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The Art of Poking and Prodding !
•  parametric perturbations 

•  modulation spectroscopy 

•  effective dynamics 

•  oscillating harmonic potential – optical conductivity  

Vtrap(x, t) =
1

2
m!0(t)

2
x

2

!0(t) = !0 +�!0✓(t), !0(t) = !0 +�!0 sin⌦t

V

trap

(x) + V

opt

(x, t)

V

opt

(x, t) = V

0

(t) sin kx, V

opt

(x, t) = V

0

sin k(x� x

0

(t))

V

trap

(x) + V

ext

(x)

�(x) ! �(x� x

0

) ) V

ext

(x� x

0

cos!

0

t)

Vtrap(x, t) =
1

2
m!

2
0(x� x0 sin!t)



Experiment on Disorder-induced Damping!
•  oscillations of the centre of mass are 

induced by suddenly shifting the harmonic 
confining potential 

•  a disorder potential created by a laser 
speckle pattern leads to the decay of the 
centre of mass motion 

Y.P. Chen et al., Phys. Rev. A77, 033632 (2008) 



Equation of Motion in Presence of Disorder!
•  the Hamiltonian of the system is 
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•  evaluation of the force requires knowledge of the dynamical state 



Extended Harmonic Potential Theorem!
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•  in (a), the condensate is initially displaced 
relative to the centre of the harmonic trap 
and oscillates in the presence of a static 
disorder potential 

•  in (b), the condensate is initially at rest at 
the centre of the harmonic trap but the 
disorder potential is displaced and is made 
to oscillate at the trap frequency 

•  the force is exactly the same in these two 
physically distinct scenarios 

D. Dries et al., Phys. Rev. A82, 
033603 (2010) 



Linear Response!
•  the utility of this latter point of view is that the force can be 

calculated using conventional linear response theory if the 
perturbation is weak 

•  to second order in the disorder potential, we have 

    where   

•  the disorder-averaged speckle pattern gives 
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Density Response Function!
•  within the Bogoliubov approximation, the density response function 

is determined by the collective excitations of the system 
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•  the Bogoliubov excitations for an arbitrary anisotropic trap must be 
determined numerically 

•  a simpler approach is to make use of the cylindrical local density 
approximation, a variant of the more commonly used bulk local 
density approximation 
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•  in this approximation, the condensate responds to a perturbation as 
if it were locally part of an infinitely long cylindrical condensate 
with density per unit length ν(z)	





Damping of the Centre of Mass Oscillation!

•  theoretical estimate of damping 

Y.P. Chen et al., Phys. Rev. A77, 033632 (2008) 

•  the damping of the mode 
increases with increasing 
strength of the disorder 
potential 
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Results*!

•  the results for the bulk LDA differ quantitatively from the cylindrical 
LDA 
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Experimental Comparison 

•  initial displacement 

z0 ⇠ 700µm v0/c0 ⇠ 2.9

•  disorder strength 

V 2
dis/µ

2 ' 0.0064

•  damping 

(b/�z)th ' 0.028 (b/�z)exp ' 0.034

•  the damping exhibits a resonant peak for a velocity equal to the sound 
speed at the centre of the trap 

*Z. Wu and E. Zaremba, Phys. Rev. Lett. 106, 165301 (2011) 



Other Data*!

•  we do not find good agreement for this set of data – we have no 
explanation for this 

•  our theory can only account for the damping at early times 
immediately after excitation since the cloud heats up significantly 
during the course of the evolution 

•  for comparable experimental parameters, the Chen et al. experiment 
seems to give different results from the Dries et al. experiment 

*D. Dries et al., Phys. Rev. A82, 033603 (2010) 



Shaking Potentials*!
•  we consider a harmonically-trapped system in the presence of a 

time-dependent external potential 

•  the perturbation is seen to couple to the particle density  
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*Z. Wu and E. Zaremba, Ann. Phys. 342, 214 (2014) 

•  for small displacements r0(t), 
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Perturbative Analysis!

•  the energy absorption rate is given quite generally by 

   where we have defined the retarded response functions 
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Perturbative Analysis, cont’d!
•  for a monochromatic displacement of the form 

   the time-averaged energy absorption rate is found to be 

•  the energy absorption rate is directly related to the optical 
conductivity defined as 
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   where                 is the imaginary part of the Fourier transform of the Im⇧µ⌫(!)

   current-current response function 
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Discussion!
•  for a displacement of the form                               we have 

•  the current response includes the full effect of the external potential 
and the harmonic trapping potential  
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!z ! 0•  in the limit               one recovers the result of Tokuno and 
Giamarchi (PRL 106, 205301 (2011)). It should be noted however 
that their derivation is not quite right. 

•  one sees that the energy absorption rate vanishes when              . 
This is a consequence of the extended harmonic potential theorem 
(Wu and Zaremba, Ann. Phys. 342, 214 (2014)) and is not limited to 
the perturbative analysis. 

! = !z

•  information about the possible excitations in the system is contained 
in the frequency dependence of the current response function  

•  the low-frequency spectral density is enhanced in the presence of the 
trap 



MIT Experiment on Superfluidity   [PRL 85, 2228 (2000)]!

•  a gaussian potential is rastered 
periodically through an 
elongated cylindrical condensate 

•  the induced density exhibits an 
asymmetry when dissipation 
sets in 

•  the dissipation rate is small 
when the rastering frequency is 
close to the axial trapping 
frequency 



Measuring the Optical Conductivity*!
•  we consider an oscillating trapping potential of the form 
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•  the displacement of the trap leads to a time-dependent homogeneous 
force acting on the system and results in a perturbation that couples 
to the centre-of-mass coordinate 
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•  this coupling can be treated perturbatively if Fµ(t) is small 

*Z. Wu, E. Taylor and E. Zaremba, EPL 110, 26002 (2015) 



Perturbation Analysis!

•  Fourier transforming we have 

•  the total current operator is 

•  the centre of mass coordinate is the physical quantity of interest 

•  within linear response theory, one finds 
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Observables!

•  furthermore, if the trap displacement is harmonic at the frequency     , 
we have 

•  we now choose the force to be in a specific direction           ; the 
conductivity tensor is then given by   
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•  thus, a measurement of the amplitude and phase of the centre of mass 
displacement as a function of the oscillation frequency ω0 determines 
the optical conductivity  
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•  the optical conductivity is also related to the total current correlations 
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�
= F [⇧µ⌫(⌧)]



Application: 1D Bose-Hubbard Model!

•  we consider N atoms in a 1D optical lattice with harmonic 
confinement; in the tight-binding limit, the Hamiltonian is 

   and the current operator is  
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Calculation of the Current Response!
•  the imaginary part of the current response function is given by 

   and the real part is obtained from a KK transform 
•  the eigenstates and eigenenergies are obtained deep in the Mott-

insulator regime               ; here, the relevant excitations are single 
particle-hole excitations 
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•  we consider a lattice with M sites containing N particles; the ground 
state is 

   and the set of excited states retained are the particle-hole states 

•  the B-H Hamiltonian is diagonalized using the above truncated 
Hilbert space 
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Numerical Results!

•  excitation energies vs. state 
index 

•  current matrix elements vs. 
energy 

•  the approximations yield an 
optical conductivity which 
accurately satisfies the exact 
sum rule1 

•  the real and imaginary parts 
of the optical conductivity 
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1P. F. Maldague, PRB 16, 2437 (1977) 



Behaviour of the Centre of Mass!

•  amplitude vs. frequency •  phase vs. frequency 
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Summary!
•  we have used the Extended Harmonic Potential Theorem to 

analyze the disorder-induced damping of the centre-of-mass 
motion of a Bose condensate 

•  we have analyzed the energy absorption rate for the case of a 
shaking external potential in the presence of harmonic 
confinement; the energy absorption rate is related to the optical 
conductivity and vanishes when ω = ωtrap as a consequence of 
the extended harmonic potential theorem 

•  a complementary excitation scheme is to shake the confining 
harmonic potential keeping other external potentials fixed; this 
directly yields the optical conductivity 

•  one advantage of this latter scheme is that the optical 
conductivity can be determined experimentally by simply 
measuring the position and phase of the center of mass 


