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The Art of Poking and Prodding

* parametric perturbations

1
Virap(z,t) = §mw0(t)2a:2

wo(t) = wo + Aweb(t), wo(t) = wo + Awg sin Ot

modulation spectroscopy

Vivap (%) + Vopt (2, 1)
Vopt(x,t) = Vo (t) sinkx, Vopi(z,t) = Vosink(x — zo(1))

effective dynamics
V:crap (QS‘) + ‘/ext (I‘)

O(x) = P(z — 2¢) = Vext(x — xg cos wpt)

oscillating harmonic potential — optical conductivity

1
Vfrap(xa t) — 577%08 (w — I sSin wt)



Experiment on Disorder-induced Damping

e oscillations of the centre of mass are
induced by suddenly shifting the harmonic
confining potential

MWWWM * a disorder potential created by a laser
speckle pattern leads to the decay of the
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Equation of Motion in Presence of Disorder

* the Hamiltonian of the system is

HZ[

« for an arbitrary dynamical state, the c.m. coordinate Z(t) = (¥(t)|R.|¥(t))
satisfies

>] Tt S Vi) = o + i
1=1

L o, F
a2 T2 T g

where

P i OVais (T)

0z
i=1 v

* evaluation of the force requires knowledge of the dynamical state



Extended Harmonic Potential Theorem

@ “ [Wo) * 1n (a), the condensate 1s initially displaced
\ / relative to the centre of the harmonic trap
- and oscillates in the presence of a static

WW/\WJ.\ A‘Nw\fvw disorder potential

* 1in (b), the condensate is initially at rest at
s the centre of the harmonic trap but the

® v
\v|\0>/ disorder potential 1s displaced and is made
to oscillate at the trap frequency

/\”/V\WWNWM * the force is exactly the same in these two
physically distinct scenarios

Y

D. Dries et al., Phys. Rev. A82,
033603 (2010)

8 ~5 I 82 Ng R
o w



Linear Response

* the utility of this latter point of view is that the force can be
calculated using conventional linear response theory if the
perturbation is weak

* to second order in the disorder potential, we have

F(t) = - Z/ dt’ (Do|[F,1(t), Vaais,r (x(t), )] @)

dt ROy (e kst — )

where
X(kz, kot —t') = [dr [dr'e*=G==Dy(r,v';t — t)
X(r,x'st =) = £0(t — t')(@o|[fus (r, 1), s (x', )] | Do)
* the disorder-averaged speckle pattern gives

R(k,) = /ToV2 e 39k



Density Response Function

 within the Bogoliubov approximation, the density response function
is determined by the collective excitations of the system

X(r st —t') = 20t —t') 3, {5m(r)5nf(r’)6_"'wi(t‘t’> - C.c.}

 the Bogoliubov excitations for an arbitrary anisotropic trap must be
determined numerically

 a simpler approach is to make use of the cylindrical local density
approximation, a variant of the more commonly used bulk local
density approximation

X(kz*a ky; 7_) = f dZchl(kza T, V(Z))

* 1n this approximation, the condensate responds to a perturbation as
if 1t were locally part of an infinitely long cylindrical condensate
with density per unit length v(z)



Damping of the Centre of Mass Oscillation

| (2)
400} /\ f f\ Tvoru Y.P. Chen et al., Phys. Rev. A77, 033632 (2008)
— - V4 | e " (w0
E  of o x T IS vdd _..l_n_& e 0.08 :
ER 2’ %“# \Ceg s 0.18 * the damping of the mode
P uo v 0.24 . . . .
£ 400} v \} S&J/ - increases with increasing
) v .
O .‘ . : ©) strength of the disorder
© WL > » | * Ty )
3 S0 . I A potential
O 400} o, ‘4‘ “ (4 . 1e 0.37
", D I S 0.58 _
e T SRR A NP Z(t) = zpe " cosw,t
% 300 600 900
Evolution Time (ms)

* theoretical estimate of damping
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— LWz =
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Results*

W Mvgh/ d"“’/ 2'(’f)nzMi(zo/f)é(wj(k) — nw,)

300

Experimental Comparison

* 1nitial displacement

.
Ni 200 -

3 20 ~ 700 pm  vg/co ~ 2.9
~

3 100l * disorder strength

O

V2_/u?* ~ 0.0064

* damping
(b/w)th >~ 0.028  (b/w,)exp =~ 0.034

’Uo/co

 the damping exhibits a resonant peak for a velocity equal to the sound
speed at the centre of the trap

* the results for the bulk LDA differ quantitatively from the cylindrical
LDA

*7. Wu and E. Zaremba, Phys. Rev. Lett. 106, 165301 (2011)



Other Data*™
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* we do not find good agreement for this set of data — we have no
explanation for this

» for comparable experimental parameters, the Chen ef al. experiment
seems to give different results from the Dries ef al. experiment

 our theory can only account for the damping at early times
immediately after excitation since the cloud heats up significantly
during the course of the evolution

*D. Dries et al., Phys. Rev. A82, 033603 (2010)



Shaking Potentials*

* we consider a harmonically-trapped system in the presence of a
time-dependent external potential

H(t) = Hy +ZVext r; —To(t))

1=1

~ 2
o= 30 (B ) 4 ot -5

<]

* for small displacements r(7),
H(t)=H+ H'(t)
with N
H= I:IO +ZVext(f' )

=1
N
H'(t) = =Y VVere(81) - ro(t) = — / drV Vi (1) - 1o (H)A(r).
=1
* the perturbation is seen to couple to the particle density

*7. Wu and E. Zaremba, Ann. Phys. 342, 214 (2014)



Perturbative Analysis

* the perturbation can be rewritten as

)= rou(t) % . Z Vet (2] = 3 70, (1) [Alu + AM]

* the energy absorption rate 1s given quite generally by

i 0

. in linear response one finds

Z TO,u (I)O|A7,/J,‘(I)O Z rOu / dt/Xiu.ju(t — t/)roy(t/)

1,V
Where we have defined the retarded response functions

(1))

Xt = ') = 100t =) (@0l i (6, Ao (¢



Perturbative Analysis, cont’d

 for a monochromatic displacement of the form

1 —Ww * W
rou(t) = §(T0u€ ' + Toue ‘)

the time-averaged energy absorption rate is found to be

E m2w3 . w? wg
yr — 5 ZTOMTOV (1 — w—g) (1 — E) ImHW/(w)

v

where Imll,,, (w) 1s the imaginary part of the Fourier transform of the
current-current response function

M (£ — ) = <0t — ) (Do| [ (£), Jo (£)]|Bo)

S|

* the energy absorption rate is directly related to the optical
conductivity defined as
1

Re¥, (w) = ;ImHW(w)



Discussion

» for a displacement of the form ry(?) = 29z sin wt we have
2

* the current response includes the full effect of the external potential
and the harmonic trapping potential

 information about the possible excitations in the system is contained
in the frequency dependence of the current response function

* 1in the limit w, — 0 one recovers the result of Tokuno and
Giamarchi (PRL 106, 205301 (2011)). It should be noted however
that their derivation is not quite right.

* one sees that the energy absorption rate vanishes when w = w, .
This is a consequence of the extended harmonic potential theorem
(Wu and Zaremba, Ann. Phys. 342, 214 (2014)) and is not limited to

the perturbative analysis.

* the low-frequency spectral density is enhanced in the presence of the
trap



MIT Experiment on Superfluidity [PRL 85, 2228 (2000)]

* a gaussian potential 1s rastered
periodically through an
elongated cylindrical condensate
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* the induced density exhibits an * the dissipation rate is small

asymmetry when dissipation when the rastering frequency is
sets in close to the axial trapping

frequency



Measuring the Optical Conductivity*

» we consider an oscillating trapping potential of the form

1
%rap(ra t) — Z §mwz [xu - xOu(t>]2
m
1
= Virap(r) — Z F.(t)x, + Z §mwix(2m(t)
n n
with

FLu(t) = mwiaﬁoﬂ(t)

* the displacement of the trap leads to a time-dependent homogeneous

force acting on the system and results in a perturbation that couples
to the centre-of-mass coordinate

H'(t)=—) NF,(t)R,

* this coupling can be treated perturbatively if /' (7) 1s small

*7. Wu, E. Taylor and E. Zaremba, EPL 110, 26002 (2015)



Perturbation Analysis

* the centre of mass coordinate is the physical quantity of interest

 within linear response theory, one finds

S0 = [ e\t~ ONEE)
where the centre of mass response function is
Xt~ 1) = 260 — ) ([Ru(0), R ()
* Fourier transforming we have
Ry(w) = X, (w)NF, (w)

* the total current operator is
dR,(t)
dt
and the total induced current is given by

Ju(W) = By (W) Fy (W)

Ju(t) =N

where the global conductivity is
EW(“) = _iWNQSC,ij(w)



Observables

* we now choose the force to be in a specific direction v = 3; the
conductivity tensor 1s then given by
wN
Yaplw) = —
W=7 5(w)
* furthermore, if the trap displacement is harmonic at the frequency wo,

Ra(w)

we have
Ra (t) = Aa (wo) COS[Q}Ot — ¢a (wo)]
and
_ iwoV ipa(wo)
2045 (CUO) — F,B (WO) Ao (CU()>€

* thus, a measurement of the amplitude and phase of the centre of mass
displacement as a function of the oscillation frequency w, determines
the optical conductivity

* the optical conductivity is also related to the total current correlations

via i TN
~J
b = )]

with



Application: 1D Bose-Hubbard Model

v
vvvvvvvvv

* we consider N atoms in a 1D optical lattice with harmonic
confinement; in the tight-binding limit, the Hamiltonian is
N R iy R R 1 A
HBH = ZEZTLZ — tz <CL2~LGJZ'+1 + aLlai) + §Uan(nz — 1)
* 1in this model, the centre-of-mass coordinate is given by
~ a .
R = N Z n;
and the current operator is

. N, - ta < [ 1. L
J = E[R’ Hpyl = —= (a;aj_l — a;_laj)

* the optical conductivity is

S = L -5 - ¥ )



Calculation of the Current Response
* the imaginary part of the current response function 1s given by
Imy” (w) =7 |(Ro|J[|@a)|? [6(hw — Eag) — 6(hw + Eqo)]

and the real part is obtained from a KK transform

* the eigenstates and eigenenergies are obtained deep in the Mott-
insulator regime ¢/U < 1; here, the relevant excitations are single
particle-hole excitations

* we consider a lattice with M sites containing N particles; the ground

state 1s
[®o) = H @l |0)
iEN
and the set of excited states retained are the particle-hole states

lph) = alan|®o), heN,peM

 the B-H Hamiltonian is diagonalized using the above truncated
Hilbert space



Numerical Results
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the approximations yield an
optical conductivity which
accurately satisfies the exact
sum rule!

/oo W R en(w) = —%<T>

oo T

IP. F. Maldague, PRB 16, 2437 (1977)



Behaviour of the Centre of Mass
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Summary

* we have used the Extended Harmonic Potential Theorem to
analyze the disorder-induced damping of the centre-of-mass
motion of a Bose condensate

* we have analyzed the energy absorption rate for the case of a
shaking external potential in the presence of harmonic
confinement; the energy absorption rate is related to the optical
conductivity and vanishes when o = w,,,, as a consequence of
the extended harmonic potential theorem

* a complementary excitation scheme is to shake the confining
harmonic potential keeping other external potentials fixed; this
directly yields the optical conductivity

« one advantage of this latter scheme 1s that the optical
conductivity can be determined experimentally by simply
measuring the position and phase of the center of mass



