we studied
to investigate which models of SU!n" spin chains, in general,
exhibit spinon confinement and a Haldane gap. In this con-
text, we first review a rigorous theorem due to Affleck and
Lieb63 in Sec. X A. In Sec. X B, we argue that the spinons in
SU!n" spin chains with spins transforming under representa-
tions with Young tableaux consisting of a number of boxes !
which is divisible by n are always confined. In Sec. X C, we
construct several specific examples to argue that if ! and n
have a common divisor different from n, the model will be
confining only if the interactions are sufficiently long ranged.
Specifically, the models we study suggest that if q is the
largest common divisor of ! and n, the model will exhibit
spinon confinement only if the interactions extend at least to
the !n /q"th neighbor on the chain. If ! and n have no com-
mon divisor, the spinons will be free and the chain will not
exhibit a Haldane gap. We briefly summarize the different
categories of models in Sec. X D and present a counterex-
ample to the general rules in Sec. X E. We conclude with a

brief summary of the results obtained in this paper in Sec.
XI.

A brief and concise account of the SU!3" VBS models we
elaborate here has been given previously.64

II. MAJUMDAR-GHOSH MODEL

Majumdar and Ghosh14 noticed in 1969 that on a linear
spin S= 1

2 chain with an even number of sites, the two va-
lence bond solid or dimer states
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where the product runs over all even sites i for one state and
over all odd sites for the other, are exact zero-energy ground
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this is always the case as two of the three neighboring spins
are in a singlet configuration, and 0 !
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2 . Graphically, we
may express this as
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As Hi is positive definite, the two zero-energy eigenstates of
HMG are also ground states.

Is the Majumdar-Ghosh or dimer state in the universality
class generic to one-dimensional spin-1

2 liquids, and hence a
useful paradigm to understand, say, the nearest-neighbor
Heisenberg chain? The answer is clearly no, as the dimer
states &Eq. !1"' violate translational symmetry modulo trans-
lations by two lattice spacings, while the generic liquid is
invariant.

Nonetheless, the dimer chain shares some important prop-
erties of this generic liquid. First, the spinon excitations—
here, domain walls between even and odd ground states—are
deconfined. !To construct approximate eigenstates of HMG,

MARTIN GREITER AND STEPHAN RACHEL PHYSICAL REVIEW B 75, 184441 !2007"

184441-2

physical space but rather relate to SU!3" rotations in an in-
ternal space spanned by three degenerate “colors” the atom
may assume, subject to the requirement that the number of
atoms of each color is conserved. A possible way to realize
such a system experimentally is described in Appendix A.
Moreover, it has been suggested recently that an SU!3" tri-
mer state might be realized approximately in a spin tetrahe-
dron chain.61,62

Motivated by both this prospect as well as the mathemati-
cal challenges inherent to the problem, we propose several
exact models for SU!3" spin chains in this paper. The models
are similar in spirit to the MG or the AKLT model for SU!2"
and consist of parent Hamiltonians and their exact ground
states. There is no reason to expect any of these models to be
integrable, and none of the excited states are known exactly.
We generalize several of our models to SU!n" and use the
emerging rules to investigate and motivate which SU!n" spin
chains exhibit spinon confinement and a Haldane gap.

The paper is organized as follows. Following a brief re-
view of the MG model in Sec. II, we introduce the trimer
model for SU!3" spin chains in Sec. III. This model consists
of a translationally invariant Hamiltonian involving four-site
interactions, with a threefold degenerate ground state, in
which triples of neighboring sites form SU!3" singlets !or
trimers". In Sec. IV, we review the representations of SU!3",
which we use to verify the trimer model in Sec. V. In this
section, we further provide numerical evidence that the el-
ementary excitations of this model transform under represen-
tation 3̄ of SU!3" if the original spins of the model transform
under representation 3. We proceed by introducing
Schwinger bosons in Sec. VI and a review of the AKLT
model in Sec. VII. In Sec. VIII, we formulate a family of
parent Hamiltonians for valence bond solids of SU!3" chains
with spin representations 6, 10, and 8 on each lattice site and
prove their validity. We argue that only the representation 10
and the representation 8 model, which are in a wider sense
generalizations of the AKLT model to SU!3", exhibit spinon
confinement and, hence, a Haldane-type gap in the excitation
spectrum. In Sec. IX, we generalize three of our models from
SU!3" to SU!n". In Sec. X, we use the rules emerging from
the numerous valence bond solid !VBS" models we studied
to investigate which models of SU!n" spin chains, in general,
exhibit spinon confinement and a Haldane gap. In this con-
text, we first review a rigorous theorem due to Affleck and
Lieb63 in Sec. X A. In Sec. X B, we argue that the spinons in
SU!n" spin chains with spins transforming under representa-
tions with Young tableaux consisting of a number of boxes !
which is divisible by n are always confined. In Sec. X C, we
construct several specific examples to argue that if ! and n
have a common divisor different from n, the model will be
confining only if the interactions are sufficiently long ranged.
Specifically, the models we study suggest that if q is the
largest common divisor of ! and n, the model will exhibit
spinon confinement only if the interactions extend at least to
the !n /q"th neighbor on the chain. If ! and n have no com-
mon divisor, the spinons will be free and the chain will not
exhibit a Haldane gap. We briefly summarize the different
categories of models in Sec. X D and present a counterex-
ample to the general rules in Sec. X E. We conclude with a

brief summary of the results obtained in this paper in Sec.
XI.

A brief and concise account of the SU!3" VBS models we
elaborate here has been given previously.64

II. MAJUMDAR-GHOSH MODEL

Majumdar and Ghosh14 noticed in 1969 that on a linear
spin S= 1

2 chain with an even number of sites, the two va-
lence bond solid or dimer states

∣∣ψ
even
(odd)
MG

〉
=

∏

i even
(i odd)

(
c†i↑c

†
i+1↓ − c†i↓c

†
i+1↑

)
| 0 ⟩ =

=

{
| ❝ ❝ ❝ ❝ ❝ ❝ ❝ ⟩ “even”

| ❝ ❝ ❝ ❝ ❝ ❝ ❝ ⟩ “odd”!1"

where the product runs over all even sites i for one state and
over all odd sites for the other, are exact zero-energy ground
states65 of the parent Hamiltonian

HMG = #
i
$SiSi+1 +

1
2

SiSi+2 +
3
8
% , !2"

where

Si =
1
2 #

","!=↑,↓
ci"

† !""!ci"!, !3"

and != !#x ,#y ,#z" is the vector consisting of the three Pauli
matrices.

The proof is exceedingly simple. We rewrite

HMG =
1
4#

i
Hi, Hi = !Si + Si+1 + Si+2"2 −

3
4

. !4"

Clearly, any state in which the total spin of three neighboring
spins is 1

2 will be annihilated by Hi. !The total spin can only
be 1

2 or 3
2 , as 1

2 !
1
2 !

1
2 = 1

2 "
1
2 "

3
2 ." In the dimer states above,

this is always the case as two of the three neighboring spins
are in a singlet configuration, and 0 !

1
2 = 1

2 . Graphically, we
may express this as

Hi | ❝ ❝ ❝ ⟩ = Hi | ❝ ❝ ❝ ⟩ = 0.
!5"

As Hi is positive definite, the two zero-energy eigenstates of
HMG are also ground states.

Is the Majumdar-Ghosh or dimer state in the universality
class generic to one-dimensional spin-1

2 liquids, and hence a
useful paradigm to understand, say, the nearest-neighbor
Heisenberg chain? The answer is clearly no, as the dimer
states &Eq. !1"' violate translational symmetry modulo trans-
lations by two lattice spacings, while the generic liquid is
invariant.

Nonetheless, the dimer chain shares some important prop-
erties of this generic liquid. First, the spinon excitations—
here, domain walls between even and odd ground states—are
deconfined. !To construct approximate eigenstates of HMG,

MARTIN GREITER AND STEPHAN RACHEL PHYSICAL REVIEW B 75, 184441 !2007"

184441-2

with

physical space but rather relate to SU!3" rotations in an in-
ternal space spanned by three degenerate “colors” the atom
may assume, subject to the requirement that the number of
atoms of each color is conserved. A possible way to realize
such a system experimentally is described in Appendix A.
Moreover, it has been suggested recently that an SU!3" tri-
mer state might be realized approximately in a spin tetrahe-
dron chain.61,62

Motivated by both this prospect as well as the mathemati-
cal challenges inherent to the problem, we propose several
exact models for SU!3" spin chains in this paper. The models
are similar in spirit to the MG or the AKLT model for SU!2"
and consist of parent Hamiltonians and their exact ground
states. There is no reason to expect any of these models to be
integrable, and none of the excited states are known exactly.
We generalize several of our models to SU!n" and use the
emerging rules to investigate and motivate which SU!n" spin
chains exhibit spinon confinement and a Haldane gap.

The paper is organized as follows. Following a brief re-
view of the MG model in Sec. II, we introduce the trimer
model for SU!3" spin chains in Sec. III. This model consists
of a translationally invariant Hamiltonian involving four-site
interactions, with a threefold degenerate ground state, in
which triples of neighboring sites form SU!3" singlets !or
trimers". In Sec. IV, we review the representations of SU!3",
which we use to verify the trimer model in Sec. V. In this
section, we further provide numerical evidence that the el-
ementary excitations of this model transform under represen-
tation 3̄ of SU!3" if the original spins of the model transform
under representation 3. We proceed by introducing
Schwinger bosons in Sec. VI and a review of the AKLT
model in Sec. VII. In Sec. VIII, we formulate a family of
parent Hamiltonians for valence bond solids of SU!3" chains
with spin representations 6, 10, and 8 on each lattice site and
prove their validity. We argue that only the representation 10
and the representation 8 model, which are in a wider sense
generalizations of the AKLT model to SU!3", exhibit spinon
confinement and, hence, a Haldane-type gap in the excitation
spectrum. In Sec. IX, we generalize three of our models from
SU!3" to SU!n". In Sec. X, we use the rules emerging from
the numerous valence bond solid !VBS" models we studied
to investigate which models of SU!n" spin chains, in general,
exhibit spinon confinement and a Haldane gap. In this con-
text, we first review a rigorous theorem due to Affleck and
Lieb63 in Sec. X A. In Sec. X B, we argue that the spinons in
SU!n" spin chains with spins transforming under representa-
tions with Young tableaux consisting of a number of boxes !
which is divisible by n are always confined. In Sec. X C, we
construct several specific examples to argue that if ! and n
have a common divisor different from n, the model will be
confining only if the interactions are sufficiently long ranged.
Specifically, the models we study suggest that if q is the
largest common divisor of ! and n, the model will exhibit
spinon confinement only if the interactions extend at least to
the !n /q"th neighbor on the chain. If ! and n have no com-
mon divisor, the spinons will be free and the chain will not
exhibit a Haldane gap. We briefly summarize the different
categories of models in Sec. X D and present a counterex-
ample to the general rules in Sec. X E. We conclude with a

brief summary of the results obtained in this paper in Sec.
XI.

A brief and concise account of the SU!3" VBS models we
elaborate here has been given previously.64

II. MAJUMDAR-GHOSH MODEL

Majumdar and Ghosh14 noticed in 1969 that on a linear
spin S= 1

2 chain with an even number of sites, the two va-
lence bond solid or dimer states

∣∣ψ
even
(odd)
MG

〉
=

∏

i even
(i odd)

(
c†i↑c

†
i+1↓ − c†i↓c

†
i+1↑

)
| 0 ⟩ =

=

{
| ❝ ❝ ❝ ❝ ❝ ❝ ❝ ⟩ “even”

| ❝ ❝ ❝ ❝ ❝ ❝ ❝ ⟩ “odd”!1"

where the product runs over all even sites i for one state and
over all odd sites for the other, are exact zero-energy ground
states65 of the parent Hamiltonian

HMG = #
i
$SiSi+1 +

1
2

SiSi+2 +
3
8
% , !2"

where

Si =
1
2 #

","!=↑,↓
ci"

† !""!ci"!, !3"

and != !#x ,#y ,#z" is the vector consisting of the three Pauli
matrices.

The proof is exceedingly simple. We rewrite

HMG =
1
4#

i
Hi, Hi = !Si + Si+1 + Si+2"2 −

3
4

. !4"

Clearly, any state in which the total spin of three neighboring
spins is 1

2 will be annihilated by Hi. !The total spin can only
be 1

2 or 3
2 , as 1

2 !
1
2 !

1
2 = 1

2 "
1
2 "

3
2 ." In the dimer states above,

this is always the case as two of the three neighboring spins
are in a singlet configuration, and 0 !

1
2 = 1

2 . Graphically, we
may express this as

Hi | ❝ ❝ ❝ ⟩ = Hi | ❝ ❝ ❝ ⟩ = 0.
!5"

As Hi is positive definite, the two zero-energy eigenstates of
HMG are also ground states.

Is the Majumdar-Ghosh or dimer state in the universality
class generic to one-dimensional spin-1

2 liquids, and hence a
useful paradigm to understand, say, the nearest-neighbor
Heisenberg chain? The answer is clearly no, as the dimer
states &Eq. !1"' violate translational symmetry modulo trans-
lations by two lattice spacings, while the generic liquid is
invariant.

Nonetheless, the dimer chain shares some important prop-
erties of this generic liquid. First, the spinon excitations—
here, domain walls between even and odd ground states—are
deconfined. !To construct approximate eigenstates of HMG,

MARTIN GREITER AND STEPHAN RACHEL PHYSICAL REVIEW B 75, 184441 !2007"

184441-2

valence bond solid

quantum dimers

• AKLT, Haldane Shastry, SU(N) models, …

Below we will show that pure spin dimers can also form as steady state 
of driven-dissipative (open system / non-equilibrium ) dynamics.
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Coupled to Photonic Nanostructures

… challenges in theory
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Trapping Atoms Close to Photonic Nanostructures
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Nanophotonic quantum phase switch with a
single atom
T. G. Tiecke1,2*, J. D. Thompson1*, N. P. de Leon1,3, L. R. Liu1, V. Vuletić2 & M. D. Lukin1

By analogy to transistors in classical electronic circuits, quantum
optical switches are important elements of quantum circuits and
quantum networks1–3. Operated at the fundamental limit where a
single quantum of light or matter controls another field or material
system4, such a switch may enable applications such as long-distance
quantum communication5, distributed quantum information pro-
cessing2 and metrology6, and the exploration of novel quantum
states of matter7. Here, by strongly coupling a photon to a single
atom trapped in the near field of a nanoscale photonic crystal cavity,
we realize a system in which a single atom switches the phase of a
photon and a single photon modifies the atom’s phase. We experi-
mentally demonstrate an atom-induced optical phase shift8 that is
nonlinear at the two-photon level9, a photon number router that
separates individual photons and photon pairs into different output
modes10, and a single-photon switch in which a single ‘gate’ photon
controls the propagation of a subsequent probe field11,12. These
techniques pave the way to integrated quantum nanophotonic
networks involving multiple atomic nodes connected by guided
light.

A quantum optical switch11,13–16 is challenging to implement because
the interaction between individual photons and atoms is generally very

weak. Cavity quantum electrodynamics (cavity QED), in which a photon
is confined to a small spatial region and made to interact strongly with
an atom, is a promising approach to overcoming this challenge4. Over
the past two decades, cavity QED has enabled advances in the control of
microwave17–19 and optical13,20–23 fields. Although integrated circuits with
strong coupling of microwave photons to superconducting quantum bits
(qubits) are being developed at the moment24, a scalable path to inte-
grated quantum circuits involving coherent qubits coupled by means of
optical photons has yet to emerge.

Our experimental approach (Fig. 1a) makes use of a single atom
trapped in the near field of a nanoscale photonic crystal cavity that is
attached to an optical fibre taper25. The tight confinement of the optical
mode to a volume V < 0.4l3, below the scale of the optical wavelength,
l, results in strong atom–photon interactions for an atom sufficiently
close to the surface of the cavity. The atom is trapped about 200 nm
from the surface in an optical lattice formed by the interference of an
optical tweezer and its reflection from the side of the cavity (Methods
Summary, Supplementary Information and Fig. 1a, b). Compared with
transient coupling of unconfined atoms13,22, trapping an atom allows
for experiments exploiting long atomic coherence times, and enables
scaling to quantum circuits with multiple atoms.

*These authors contributed equally to this work.

1Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA. 2Department of Physics and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge,
Massachusetts 02139, USA. 3Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA.
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Figure 1 | Strong coupling of a trapped atom to a photonic crystal cavity.
a, A single 87Rb atom (blue circle) is trapped in the evanescent field (red) of a
photonic crystal (grey). The photonic crystal is attached to a tapered optical
fibre (blue), which provides mechanical support and an optical interface to the
cavity. The tapered fibre–waveguide interface provides an adiabatic coupling of
the fibre mode to the waveguide mode. The inset shows the one-dimensional
trapping lattice (green), formed by the interference of a set of optical tweezers
and its reflection from the photonic crystal. b, Scanning electron microscope
(SEM) image of a single-sided photonic crystal. The pad on the right-hand side
is used to tune the cavity resonance thermally by laser heating. c, The photonic
crystal (PC) is integrated in a fibre-based polarization interferometer. A

polarizing beam splitter (PBS2) splits the D-polarized input field into an
H-polarized arm containing the photonic crystal and a V-polarized arm with
adjustable phase wV. Using a polarizing beam splitter (PBS1) and a half-wave
plate (HWP), the outgoing D and A polarizations are detected independently.
d, Excited-state lifetime at an atom–cavity detuning of 0 (red) and 241 GHz
(blue). The excited-state lifetime is shortened to t 5 C21 5 3.0(1) ns from the
free-space value of c21 5 26 ns, yielding a cooperativity of g 5 7.7 6 0.4. The
difference in the fluorescence signal at t 5 0 for the two detunings is consistent
with the change in cavity detuning. The inset shows the enhancement of the
atomic decay rate versus atom–cavity detuning. a.u., arbitrary units.
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d, Excited-state lifetime at an atom–cavity detuning of 0 (red) and 241 GHz
(blue). The excited-state lifetime is shortened to t 5 C21 5 3.0(1) ns from the
free-space value of c21 5 26 ns, yielding a cooperativity of g 5 7.7 6 0.4. The
difference in the fluorescence signal at t 5 0 for the two detunings is consistent
with the change in cavity detuning. The inset shows the enhancement of the
atomic decay rate versus atom–cavity detuning. a.u., arbitrary units.
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Nanophotonic quantum phase switch with a
single atom
T. G. Tiecke1,2*, J. D. Thompson1*, N. P. de Leon1,3, L. R. Liu1, V. Vuletić2 & M. D. Lukin1

By analogy to transistors in classical electronic circuits, quantum
optical switches are important elements of quantum circuits and
quantum networks1–3. Operated at the fundamental limit where a
single quantum of light or matter controls another field or material
system4, such a switch may enable applications such as long-distance
quantum communication5, distributed quantum information pro-
cessing2 and metrology6, and the exploration of novel quantum
states of matter7. Here, by strongly coupling a photon to a single
atom trapped in the near field of a nanoscale photonic crystal cavity,
we realize a system in which a single atom switches the phase of a
photon and a single photon modifies the atom’s phase. We experi-
mentally demonstrate an atom-induced optical phase shift8 that is
nonlinear at the two-photon level9, a photon number router that
separates individual photons and photon pairs into different output
modes10, and a single-photon switch in which a single ‘gate’ photon
controls the propagation of a subsequent probe field11,12. These
techniques pave the way to integrated quantum nanophotonic
networks involving multiple atomic nodes connected by guided
light.

A quantum optical switch11,13–16 is challenging to implement because
the interaction between individual photons and atoms is generally very

weak. Cavity quantum electrodynamics (cavity QED), in which a photon
is confined to a small spatial region and made to interact strongly with
an atom, is a promising approach to overcoming this challenge4. Over
the past two decades, cavity QED has enabled advances in the control of
microwave17–19 and optical13,20–23 fields. Although integrated circuits with
strong coupling of microwave photons to superconducting quantum bits
(qubits) are being developed at the moment24, a scalable path to inte-
grated quantum circuits involving coherent qubits coupled by means of
optical photons has yet to emerge.

Our experimental approach (Fig. 1a) makes use of a single atom
trapped in the near field of a nanoscale photonic crystal cavity that is
attached to an optical fibre taper25. The tight confinement of the optical
mode to a volume V < 0.4l3, below the scale of the optical wavelength,
l, results in strong atom–photon interactions for an atom sufficiently
close to the surface of the cavity. The atom is trapped about 200 nm
from the surface in an optical lattice formed by the interference of an
optical tweezer and its reflection from the side of the cavity (Methods
Summary, Supplementary Information and Fig. 1a, b). Compared with
transient coupling of unconfined atoms13,22, trapping an atom allows
for experiments exploiting long atomic coherence times, and enables
scaling to quantum circuits with multiple atoms.

*These authors contributed equally to this work.
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Figure 1 | Strong coupling of a trapped atom to a photonic crystal cavity.
a, A single 87Rb atom (blue circle) is trapped in the evanescent field (red) of a
photonic crystal (grey). The photonic crystal is attached to a tapered optical
fibre (blue), which provides mechanical support and an optical interface to the
cavity. The tapered fibre–waveguide interface provides an adiabatic coupling of
the fibre mode to the waveguide mode. The inset shows the one-dimensional
trapping lattice (green), formed by the interference of a set of optical tweezers
and its reflection from the photonic crystal. b, Scanning electron microscope
(SEM) image of a single-sided photonic crystal. The pad on the right-hand side
is used to tune the cavity resonance thermally by laser heating. c, The photonic
crystal (PC) is integrated in a fibre-based polarization interferometer. A

polarizing beam splitter (PBS2) splits the D-polarized input field into an
H-polarized arm containing the photonic crystal and a V-polarized arm with
adjustable phase wV. Using a polarizing beam splitter (PBS1) and a half-wave
plate (HWP), the outgoing D and A polarizations are detected independently.
d, Excited-state lifetime at an atom–cavity detuning of 0 (red) and 241 GHz
(blue). The excited-state lifetime is shortened to t 5 C21 5 3.0(1) ns from the
free-space value of c21 5 26 ns, yielding a cooperativity of g 5 7.7 6 0.4. The
difference in the fluorescence signal at t 5 0 for the two detunings is consistent
with the change in cavity detuning. The inset shows the enhancement of the
atomic decay rate versus atom–cavity detuning. a.u., arbitrary units.
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We present a comprehensive study of dispersion-engineered nanowire photonic crystal waveguides
suitable for experiments in quantum optics and atomic physics with optically trapped atoms.
Detailed design methodology and specifications are provided, as are the processing steps used to
create silicon nitride waveguides of low optical loss in the near-IR. Measurements of the
waveguide optical properties and power-handling capability are also presented. VC 2014 Author(s).
All article content, except where otherwise noted, is licensed under a Creative Commons
Attribution 3.0 Unported License. [http://dx.doi.org/10.1063/1.4868975]

A promising frontier for optical physics would become
accessible with the integration of atomic systems and nano-
photonics, which have made remarkable advances in the last
decade.1–5 Significant progress toward integration of atomic
systems with photonic devices has progressed on several
fronts, including cavity quantum electrodynamics (cavity
QED), where atom-photon interactions can be enhanced in
micro- and nanoscopic optical cavities,6–11 and nanoscopic
dielectric waveguides, where the effective area of a guided
mode can be comparable to atomic radiative cross sections
leading to complex photon transport in 1D,12–19 as recently
demonstrated in Refs. 20–23.

Beyond traditional settings of cavity QED and waveguides,
compelling paradigms emerge by combining atomic physics
with photonic crystal waveguides. One- and two-dimensional
photonic crystal structures formed from planar dielectrics24 offer
a configurable platform for engineering strong light-matter cou-
pling for single atoms and photons with circuit-level complex-
ity. For instance, dispersion-engineered photonic crystal
waveguides permit the trapping and probing of ultracold neutral
atoms with commensurate spatial periodicity for both trap and
probe optical fields that have disparate free-space wave-
lengths.19 Such systems can lead to atom-atom interactions effi-
ciently mediated by photons within the waveguide.25–28 In
photonic crystal waveguides, atom-photon coupling can be
enhanced near the band-edge via slow-light effects19,29 and can
be tailored to explore quantum many-body physics with atom-
atom interactions that can be readily engineered.28

Significant technical challenges exist for developing
hybrid atom-photonic systems arising from the following
requirements: (1) The fabrication is sufficiently precise to
match waveguide photonic properties to atomic spectral lines;
(2) atoms are stably trapped in the presence of substantial
Casimir–Polder (CP) forces19 yet achieve strong atom-field

interaction; (3) coupling to and from guided modes of nano-
photonic elements is efficient; (4) sufficient optical access
exits for external laser cooling and trapping; and (5) optical
absorption is low, and the net device thermal conductivity is
high, permitting optical power handling to support !1 mK
trap depths. In this Letter, we describe nanowire photonic
crystal waveguides that meet these stringent requirements for
integration of nanophotonics with ultracold atom experiments.

The central component of our device is the ‘alligator’
photonic crystal waveguide (APCW) region shown in Fig.
1(a). It consists of two parallel Si3N4 waveguides (refractive
index n¼ 2). This configuration is similar to that proposed in
Ref. 19 for the trapping of atoms in the gap between the
dielectrics, where the atomic spontaneous emission rate into
a single guided mode, C1D, can be greatly enhanced with
respect to spontaneous emission into all other free-space and
guided modes, C0, which here is approximately equal to the
free-space spontaneous emission rate, C0. Figure 1(b) shows
the theoretical optical bandstructure of the TE-like modes
(electric field polarized in the plane of the waveguide) for
the APCW studied in this work, computed using the MIT
Photonic Bands (MPB)30 software package. The waveguides
are designed such that the Cs D1 (!1¼ 335.1 THz) and D2
(!1¼ 351.7 THz) transitions are aligned near the lower/‘di-
electric’ (!D) and upper/‘air’ (!A) band-edges, respectively.

As discussed in detail in Ref. 19, the enhanced density
of states near the X-point band-edge, along with the strong
field confinement of the even-parity supermodes in the gap,
can be used to create large atom-photon interactions.
Intensity images of the dielectric and air band modes are
plotted in Figs. 2(a) and 2(c), respectively.30 The corre-
sponding enhancement of C1D is shown in Fig. 2(f).

One strategy for trapping Cs atoms within the gap of the
APCW is to use the dielectric-band mode blue-detuned from
the Cs D1 line as a trapping beam and the air-band mode as
a probe on the D2 line of the trapped atoms. In this sce-
nario,19 Cs atoms are trapped between the parallel dielectrics
where the dielectric-band mode has an intensity null in the
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x-y plane [Fig. 2(c)] and the Casimir–Polder force provides
additional confinement in the vertical z-direction [Figs. 2(d)
and 2(e)]. Further vertical confinement can be provided by
an additional guided mode red-detuned from the Cs D2 tran-
sition. For the band structure shown in Fig. 1(b) and with
counter-propagating 30 lW TE-mode fields blue-detuned
30-GHz from the Cs D1 F ¼ 4! F0 ¼ 4 transition com-
bined with 15 lW of counterpropagating TE-mode fields
red-detuned 300 GHz from the D2 F ¼ 4! F0 ¼ 5 transi-
tion, we expect a trap depth of ’5 mK and trap frequencies
of {!x¼ 3.5, !y¼ 1.4, !z¼ 0.7} MHz. Here, the total power
within the device is 90 lW.

As shown in Fig. 3, we incorporate several elements
into the waveguide structure to in- and out-couple light, to
provide mechanical support, and to improve heat dissipation.
SEM images taken along the length of the SiN waveguide
show the various sections of the device, including a wave-
guide-to-fiber coupling region [Fig. 3(b)], mechanical sup-
port and thermal tethers [Fig. 3(c)], a tapered region of the
APCW [Fig. 3(d)], and finally the central APCW region
[Fig. 3(e)].

The waveguide-to-fiber coupling in Fig. 3(b) consists of
a slow tapering of the nanowire-waveguide from a nominal
width of 300 nm down to an endpoint near the fiber facet of

FIG. 1. (a) Schematic of the APCW with dimensional parameters thickness t¼ 200 nm, inner waveguide width w¼ 187 nm, gap g¼ 260 nm, discrete periodic-
ity a¼ 371 nm, and sinusoidally-modulated outer waveguide edge with ‘tooth’ amplitude A¼ 129 nm. (b) Photonic bandstructure of the fundamental TE-like
modes of a nominal alligator waveguide device calculated with the dimensions derived from a typical fabricated device.30 Small adjustments are made to the
waveguide parameters within the absolute uncertainty of the SEM (<5%) to obtain better agreement between measured band structures and those computed
from SEM images.

FIG. 2. Finite-element-method (FEM) simulation of the near-X-point guided mode electric field magnitudes j~Eð~rÞj in the x-y plane for the (a) air band and (c)
dielectric band of the even parity TE-like supermodes for the periodic structure shown in (b). The optical frequencies correspond to the Cs D1 and D2 lines,
and the corresponding band structure is shown in Fig. 1(b). ((d) and (e)) Numerically computed Casimir–Polder potential along directions (xm, ym, z) (d) and
(xm, y, zm) (e) for the dielectric-band trapping mode around minima of the optical trapping potential at (xm, ym, zm) [i.e., the positions of the green spheres in
(c)]. (f) Calculated rate of radiative decay C1D into the guided mode in (a) for the cases of an initially excited atom trapped at (xm, ym, zm) in an infinite photonic
crystal for transitions between atomic levels as depicted in the figure. The shaded area indicates the photonic bandgap region and the dashed lines the Cs D1
and D2 transition frequencies. Here, C0 is the free-space decay rate.
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A promising frontier for optical physics would become
accessible with the integration of atomic systems and nano-
photonics, which have made remarkable advances in the last
decade.1–5 Significant progress toward integration of atomic
systems with photonic devices has progressed on several
fronts, including cavity quantum electrodynamics (cavity
QED), where atom-photon interactions can be enhanced in
micro- and nanoscopic optical cavities,6–11 and nanoscopic
dielectric waveguides, where the effective area of a guided
mode can be comparable to atomic radiative cross sections
leading to complex photon transport in 1D,12–19 as recently
demonstrated in Refs. 20–23.

Beyond traditional settings of cavity QED and waveguides,
compelling paradigms emerge by combining atomic physics
with photonic crystal waveguides. One- and two-dimensional
photonic crystal structures formed from planar dielectrics24 offer
a configurable platform for engineering strong light-matter cou-
pling for single atoms and photons with circuit-level complex-
ity. For instance, dispersion-engineered photonic crystal
waveguides permit the trapping and probing of ultracold neutral
atoms with commensurate spatial periodicity for both trap and
probe optical fields that have disparate free-space wave-
lengths.19 Such systems can lead to atom-atom interactions effi-
ciently mediated by photons within the waveguide.25–28 In
photonic crystal waveguides, atom-photon coupling can be
enhanced near the band-edge via slow-light effects19,29 and can
be tailored to explore quantum many-body physics with atom-
atom interactions that can be readily engineered.28

Significant technical challenges exist for developing
hybrid atom-photonic systems arising from the following
requirements: (1) The fabrication is sufficiently precise to
match waveguide photonic properties to atomic spectral lines;
(2) atoms are stably trapped in the presence of substantial
Casimir–Polder (CP) forces19 yet achieve strong atom-field

interaction; (3) coupling to and from guided modes of nano-
photonic elements is efficient; (4) sufficient optical access
exits for external laser cooling and trapping; and (5) optical
absorption is low, and the net device thermal conductivity is
high, permitting optical power handling to support !1 mK
trap depths. In this Letter, we describe nanowire photonic
crystal waveguides that meet these stringent requirements for
integration of nanophotonics with ultracold atom experiments.

The central component of our device is the ‘alligator’
photonic crystal waveguide (APCW) region shown in Fig.
1(a). It consists of two parallel Si3N4 waveguides (refractive
index n¼ 2). This configuration is similar to that proposed in
Ref. 19 for the trapping of atoms in the gap between the
dielectrics, where the atomic spontaneous emission rate into
a single guided mode, C1D, can be greatly enhanced with
respect to spontaneous emission into all other free-space and
guided modes, C0, which here is approximately equal to the
free-space spontaneous emission rate, C0. Figure 1(b) shows
the theoretical optical bandstructure of the TE-like modes
(electric field polarized in the plane of the waveguide) for
the APCW studied in this work, computed using the MIT
Photonic Bands (MPB)30 software package. The waveguides
are designed such that the Cs D1 (!1¼ 335.1 THz) and D2
(!1¼ 351.7 THz) transitions are aligned near the lower/‘di-
electric’ (!D) and upper/‘air’ (!A) band-edges, respectively.

As discussed in detail in Ref. 19, the enhanced density
of states near the X-point band-edge, along with the strong
field confinement of the even-parity supermodes in the gap,
can be used to create large atom-photon interactions.
Intensity images of the dielectric and air band modes are
plotted in Figs. 2(a) and 2(c), respectively.30 The corre-
sponding enhancement of C1D is shown in Fig. 2(f).

One strategy for trapping Cs atoms within the gap of the
APCW is to use the dielectric-band mode blue-detuned from
the Cs D1 line as a trapping beam and the air-band mode as
a probe on the D2 line of the trapped atoms. In this sce-
nario,19 Cs atoms are trapped between the parallel dielectrics
where the dielectric-band mode has an intensity null in the
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width 130 nm and provides efficient optical mode-matching
to an optical fiber31 (Nufern 780HP fiber; mode field diame-
ter 5 lm). To support the nanowire-waveguide, nanoscale
tethers are run from the side of the waveguide either directly
to the substrate or to side ‘rails’ of 7.5 lm wide SiN that
extend the entire waveguide length and connect to the sub-
strate at either end of the waveguide (labeled sections B, C,
and D of Fig. 3 show the tethers). The tethers are each 90 nm
wide and consist of a single tether for fiber alignment at the
ends of the waveguide and multi-tether arrays of 15 tethers,
spaced at a 220 nm pitch. Finite-difference time-domain
(FDTD) simulations32 show that the input coupling effi-
ciency of the taper and single alignment tether is ’75% for
light near the D2 line of Cs. The multi-tether supports pro-
vide anchoring against the high stresses within the device
and increase device-substrate thermal contact. Optical scat-
tering is minimized at the multi-tether attachment points by
tapering the waveguide width up to 1 lm [see Fig. 3(c)].
FDTD simulation shows that the scattering loss at the multi-
tether points is !0:5%.

The nanowire waveguides as shown in Fig. 3 are formed
from a thin film of stoichiometric SiN 200 nm in thickness,
grown via low-pressure chemical vapor deposition on a
(100) Si substrate of 200 lm thickness. This sort of SiN has
exhibited low optical loss in the near-infrared33–35 and large
tensile stress (!1 GPa).36 A 1" 5 mm window opened
through the Si substrate provides optical access for laser
trapping and cooling, with the nanowire waveguides extend-
ing across the length of window. Even with the extreme as-
pect ratio of the nanowire waveguides, the high tensile stress
of SiN preserves mechanical stability and alignment.

In order to obtain smooth waveguide side walls of verti-
cal profile and to avoid damage during the SiN etch, we
employ an inductively-coupled reactive-ion etch (ICP-RIE)
of low DC-bias and optimized C4F8 and SF6 gas ratios. A
similar etch has been used to create record-high Q SiN
micro-ring optical cavities near 800 nm.1,33 Fabrication of
the waveguide chip begins with a UV lithography step to
define the back window region. We then use a single e-beam

lithography step to define the fine features of the waveguide,
and to set the fiber v-groove position and width (which ulti-
mately determine the fiber-waveguide alignment). A piranha
clean removes any resist residue prior to a potassium hydrox-
ide (KOH) wet etch, which opens a through-hole in the Si
substrate defined by the two SiN windows on back and front.
After additional Nanostrip cleaning, the chip is transferred to
an isopropyl alcohol solution where it is dried using a critical
point drying step to prevent stiction of the double-wire
APCW section. Last, an O2 plasma clean removes any resid-
ual particles on the waveguide surface.

Once fabricated, anti-reflection coated optical fibers are
mounted into the input and output v-grooves in the Si sub-
strate. The fiber-waveguide separation is set for optimal cou-
pling (typically !10 lm) before the fibers are affixed in
place with UV curing epoxy. The Si chip and fibers are then
attached to a vacuum-compatible mount [see Fig. 3(a)] and
loaded into a vacuum enclosure (reaching !10–9 Torr) with
optical fiber feedthroughs.37

In order to measure the broadband reflectivity and
transmission of the APCW, we utilize a broadband super-
luminescent diode optical source and optical spectrum ana-
lyzer. Figure 4(a) shows the measured normalized reflection
R and transmission T spectra over a frequency range of
320–360 THz for a typical APCW waveguide. The measured
spectra demonstrate that the fabricated APCW has the
desired photonic bandgap, with the dielectric and air band-
edges closely aligned with the D1 and D2 lines of Cs,
respectively, and in reasonable agreement with the theoreti-
cal spectra in Figs. 4(c) and 4(d). From the average reflection
level within the photonic bandgap, we estimate the total
single-pass coupling from optical fiber to APCW to be
’(60 6 5)%. The high-frequency oscillatory behavior of the
reflected and transmitted intensities is due to parasitic reflec-
tions from the AR-coated input fiber facet (!0.1% reflection)
and the input tether (!0.2%). Based upon previous measure-
ments for similar waveguides, we estimate that the power
loss coefficient of the unpatterned nanobeam sections is
!4 dB/cm.

FIG. 3. Center: Schematic of the waveguide chip, illustrating the various regions of the waveguide. Bottom: (a) Optical image of the fiber-coupled waveguide
chip showing the through-hole for optical access. Zoom-in SEM image of (b) the adiabatic fiber-coupling region (A), (c) the alignment, mechanical support,
and thermal heat-sink tethers (B, C, D), (d) the tapered region of the APCW (E), and (e) the central APCW region (F). The sinusoidal modulation facilitates
high-precision fabrication. Other elements (not shown) are side thermal contacts which consist of a pair of 7.5 lm wide SiN rails extending across the entire
length of the waveguide and connecting to the substrate.
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We experimentally study the ground state coherence properties of cesium atoms in a nanofiber-based

two-color dipole trap, localized !200 nm away from the fiber surface. Using microwave radiation

to coherently drive the clock transition, we record Ramsey fringes as well as spin echo signals and infer

a reversible dephasing time of T"
2 ¼ 0:6 ms and an irreversible dephasing time of T0

2 ¼ 3:7 ms. By
modeling the signals, we find that, for our experimental parameters, T"

2 and T0
2 are limited by the finite

initial temperature of the atomic ensemble and the heating rate, respectively. Our results represent a

fundamental step towards establishing nanofiber-based traps for cold atoms as a building block in an

optical fiber quantum network.
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Over the past years, hybrid quantum systems have
attracted considerable attention [1]. In the specific case
of light-matter quantum interfaces [2–4], they combine
the advantages of photons for transmitting quantum infor-
mation and of long-coherence-time systems, such as
dopant ions in crystals, nitrogen vacancy centers, quantum
dots, single trapped neutral atoms and ions, and atomic
ensembles, for storing and processing quantum informa-
tion and for realizing long-distance quantum communica-
tion [5]. In the context of quantum networks [6], it would
be highly desirable to connect these matter-based storage
and processing units via optical fiber links. A promising
approach towards the realization of such fiber-based quan-
tum interfaces consists in coupling cold neutral atoms to
photonic crystal fibers [7–9]. Another technique with high
potential involves trapping and interfacing cold atoms in
the evanescent field surrounding optical nanofibers. By
using the optical dipole force exerted by a blue- and a
red-detuned nanofiber-guided light field [10,11], two-color
traps have been demonstrated experimentally with laser-
cooled cesium atoms [12,13].

In order to implement quantum protocols with atoms
coupled to nanophotonic devices, good coherence proper-
ties are a prerequisite but cannot be taken for granted:
Various effects, like Johnson noise [14] or patch potentials
[15], may occur and hamper long coherence times [16].
When coupling to optical near fields, this is all the more
critical because of the small atom-surface distance of
typically a few hundred nanometers. This is more than
one order of magnitude closer to the surface than in, e.g.,
atom chip experiments, where coherence times on the
order of seconds have been observed [17]. Similar coher-
ence times have been obtained in specially designed opti-
cal dipole traps far from surfaces [18]. Here, using Ramsey
interferometry as well as spin-echo techniques, we mea-
sure, to the best of our knowledge for the first time, the
reversible and irreversible dephasing times of atoms that
are trapped and interfaced with an optical near field.

Specifically, we experimentally characterize and model
the ground state coherence of the clock transition of cesium
atoms stored in the nanofiber-based two-color trap realized
in [12]. Remarkably, the inferred coherence times extend
up to milliseconds even though the experiments take place
at a distance where the atom-surface interaction starts to be
significant.
The experimental setup is sketched in Fig. 1(a) and is

described in detail in Refs. [12,19]. Cesium atoms are
trapped in the evanescent field surrounding the nanofiber
waist of a tapered optical fiber. The atoms are located about
200 nm above the nanofiber surface in two diametric one-
dimensional arrays of potential wells, with at most one
atom per trapping site. By using a red-detuned standing
wave and a blue-detuned running wave, localization of the
atoms in the three (radial, azimuthal, and axial) directions
is achieved with trap frequencies of (200, 140, 315) kHz.
In order to drive transitions between the hyperfine ground
states of the trapped atoms, we use a tunable microwave
(MW) field at a frequency of 9.2 GHz. In the following,
we limit our study to the so-called clock transition between
the states jei $ j6S1=2; F ¼ 4; mF ¼ 0i and jgi $ j6S1=2;
F ¼ 3; mF ¼ 0i. This jgi ! jei transition exhibits only a

(a) (b)

FIG. 1 (color online). (a) Sketch of the experimental setup
including the tapered optical fiber, the trapping, probe, and
push-out laser fields, the microwave antenna, and the single-
photon counter (SPCM). (b) End view of the nanofiber display-
ing the orientation of the plane of the quasilinear polarizations of
the blue- and red-detuned trapping fields, the atoms, and the
magnetic offset field.
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FIG. 1. Experimental setup. a A single nanoparticle is
deposited on a silica nanofiber and illuminated with a laser
beam that propagates in the negative x-direction. The polar-
ization of the light can be set with a quarter wave plate. The
fiber can be rotated around the z-axis by the angle �, which
amounts to changing the azimuthal position of the particle.
Here, � = 90� corresponds to the case where the nanopar-
ticle is on the top of the fiber. The light scattered into the
nanofiber is detected using single photon counting modules at
each output port (left and right) of the fiber. b The presence
of the nanofiber modifies the intensity distribution of the in-
cident light field. The relative intensity distributions for an
incident field polarized along y- and z-axis are shown. c,d
Scanning electron microscope images of the nanofiber and
the single nanoparticle used in our experiments. From the
images, we determine diameters of 2a = (315± 3) nm for the
fiber and 2r = (90± 3) nm for the nanoparticle.

frequency of the light and c.c. the complex conjugate.
The total power of the light scattered into a given fiber
mode is then given by

Iscat / |d · ✏⇤(r,�)|2 = |↵Eexc · ✏⇤(r,�)|2, (1)

where (r,�) denotes the position of the scatterer in the
nanofiber transverse plane. As a consequence, the emis-
sion rate is directly proportional to the overlap between
the field of the excitation light and the fiber mode at the
particle’s position.

For a single-mode nanofiber, all guided light fields can
be decomposed into the quasi linearly polarized fiber
eigenmodes[15, 16] HE±

11,x and HE±
11,y, where the z-axis

coincides with the nanofiber axis and the ± sign indicates
the propagation direction of the light in the fiber (±z).
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FIG. 2. Spin-orbit coupling in optical nanofibers. a
When the guided light is quasi linearly polarized along the y-
axis, longitudinal polarization components occur. For light
traveling in +z-direction, this leads to nearly circular �
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(�+) polarization on the top (bottom) of the fiber, see cir-
cular green arrows. For light propagating in �z direction,
�

� and �

+ are interchanged. As a consequence, the spin
angular momentum of the light (yellow arrows) is oriented
perpendicular to the propagation direction and anti-parallel
to the orbital angular momentum (red arrows). b Overlap
between the HE+

11,y mode (HE�
11,y mode) and �

� (�+) polar-

ization. c Overlap between the HE+
11,y mode (HE�

11,y mode)

and �

+ (��) polarization. d Overlap between the HE±
11,y

modes and ⇡ polarization. e-g Same as b-d but for the fiber
modes HE±

11,x. The values are calculated for our experimental
parameters (nanofiber diameter: 2a = 315 nm, optical wave-
length: � = 532 nm) and the fiber mode profile functions are
normalized such that |✏±HE,i(x = y = 0)|2 = 1.

We choose HE±
11,x and HE±

11,y such that their main polar-
ization component points along the x-direction (� = 0�)
and the y-direction (� = 90�), respectively. Figure 2
shows the overlap of the profile functions ✏±HE,x

and ✏±HE,y

of the electric part of the fiber modes (see methods) with
circular �± = (ie

z

± e
y

)/
p
2 and linear ⇡ = e

x

polariza-
tion as a function of the position in the fiber transverse
plane for the parameters used in our experiment, where
we have chosen x as the quantization axis. Here, e

x,y,z

are the unit vectors along the corresponding axes. From
Fig. 2 it is apparent that the local polarization depends
both on the position in the fiber transverse plane and on
the direction of propagation of the mode. This is a clear
signature of spin-orbit coupling of the nanofiber guided
light. We now consider the situation where the particle
is located at the top (� = 90�) of the nanofiber. At this
position, the overlap between the HE+

11,y mode (HE�
11,y

mode) and �

� polarization is maximal (minimal) and
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Quantum Optics of
Chiral Spin Networks

wave guide
two-level 

atom

• why?
- quantum info / non-equilibrium cond mat (quantum phases)

• how? - physical realization
- photonic & phononic (here - cold gases realization) & 1D spin-wave guide

• open quantum many body system
- driven-dissipative (quantum optics)

chiral = asymmetric coupling of 
spin to wave guide

no loops

9



• non-equilibrium

!

Engineer system-reservoir coupling!

pure & (interesting) entangled state
(dark state of dissipative dynamics)

many-body  
quantum system quantum reservoir

drive

• Dynamics: Master equation • Steady state:

Many body Quantum Optics

validity …

Equilibrium vs. Non-Equilibrium Quantum Many-Body Physics
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Examples: Engineered Dissipative Atomic Systems
Topology via dissipation BCS-pairing from dissipation 2

At late times, we can then expand the state around
|BCS�� with the ansatz ⌅ =

Q
q ⌅q, where ⌅q contains

the two momentum modes ±q necessary to describe pair-
ing. Using the projection prescription ⌅q = tr ⌃=q⌅, we
then find the equations of motion for the single pair den-
sity matrices ⌅q in the presence of nonzero mean fields
resulting from a coupling to other momentum modes,
whose values are dictated by the proximity to the final
state. The resulting e⇥ective Hamiltonian is quadratic
and given by

He� = � i⇥
2

X

q,⇧

�
ñ(c†q,⇧cq,⇧ + |⌥q|2cq,⇧c†q,⇧) (2)

+�̃qs⇧c�(q,⇧)cq,⇧ + h.c.
 
= � i

2

X

q,⇧

⇤q�
†
q,⇧�q,⇧,

with s⇤ = �1, s⌅ = 1 and dimensionless ”gap function”
�̃q = �̃⌥q, and where the diagonal and o⇥ diagonal

mean fields evaluate to ñ = |�̃| = 2
R dq

(2⌅)2
|⌃q|2

1+|⌃q|2 ⇤
0.72 on the d-wave state. The e⇥ective Hamiltonian is
diagonalized in the second line, introducing quasiparticle
Lindblad operators

�q,⇧ =
1q

1 + ⌥2
q

(c�q,⇧ + s⇧⌥qc
†
q,�⇧).

In this basis, the resulting master equation reads �t⌅ =
�iHe�⌅+i⌅H†

e�+
P

q,⇧ ⇤q�q,⇧⌅�†
q,⇧. The linearized Lind-

blad operators have analogous properties to quasiparticle
operators familiar from interaction pairing problems: (i)
They annihilate the (unique) steady state �q,⇧|BCS�� =
0; (ii) they obey the Dirac algebra {�q,⇧, �†

q0,⇧0} =
⇥q,q0⇥⇧,⇧0 and zero otherwise [? ]; and (iii) therefore are
related to the original fermions via a canonical transfor-
mation. The imaginary spectrum of the e⇥ective Hamil-
tonian features a ”dissipative pairing gap”

⇤q = ⇤ ñ (1 + ⌥2
q) ⇥ ⇤ ñ.

The dissipative gap implies an exponential approach to
steady state d-wave BCS state for long times. This can
be most easily seen in a quantum trajectory represen-
tation of the master equation, where the time evolu-
tion of the system is described by a stochastic system
wavefunction |⌃(t)� undergoing a time evolution with
non-hermitian Hamiltonian |⌃(t)� = e�iHeff t|⌃(0)�/  . . . 
interrupted with rate ⇤  j⌥|⌃(t)� 2 by quantum jumps
|⌃(t)� ⌅ j⌥|⌃(t)�/  . . . so that ⌅(t) = ⌥|⌃(t)�⌥⌃(t)|�stoch.
We thus see that (i) the BCS state is a ”dark state” of the
dissipative dynamics in the sense that j⌥|BCSN � = 0 im-
plies that there will never be quantum jump, i.e. the state
remains in |BCSN �, and (ii) states near |BCSN � show a
exponential decay according to the dissipative gap. Note
that it is in marked contrast to dissipative preparation of
a non-interacting BEC state in bosonic systems, where
an approach polynomial in time is expected [12].

FIG. 1. (a) Symmetry in the d-wave state, represented by
a single o�site fermion pair exhibiting the characteristic sign
change under spatial rotations. In a d-wave BCS state, this
pair is delocalized over the whole lattice. (b,c) The dissi-
pative pairing mechanism builds on both (b) Pauli blocking
and (c) delocalization via phase locking. (b) Illustration of
the action of Lindblad operators using Pauli blocking for a
Néel state (see text). (c) The d-wave state may be seen as a
delocalization of these pairs away from half filling.

This convergence to a unique pure state is illustrated
in Fig. 2 using numerical simulations for small systems.
In Fig. 2a we show convergence to a pure state via the
entropy of the full density matrix for a small 1D system,
and in Fig. 2b. the fidelity of the BCS state for a small
2D grid as a function of time, computed via the quantum
trajectories method.
Lindblad operators for D-wave states – We now turn

to the construction of the Lindblad operators for the d-
wave BCS state as given in Eq. (1). We will perform this
construction first for an antiferromagnetic Néel state at
half filling, and then generalize to the BCS state. Our
task can be formulated as finding for a given many body
state |d� a set of (non-hermitian) Lindblad operators j⌥
so that it becomes the unique ”dark state”, j⌥|d� = 0
⌃l. Both the Néel and the BCS state have product form,
|d� =

Q
m d†m|vac�. Thus, we note as a su⇤cient dark

state condition [j⌥, d†m] = 0.
There are two antiferromagnetic Néel states at

half filling |N+� =
Q

i⇧A c†i+ex,⇤c
†
i,⌅|vac�, |N�� =

Q
i⇧A c†i+ex,⌅c

†
i,⇤|vac� with A a sublattice in a two-

dimensional bipartite (square) lattice, which di⇥er by
an overall spin flip. Introducing “Néel unit cell op-
erators” Ŝa

i,⇤ = c†i+e�
⇧ac†i , a = ±, e⇤ = {±ex,±ey},

whose usefulness will become apparent soon, the state
can be written in eight di⇥erent forms, |N±� =Q

i⇧A Ŝ±
i,⇤ |vac� = (�1)M/2

Q
i⇧B Ŝ⇥

i,�⇤ |vac�, with M the
lattice size. We then see that the Lindblad operators
must obey [jai,⇤ , Ŝ

b
j,µ] = 0 for all i, j located on the same

sublattice A or B, which is fulfilled for the set

jai,⇤ = c†i+e�
⇧aci, i ⇧ A orB. (3)

d-wave pairing

S. Diehl et al., PRL 2010S. Diehl et al., Nature Phys. 2012; PRL 2013
J. Budich et al., preprint

reservoir

ji = 1
2 (ai +a†

i �ai+1 +a†
i+1)

c2∞L ¥ c1

. . .
c2ic2i°1

. . .

. . .. . .
i i +1

c2N ¥ ∞Rc2N°1

Majorana edge modes

Reviews: M Müller et al., Adv Atom Mol Opt Phys, 2012; C Bardyn et al., NJP 2013

Diss. Quantum Phase transitions Entangled States from Dissipation

Exp. ions:  Blatt et al., Nature '11; Nat Phys '13

[Polzik et al., PRL '11]
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3
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system ancillatrapped ions

Exp. neutral atoms: DeMarco, Oberthaler, …
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different classes of multi-partite entanglement. In gen-
eral, the N spins will arrange themselves in N

m

adjacent
multi-mers:

| i =
N

mO
q=1

|M
q

i , (15)

where each multi-mer |M
q

i is the superposition

|M
q

i = a |gi⌦M

q

+

X
j>l

b
jl

|Si
jl

|gi⌦M

q

�2

+

X
j>l>r>s

c
jlrs

|Si
jl

|Si
rs

|gi⌦M

q

�4

+ ..., (16)

presenting multi-partite entanglement. Here we just il-
lustrate some of the “spin cluster” states that can be dis-
sipatively prepared with these chiral spin networks, but
in Sec. ?? we analysize the general conditions in detail.
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Figure 2. Dyanmical purification of chiral networks into dif-
ferent entangled multimer states. (a) dimers with a single
chiral channel (b) quadrumers with a single chiral channel (c)
octumer with two chiral channels (d) Non-local dimers in a
single bidirectional channel. Parameters are...

Comment on Fisher Sec. ?? for a way of witnessing the
entanglement.

III. PURE DARK STEADY STATES OF
CHIRAL SPIN NETWORKS

From a quantum optics point of view, the steady states
of the driven-dissipative dynamics are pure when they
are dark states of the driven-dissipative dynamics. The
scope of this section is to analyze in detail the conditions
under which the steady states of the chiral spin networks
are dark, as well as to establish a physical interpretation

of the underlying mechanisms leading to them. In par-
ticular, we show that the conditions stated in Sec. II B
are sufficient to cool the system in such dark states and
also we solve analytically the dark states for 2,3 and 4
spins, which illustrate the most important physics. We
recall that a pure quantum state | i is a dark state if it
is

(1) annihilated by all jump operators, and

(2) invariant under the coherent part of the dynamics,
i.e. an eigenstate of the Hamiltonian.

In the explicit example of the chiral spin (4) the first
condition reads c

L

| i = c
R

| i = 0, which means that
the systems does not emit photons on both output ports
of the waveguide (hence the term “dark”). The second
conditions is fulfilled if (H

sys

+ H
L

+ H
R

) | i = E | i,
that is if the state is an eigenstate of the total Hamil-
tonian, consisting not only of the system part H

sys

but
also of the bath induced coherent parts H

L

and H
R

. In
general these two conditions can not be satisfied at the
same time, inhibiting the existence of a dark state. To
understand why and when they can be satisfied simulta-
neously it is instructive to first consider the simple ex-
ample of only two spins coupled by a chiral waveguide,
since it contains many of the essential features, and will
serve as a building block to understand larger systems.

A. Two spins coupled by a chiral waveguide

For N = 2 a direct search for dark states is pos-
sible. The dark state condition (1) restricts the dark
states to the nullspaces of c

L

and c
R

. The nullspace
of c

L

is spanned by the trivial state |ggi and the state
1p
2

(|egi � eik(x1

�x

2

) |gei), which does not emit photons
propagating to the left because of destructive interference
of the left-moving photons emitted by the two spins, an
effect well known as sub-radiance [CITE]. However this
sub-radiant state in general decays by emitting photons
propagating to the right. The nullspace of c

R

is spanned
by |ggi and 1p

2

(|egi � e�ik(x

1

�x

2

) |gei). Therefore, in
general only the state |ggi is annihilated by both jump
operators, leaving no room for a nontrivial dark state.
An exception occurs, if the distance of the two spins is
an integer multiple of the wavelength of the photons, that
is k|x

1

� x
2

| = 2n⇡ with n = 0, 1, 2, . . . . Then the two
jump operators coincide c

L

= c
R

(up to an irrelevant
phase), and the common nullspace is spanned by the two
states |ggi and |Si ⌘ 1p

2

(|egi � |gei) [? ]. The so called
singlet state |Si is perfectly sub-radiant with respect to
both, photons propagating to the right and photons prop-
agating to the left. On the other hand the triplet states
|T i ⌘ 1p

2

(|egi+ |gei) and |eei are super-radiant, that is
they decay with 2(�

L

+�
R

) [See Fig. 3 and Fig. 4d)]. We
note that in the perfectly cascaded setup this condition
on the distance of the spins is not required, since then
there is only one jump operator.
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III. PURE DARK STEADY STATES OF
CHIRAL SPIN NETWORKS

From a quantum optics point of view, the steady states
of the driven-dissipative dynamics are pure when they
are dark states of the driven-dissipative dynamics. The
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under which the steady states of the chiral spin networks
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of the underlying mechanisms leading to them. In par-
ticular, we show that the conditions stated in Sec. II B
are sufficient to cool the system in such dark states and
also we solve analytically the dark states for 2,3 and 4
spins, which illustrate the most important physics. We
recall that a pure quantum state | i is a dark state if it
is

(1) annihilated by all jump operators, and

(2) invariant under the coherent part of the dynamics,
i.e. an eigenstate of the Hamiltonian.

In the explicit example of the chiral spin (4) the first
condition reads c

L

| i = c
R

| i = 0, which means that
the systems does not emit photons on both output ports
of the waveguide (hence the term “dark”). The second
conditions is fulfilled if (H

sys

+ H
L

+ H
R

) | i = E | i,
that is if the state is an eigenstate of the total Hamil-
tonian, consisting not only of the system part H

sys

but
also of the bath induced coherent parts H

L

and H
R

. In
general these two conditions can not be satisfied at the
same time, inhibiting the existence of a dark state. To
understand why and when they can be satisfied simulta-
neously it is instructive to first consider the simple ex-
ample of only two spins coupled by a chiral waveguide,
since it contains many of the essential features, and will
serve as a building block to understand larger systems.

A. Two spins coupled by a chiral waveguide

For N = 2 a direct search for dark states is pos-
sible. The dark state condition (1) restricts the dark
states to the nullspaces of c

L

and c
R

. The nullspace
of c

L

is spanned by the trivial state |ggi and the state
1p
2

(|egi � eik(x1

�x

2

) |gei), which does not emit photons
propagating to the left because of destructive interference
of the left-moving photons emitted by the two spins, an
effect well known as sub-radiance [CITE]. However this
sub-radiant state in general decays by emitting photons
propagating to the right. The nullspace of c

R

is spanned
by |ggi and 1p

2

(|egi � e�ik(x

1

�x

2

) |gei). Therefore, in
general only the state |ggi is annihilated by both jump
operators, leaving no room for a nontrivial dark state.
An exception occurs, if the distance of the two spins is
an integer multiple of the wavelength of the photons, that
is k|x

1

� x
2

| = 2n⇡ with n = 0, 1, 2, . . . . Then the two
jump operators coincide c

L

= c
R

(up to an irrelevant
phase), and the common nullspace is spanned by the two
states |ggi and |Si ⌘ 1p

2

(|egi � |gei) [? ]. The so called
singlet state |Si is perfectly sub-radiant with respect to
both, photons propagating to the right and photons prop-
agating to the left. On the other hand the triplet states
|T i ⌘ 1p

2

(|egi+ |gei) and |eei are super-radiant, that is
they decay with 2(�

L

+�
R

) [See Fig. 3 and Fig. 4d)]. We
note that in the perfectly cascaded setup this condition
on the distance of the spins is not required, since then
there is only one jump operator.

time

State of many-body spin system cools / purifies to a 
pure state of spin dimers, tetramers, hexamers, …

This Talk: Chiral Spin Chain

12



Theory: Master Equation for Chiral Spin Chains

Master equation for cascaded (purely unidirectional) quantum systems N=2:  
C.W. Gardiner, PRL 1993; H. Carmichael, PRL 1993; CW Gardiner & AS Parkins, PRA 1994

Plain-Vanilla Markovian :-)

13



Spins coupled to a chiral waveguide ∞L 6= ∞R

1D wave guide
∞Rdrive

≠

∞L
right-moving excitationleft-moving excitation

14



Spins coupled to a chiral waveguide ∞L 6= ∞R

1D wave guide
∞Rdrive

≠

∞L
right-moving excitationleft-moving excitation

Coherent drive detuning

15



Spins coupled to a chiral waveguide ∞L 6= ∞R

1D wave guide
∞Rdrive

≠

∞L
right-moving excitationleft-moving excitation

dipole-dipole interactions 
(infinite range in 1D)

“Dicke" master equation for 1D: D E Chang et al 2012 New J. Phys. 14 063003 16



Spins coupled to a chiral waveguide ∞L 6= ∞R

1D wave guide
∞Rdrive

≠

∞L
right-moving excitationleft-moving excitation

collective decay 
(super- and sub-radiance)

∞L

∞L

17



Spins coupled to a chiral waveguide ∞L 6= ∞R

1D wave guide
∞Rdrive

≠

∞L
right-moving excitationleft-moving excitation

∞L∞R

collective decay 
cascaded interactions

Theory of cascaded quantum systems N=2: C.W. Gardiner, PRL 1993; H. Carmichael, PRL 1993 18



Steady states for a chiral waveguide

≠

• Unique, pure steady state:

∞L 6= ∞R

19

• Quantum Dimers

singlet fraction

• Note: only for N even



Understanding dark states for N=2 spins

subradiant state

dark state
20



Imperfections & Dark States: N=2

Figure 5. Purity of the steady state for N = 2 if the dark state
conditions are not met. (a) Shown as a function of a homoge-
neous offset in the detuning � and a staggered component of
the coherent drive ⌦̃ (see also Fig. 4). (b) As a function of the
distance between the spins relative to the wavelength (modulo
integers) and a onsite decay �0. Parameters are ��R = 0.3,
⌦/�R = 0.5, �/�R = 0.3 and �L/�R = 0.5.

evant question is the effect of a finite decay to dissipative
channels other than the chiral waveguide. This would
introduce an additional term �0

(D[c
1

]⇢ + D[c
2

]⇢) to the
master equation (4). Since the singlet |Si is no longer
stable under the two jump operators c

1

and c
2

, the pure
dark state does not survive (see Fig. ??). However one
can estimate that the the steady state will be close to the
dark state if �

0

�

L

+�

R

⌦

2

��

2

/4+�

2

⌧ 1 [see also Fig. ??b)].

B. four spins and a chiral waveguide

Figure 6.

IV. PURE STEADY STATS IN SYSTEMS WITH
N SPINS

In this section we want to identify condition under
which an arbitrary number of N spins coupled to a chi-
ral waveguide are driven into a pure steady state. The
discussion presented above for two and four spins will
thereby serve as guide. As already anticipated in Sec. II B
we find that the system has a unique pure dark state for

an even number of spin under analogous conditions as for
N = 2, 4. We show that the structure of this steady state
is of the form given in equation (15), that is the system
factorizes into a product of clusters, and we connect the
structure of this state to the properties of the bare spin
system, in particular to the detuning pattern �

j

.
To this end we first take a detour (Sec. IV A) and con-

sider not a chiral, but a cascaded setup instead. The
cascaded problem is simpler, inasmuch the unidirectional
flow of information allows an analytic solution from “left
to right”. Using this property one can show [STAN-
NIGEL] that the steady state of cascaded spin system
(under conditions specified below) has a unique pure
steady state in which the system dimerises, that is the
steady state is of the form

| i =
N/2O
j=1

|Di
2j�1,2j

(20)

where each spins pairs up with one of its neighbours to
form a dimer and decouples from the rest of the chain.
Since the derivation of this result relies heavily on the
unidirectional character of the cascaded master equation,
it is quite remarkable that it is this solution that allows
us to construct also the dark states of the chiral master
equation in Sec. IV B.

A. Cascaded Channel and Dimerization

Let us consider a system of N spins that are coupled
via a unidirectional channel as described by the cascaded
master equation (9). A defining property of (9) is that
information flows only one way, i.e. in the propagation
direction of the photons of the unidirectional waveguide.
While this is obvious from the physical picture underly-
ing the master equation, one can see this also on a formal
level. For example one can calculate the equations of mo-
tions for the “fist” or “leftmost” spin along the cascaded
channel, by simply tracing out the degrees of freedom of
all other spins in Eq. (9) and on finds:

⇢̇
1

=� i[��
1

c†
1

c
1

+ ⌦

1

(c
1

+ c†
1

), ⇢
1

] + �
R

D(c
1

)⇢
1

, (21)

where we denote the reduced density operator of a subset
of spins X by ⇢

X

. This equations closed, that is, the
first spin is independent on the state of all other spins,
reflecting the unidirectionality of the system. Equation
(21) is the well known optical Bloch equation for a single
driven two-level system, whose steady state is in general
mixed.

More interesting is the equation of motion of the first
two spins, which is obtain analogously to (21) from (9)
and reads:

⇢̇
1,2

=� i
X
j=1,2

[��
j

c†
j

c
j

+ ⌦

j

(c
j

+ c†
j

), ⇢
1,2

]

� �
R

2

[c†
2

c
1

� c†
1

c
2

, ⇢
1,2

] + �
R

D(c
1

+ c
2

)⇢
1,2

, (22)
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Figure 5. Purity of the steady state for N = 2 if the dark state
conditions are not met. (a) Shown as a function of a homoge-
neous offset in the detuning � and a staggered component of
the coherent drive ⌦̃ (see also Fig. 4). (b) As a function of the
distance between the spins relative to the wavelength (modulo
integers) and a onsite decay �0. Parameters are ��R = 0.3,
⌦/�R = 0.5, �/�R = 0.3 and �L/�R = 0.5.

evant question is the effect of a finite decay to dissipative
channels other than the chiral waveguide. This would
introduce an additional term �0

(D[c
1

]⇢ + D[c
2

]⇢) to the
master equation (4). Since the singlet |Si is no longer
stable under the two jump operators c

1

and c
2

, the pure
dark state does not survive (see Fig. ??). However one
can estimate that the the steady state will be close to the
dark state if �

0

�

L

+�

R

⌦

2

��

2

/4+�

2

⌧ 1 [see also Fig. ??b)].

B. four spins and a chiral waveguide

Figure 6.

IV. PURE STEADY STATS IN SYSTEMS WITH
N SPINS

In this section we want to identify condition under
which an arbitrary number of N spins coupled to a chi-
ral waveguide are driven into a pure steady state. The
discussion presented above for two and four spins will
thereby serve as guide. As already anticipated in Sec. II B
we find that the system has a unique pure dark state for

an even number of spin under analogous conditions as for
N = 2, 4. We show that the structure of this steady state
is of the form given in equation (15), that is the system
factorizes into a product of clusters, and we connect the
structure of this state to the properties of the bare spin
system, in particular to the detuning pattern �

j

.
To this end we first take a detour (Sec. IV A) and con-

sider not a chiral, but a cascaded setup instead. The
cascaded problem is simpler, inasmuch the unidirectional
flow of information allows an analytic solution from “left
to right”. Using this property one can show [STAN-
NIGEL] that the steady state of cascaded spin system
(under conditions specified below) has a unique pure
steady state in which the system dimerises, that is the
steady state is of the form

| i =
N/2O
j=1

|Di
2j�1,2j

(20)

where each spins pairs up with one of its neighbours to
form a dimer and decouples from the rest of the chain.
Since the derivation of this result relies heavily on the
unidirectional character of the cascaded master equation,
it is quite remarkable that it is this solution that allows
us to construct also the dark states of the chiral master
equation in Sec. IV B.

A. Cascaded Channel and Dimerization

Let us consider a system of N spins that are coupled
via a unidirectional channel as described by the cascaded
master equation (9). A defining property of (9) is that
information flows only one way, i.e. in the propagation
direction of the photons of the unidirectional waveguide.
While this is obvious from the physical picture underly-
ing the master equation, one can see this also on a formal
level. For example one can calculate the equations of mo-
tions for the “fist” or “leftmost” spin along the cascaded
channel, by simply tracing out the degrees of freedom of
all other spins in Eq. (9) and on finds:

⇢̇
1

=� i[��
1

c†
1

c
1

+ ⌦

1

(c
1

+ c†
1

), ⇢
1

] + �
R

D(c
1

)⇢
1

, (21)

where we denote the reduced density operator of a subset
of spins X by ⇢

X

. This equations closed, that is, the
first spin is independent on the state of all other spins,
reflecting the unidirectionality of the system. Equation
(21) is the well known optical Bloch equation for a single
driven two-level system, whose steady state is in general
mixed.

More interesting is the equation of motion of the first
two spins, which is obtain analogously to (21) from (9)
and reads:
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1,2
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X
j=1,2
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Physical Realizations of Chiral Spin Networks

• photons

22

Wave guide for …

• phonons

✓ optical - photonic nanostructures
✓microwave - superconducting circuits

✓ spin-orbit coupled BEC
✓ nano-mechanics



1D Chiral Spin Chains with Cold Atoms

Ein

photons

phonons

spin-orbit coupled BEC (1D)
as a chiral bath

chiral phonons

atoms in optical lattices
≠

decay as inelastic collision
with reservoir BEC

Experiments: DeMarco, Oberthaler, Porto, …

23
T. Ramos, H. Pichler, A.J. Daley, P.Z., PRL Dec 3 2014



Driven Dissipative Hubbard Dynamics

• BEC as a “phonon reservoir”
- quantum reservoir engineering

• master equation
- reduced system dynamics
- Quantum Markov process

d�

dt
= �i [Hsys, �] + L�

2 band Hubbard model BEC phonons

A Griessner, AJ Daley, SR Clark, D Jaksch, and PZ, PRL 2006 & NJPhys 2007
S Diehl, A Micheli, A Kantian, B Kraus, HP Buechler, and PZ, NatPhys 2008

inelastic scattering from BEC as 
“spontaneous emission”

BEC

24



• Atoms in a 1D optical lattice

Driven Dissipative Hubbard Dynamics

• BEC as a “phonon reservoir”
- quantum reservoir engineering

BEC

......

atom

“phonon”

3D BEC reservoir

Ein

1D

• Dynamics analogous to ...

25



• Atoms in a 1D optical lattice

Driven Dissipative Hubbard Dynamics

• BEC as a “phonon reservoir”
- quantum reservoir engineering

BEC

......

atom

“phonon”

1D BEC 

Ein

1D

• Dynamics analogous to ...
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• N Atoms in a 1D optical lattice

Driven Dissipative Hubbard Dynamics

• BEC as a “phonon reservoir”
- quantum reservoir engineering

BEC

......

atom

“phonon”

1D BEC 

• Dynamics analogous to ...

EinQ.: How to get a 
chiral reservoir?

27



Two-species mixture of cold quantum gases

Spin-Chain:
atoms in 1D optical lattice
Spin-Chain:
atoms in 1D optical lattice

AJ Daley et al., PRA 69, 022306 (2004); A Griessner et al., PRL 97, 220403 (2006).
28



Two-species mixture of cold quantum gases

AJ Daley et al., PRA 69, 022306 (2004); A Griessner et al., PRL 97, 220403 (2006).

Spin-Chain:
atoms in 1D optical lattice

≠
Raman Transition

29



1D quasi-BEC 
as reservoir

Two-species mixture of cold quantum gases

Spin-Chain:
atoms in 1D optical lattice

Quantum Reservoir:
1D quasi-BEC

≠
Raman Transition Bogoliubov spectrum

1D quasi-BEC 
as reservoir

phonon

�L = �R

Dicke superradiance 
& phase transition

30



Chiral Reservoir = Spin-Orbit Coupled BEC

Spin-Chain:
atoms in 1D optical lattice

Quantum Reservoir:

≠

∞L 6= ∞R

|"i|#i

helical excitations:
spin locked to motion

spin-orbit coupled BEC (1D)
in "plane wave phase"

chiral excitation = locked to spin
laser laser

Hyperfine
manifold:

“chiral phononic 

band gap material"

spin-orbit coupled BEC (1D)

in an optical lattice:

31



0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

Two species mixtures of cold atoms

Chirality tuneable:
• via Spin-orbit coupling strength  

(i.e. via polarization of atoms)
• via asymmetry in collisional 

parameters

Estimates:

Validate RWA, Markov,
no retardation,…

32
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