Interaction Effects on Topological Models with Cold Atoms

Hui Zhai

Institute for Advanced Study Tsinghua University Beijing, China

Frontiers in Quantum Simulation with Cold Atoms INT International Conference Mar 2015

Experimental Progresses on Topological Model with Cold Atoms

I. Su-Schrieffer-Heeger Model

Experimental Progresses on Topological Model with Cold Atoms

II. Hofstadter Model

M. Aidelsburger et.al (Munich) PRL, 111, 185301 (2013)

H. Miyake, et.al. (MIT) PRL, 111, 185302 (2013)

Chern number $\left|\Omega_{\mu}=i\left(\left\langle \partial_{k_{x}}u_{\mu}\right|\partial_{k_{y}}u_{\mu}\right\rangle -\left\langle \partial_{k_{y}}u_{\mu}\right|\partial_{k_{x}}u_{\mu}\right\rangle \right).$ $v_{\mu} = \int_{F R Z} \Omega_{\mu} d^2 k / (2\pi)$

M. Aidelsburger et.al. (Munich) Nat. Phys. 11, 162 (2015)

Theoretical Interests: Interaction Effects

Many studies since early 80s Fradkin, Hirsch, Kivelson ...

Many studies recently

J. Zhang, C.-M. Jian, F. Ye and HZ, PRL, (2010) HZ, R. O. Umucalılar and M. O. Oktel, PRL, (2010)

Haldane Model Synthetic Dimension

Theoretical Interests: Interaction Effects

Many studies since early 80s Fradkin, Hirsch, Kivelson ...

Many studies recently

J. Zhang, C.-M. Jian, F. Ye and HZ, PRL, (2010) HZ, R. O. Umucalılar and M. O. Oktel, PRL, (2010)

Haldane Model \vert Synthetic Dimension

Focus!

Part A

Haldane-Hubbard Model

The Haldane Model

Dirac point

 $q_{x,\dagger}^E$

Berry phase around each Dirac point

L. Duca, et.al (Munich group), Science, 347, 288 (2015)

max

L. Tarruell et. al. (ETH) Nature. 483, 302 (2012)

 $E_{\rm G}$

The Haldane Model

 $\begin{split} \hat{H}_{\rm H} & = -t_1 \sum_{\langle ij \rangle, s} \left(\hat{c}^{\dagger}_{i,s} \hat{c}_{j,s} + {\rm h.c.} \right) \ & -t_2 \sum_{\langle\langle ij \rangle\rangle, s} \left(e^{i \phi_{ij}} \hat{c}^{\dagger}_{i,s} \hat{c}_{j,s} + ~ {\rm h.c.} \right) - M \!\!\!\!\!\! \sum_{i,s} \epsilon_i \hat{c}^{\dagger}_{i,s} \hat{c}_{i,s} \end{split}$

AB sublattice imbalance Break Inversion Symmetry

Next nearest hopping with staggered flux

Break Time-Reversal Symmetry

Quantum Anomalous Hall Effects: Quantized Hall conductance without external magnetic field

Quantum Anomalous Hall Effect

chromium-doped (Bi,Sb)₂Te₃

Magnetic topological insulator

1. Model is much complicated than Haldane model;

- 2. Growing this material is very challenging;
- 3. It lacks of flexibility of tuning parameters (e.g. interactions).

C. Z. Chang, et.al. (Tsinghua and IoP), Science, (2013)

Quantum Simulation of the Haldane Model

How to implement this next nearest hopping in cold atom system ?

C. V. Parker, et.al. (Chicago), Nat. Phys. 9, 769 (2014)

Shaking Lattice Scheme

Method I:

Floquet operator:

$$
\hat{F} = \hat{U}(T_i + T, T_i) = \hat{T} \exp\left\{-i \int_{T_i}^{T_i + T} dt \hat{H}(t)\right\}
$$
\n
$$
\hat{F} | \varphi_n \rangle = e^{-i\varepsilon_n T} | \varphi_n \rangle
$$
\nQuasi-energy \mathcal{E}_n

Method II:

$$
\hat{H}(t) = \sum_{n=-\infty}^{\infty} \hat{H}_n(t)e^{in\omega t}
$$

Effective Hamiltonian $\hat{F} = e^{-i\hat{H}_{\text{eff}}T}$

$$
\hat{H}_{\textrm{eff}}=\hat{H}_0\text{+}\sum_{n=1}^\infty\left\{\frac{\left[\hat{H}_n,\hat{H}_{-n}\right]}{n\omega}-\frac{\left[\hat{H}_n,\hat{H}_0\right]}{e^{-2\pi ni\alpha}n\omega}+\frac{\left[\hat{H}_{-n},\hat{H}_0\right]}{e^{2\pi ni\alpha}n\omega}\right\}
$$

 $H_0 + \omega$ ω $\Delta \mathbf{r}$ H_0 ω $H_0 - \omega$

 (a)

Shaking Lattice Scheme

 k_x^0/k_y

 $\mathbf{k}^0_{\chi}\mathbf{k}_r$

 0.5

 0.5

W. Zheng and HZ, PRA, 89, 061303(R) (2014)

Shaking Lattice Scheme

.....

$$
\hat{H} = \frac{\mathbf{p}^2}{2m} + V(x + b\cos(\omega t), y + b\sin(\omega t))
$$

$$
x \to x + b\cos(\omega t) \quad y \to y + b\sin(\omega t)
$$

$$
\hat{H} = \frac{(\mathbf{p} - \mathbf{A})^2}{2m} + V(x, y)
$$

Soft X-ray ! frequency about 3500 THz

$$
A_x = -b\sin(\omega t) \ \ A_y = b\cos(\omega t)
$$

T. Oka and H. Aoki, PRB, 79, 081406 (2009) T. Kitagawa, E. Berg, M. Rudner and E. Demler, PRB, 82, 235114 (2010) N. H. Linder, G. Refael and V. Galitski, Nat. Phys. 7, 490, (2011)

Experimental Progresses on the Haldane model

Extending our work to interacting systems requires sufficiently low heating. We investigate this with a repulsively interacting spin mixture in the honeycomb lattice previously used for studying the fermionic Mott insulator²⁷. We measure the entropy in the Mott insulating regime by loading atoms into the lattice and reversing the loading procedure (see Methods and Extended Data Fig. 3). The entropy increase is only 25% larger than without modulation. This opens up the possibility of studying topological models with interactions²⁸ in a controlled and tunable

" Little is known "

----- Tilman / Yesterday

G. Jotzu, et.al. (ETH group), Nature, 515, 237 (2014)

Bloch oscillation

The Haldane-Hubbard Model

Spin-1/2 fermions

$$
\hat{H}_{\rm HH} = \hat{H}_{\rm H} + U \sum_{i} \hat{n}_{i,\uparrow} \hat{n}_{i,\downarrow} \qquad n = 1/2 + 1/2 = 1
$$

$$
\begin{aligned} \hat{H}_{\mathrm{H}} & = -t_1 \sum_{\langle ij \rangle, s} \left(\hat{c}_{i,s}^{\dagger} \hat{c}_{j,s} + \mathrm{h.c.} \right) \\ & - t_2 \sum_{\langle\langle ij \rangle\rangle, s} \left(e^{i \phi_{ij}} \hat{c}_{i,s}^{\dagger} \hat{c}_{j,s} + \mathrm{h.c.} \right) - M \sum_{i,s} \epsilon_i \hat{c}_{i,s}^{\dagger} \hat{c}_{i,s} \\ & C = 1+1 = 2 \end{aligned}
$$

The Haldane-Hubbard Model

Spin-1/2 fermions

$$
\hat{H}_{\rm HH} = \hat{H}_{\rm H} + U \sum_{i} \hat{n}_{i,\uparrow} \hat{n}_{i,\downarrow} \qquad n = 1/2 + 1/2 = 1
$$

$$
\begin{aligned} \hat{H}_{\mathrm{H}}&=-t_{1}\sum_{\left\langle ij\right\rangle ,s}\left(\hat{c}_{i,s}^{\dagger}\hat{c}_{j,s}+\mathrm{h.c.}\right)\\&-t_{2}\sum_{\left\langle \left\langle ij\right\rangle \right\rangle ,s}\left(e^{i\phi_{ij}}\hat{c}_{i,s}^{\dagger}\hat{c}_{j,s}+\mathrm{h.c.}\right)-M\sum_{i,s}\epsilon_{i}\hat{c}_{i,s}^{\dagger}\hat{c}_{i,s}\\&C=1+1=2 \end{aligned}
$$

 $U\sum \hat{n}_{i,\uparrow}\hat{n}_{i,\downarrow}$

 \overline{U}

The Haldane-Hubbard Model

Spin-1/2 fermions

$$
\hat{H}_{\rm HH} = \hat{H}_{\rm H} + U \sum_{i} \hat{n}_{i,\uparrow} \hat{n}_{i,\downarrow} \qquad n = 1/2 + 1/2 = 1
$$

 $U\sum \hat{n}_{i,\uparrow}\hat{n}_{i,\downarrow}$

 ${\cal C}=0$

$$
\begin{aligned} \hat{H}_{\mathrm{H}} & = -t_1 \sum_{\langle ij \rangle, s} \left(\hat{c}_{i,s}^{\dagger} \hat{c}_{j,s} + \mathrm{h.c.} \right) \\ & - t_2 \sum_{\langle\langle ij \rangle\rangle, s} \left(e^{i \phi_{ij}} \hat{c}_{i,s}^{\dagger} \hat{c}_{j,s} + \mathrm{h.c.} \right) - M \sum_{i,s} \epsilon_i \hat{c}_{i,s}^{\dagger} \hat{c}_{i,s} \end{aligned}
$$

 $C=1+1=2$

Relation between magnetic order and topology

$$
U\sum_{i}\hat{n}_{i,\uparrow}\hat{n}_{i,\downarrow} = \frac{1}{2}U\hat{N} - \frac{2}{3}U\sum_{i}\mathbf{S}_{i}^{2}
$$

$$
\approx \frac{1}{2}U\hat{N} + \sum_{i}\left(-\mathbf{m}_{i}\cdot\mathbf{S}_{i} + \frac{3\mathbf{m}_{i}^{2}}{8U}\right)
$$

Mean-field Hamiltonian Free Hamiltonian

$$
\begin{aligned} \hat{H}_{\mathrm{H}} & = -t_1 \sum_{\langle ij \rangle, s} \left(\hat{c}_{i,s}^{\dagger} \hat{c}_{j,s} + \mathrm{h.c.} \right) \\ & - t_2 \sum_{\langle \langle ij \rangle \rangle, s} \left(e^{i \phi_{ij}} \hat{c}_{i,s}^{\dagger} \hat{c}_{j,s} + \mathrm{~h.c.} \right) - M \sum_{i,s} \epsilon_i \hat{c}_{i,s}^{\dagger} \hat{c}_{i,s} \end{aligned}
$$

For Neel AF, MF Hamiltonian = Free Hamiltonian with modified $M \rightarrow M + sm$

Relation between magnetic order and topology

$$
U\sum_{i}\hat{n}_{i,\uparrow}\hat{n}_{i,\downarrow} = \frac{1}{2}U\hat{N} - \frac{2}{3}U\sum_{i}\mathbf{S}_{i}^{2}
$$

$$
\approx \frac{1}{2}U\hat{N} + \sum_{i}\left(-\mathbf{m}_{i}\cdot\mathbf{S}_{i} + \frac{3\mathbf{m}_{i}^{2}}{8U}\right)
$$

Mean-field Hamiltonian Free Hamiltonian

$$
\hat{H}_{\text{MF}} = \hat{H}_{\text{H}} - \sum_{i} \mathbf{m}_{i} \cdot \mathbf{S}_{i}
$$
\n(c)\n
\n
$$
\sum_{i} \mathbf{r}_{i} \qquad (c)
$$
\n
$$
\mathbf{S} = \langle \hat{\mathbf{S}}_{i} \rangle \cdot (\langle \hat{\mathbf{S}}_{j} \rangle \times \langle \hat{\mathbf{S}}_{k} \rangle)
$$

$$
\begin{aligned} &\hat{H}_{\mathrm{H}}=-t_{1}\sum_{\left\langle ij\right\rangle ,s}\left(\hat{c}_{i,s}^{\dagger}\hat{c}_{j,s}+\mathrm{h.c.}\right)\\&-t_{2}\sum_{\left\langle \left\langle ij\right\rangle \right\rangle ,s}\left(e^{i\phi_{ij}}\hat{c}_{i,s}^{\dagger}\hat{c}_{j,s}+\mathrm{~h.c.}\right)-M\sum_{i,s}\epsilon_{i}\hat{c}_{i,s}^{\dagger}\hat{c}_{i,s} \end{aligned}
$$

Magnetic field texture and gauge field

Berry phase == solid angle expanded by spin vector

Relation between magnetic order and topology

$$
U\sum_{i}\hat{n}_{i,\uparrow}\hat{n}_{i,\downarrow} = \frac{1}{2}U\hat{N} - \frac{2}{3}U\sum_{i}\mathbf{S}_{i}^{2}
$$

$$
\approx \frac{1}{2}U\hat{N} + \sum_{i}\left(-\mathbf{m}_{i}\cdot\mathbf{S}_{i} + \frac{3\mathbf{m}_{i}^{2}}{8U}\right)
$$

Mean-field Hamiltonian Free Hamiltonian

$$
\hat{H}_{\mathrm{MF}} = \hat{H}_{\mathrm{H}} - \sum_i \mathbf{m}_i \cdot \mathbf{S}_i
$$

For Canted AF, MF Hamiltonian = free Hamiltonian with modified

$$
\phi_{\text{eff}}=\phi+\tilde{\phi}.
$$

How magnetic order driven topological transition

How magnetic order driven topological transition 10 ^<mark>(IV) C=0, Iml≍0, S≍0.</mark> (c) $t_2/t_1=0.6$ 9 (III) C=0, ImI≠0, S=0 $5($ c1) (b) 8^{\perp} Ξ (II) C=2, Iml≠<mark>)</mark>, S=0 7 b \mathbb{S}^r 6 5 হ্ব (I) C=2, $Iml=0$, S=0 4 (c2 n 3^{\perp}_{0} $(c3)$ $\frac{0.3}{t_2/t_1}$ 0.2 0.5 0.1 0.4 0.6 0.7 \circ 0 (a) $C=0$ $(c4)$ \boldsymbol{a} $3\sqrt{3}$

-deeeee
0.6

 9.8

Magnetic order driven topological transition

Gap closes

Magnetic order driven topological transition

$$
\text{Field Theory Approach}
$$
\n
$$
S = \int dt d^2 \mathbf{r} \left(\mathcal{L}_n + \mathcal{L}_f + \mathcal{L}_I \right)
$$
\n
$$
\mathcal{L}_n = \frac{1}{2g} \left[(\partial_t \mathbf{n})^2 - c^2 (\nabla \mathbf{n})^2 \right]
$$
\n
$$
\mathcal{L}_f = \Psi^{\dagger} \left[i \partial_t + i v_F \tau_z \sigma_x \partial_x + i v_F \sigma_y \partial_y - m \tau_z \sigma_z \right] \Psi
$$
\n
$$
- \Psi^{\dagger} \sigma_z \otimes (m \tau_z \otimes I + \lambda I \otimes s_z) \Psi
$$
\n
$$
\mathcal{L}_I = -\lambda \Psi^{\dagger} [\sigma_z \otimes (\mathbf{n} \cdot \mathbf{s})] \Psi
$$
\n
$$
- \lambda \Psi^{\dagger} \sigma_z s_z \Psi
$$
\nMagnetic ordered phase

\n
$$
\langle \mathbf{n} \rangle = 1 \hat{z}
$$
\nTopological phase transition at

\n
$$
\lambda = m
$$

Suitable for studying fermion gap about Neel temperature with AF fluctuations

Part B

Synthetic Dimension

Experimental Progresses on Synthetic Dimension

Physical dimension

1. Interaction is short-ranged in physical dimension, but long-ranged in synthetic dimension.

2. ν is not the only relevant parameter.

Interaction Effects on Synthetic Dimension

Interaction Effects on Synthetic Dimension

 $\nu = 1/3$ Charge pumping diagram

Interaction Effects on Synthetic Dimension

 $\nu = 1/3$ Charge pumping diagram

The smaller V_{1d} the larger W Charge pumping = > 1/3

Conclusion

Collaborators

Wei Zheng Hui-Tao Shen Tian-Sheng Zeng Ce Wang

Zhong Wang

Thank you very much for your attention !