Superradiance of Degenerate Fermi Gases in a Cavity

Zhenhua Yu

Institute for Advanced study, Tsinghua University

Collaborators: Yu Chen, Hui Zhai

INT, April 10, 2015

BEC-BCS Crossover

Realizing Long Range Interactions

Esslinger's Lab, ...

Cavity QED

*Discrete spectrum -> one or a few relevant cavity modes *Possible strong coupling at **SINGLE** photon level

Electronic dipole coupling between single atoms and light field

$$h_{dip} = \boldsymbol{E} \cdot \boldsymbol{d}$$
 _____ $|e>$

With canonical quantization

$$h_{dip} = \sum_{k,\epsilon} g_{k,\epsilon} (i a_{k,\epsilon} e^{ik \cdot r} + h.c.)$$

$$g_{k,\epsilon} = \sqrt{\frac{\omega_k}{2\Omega}} \epsilon \cdot d \sim \sqrt{\omega_k} \frac{e^2}{a_0} \sqrt{\frac{a_0^3}{\Omega}} \sim 10 MHz$$

$$e a_0 \qquad 10^{14} Hz \qquad 1 \, \mu \, m^3$$

Strong Coupling Regime

For a resonant cavity mode whose frequency is equal to the electronic excitation energy of the atom,

Mediated Interactions

Atoms coupled to the same cavity field

Interatomic interactions via the cavity field

Superradiance of BEC

Red far-detuned pumping lasers

$$\Delta_a = \omega_p - \omega_a < 0$$

Cavity detuning $\Delta_c = \omega_p - \omega_c < 0$

K. Baumann & *el at*, Nature 464, 1301 (2010); PRL 107, 140402 (2011); R. Mottl & *el at*, Science 336, 1570 (2012)

Phase Diagram

Explained by linear stability analysis of the Gross-Pitaevskii eqaution, K. Baumann & *el at*, Nature 464, 1301 (2010)

Transition related to the density correlations of the atomic gases

Superradiance of Degenerate Fermi Gases

Consider spinless fermions, no direct interatomic interactions

$$H = \int d\mathbf{r} [\psi^{+}(\mathbf{r})h_{0}\psi(\mathbf{r})] - \Delta_{c}a^{+}a$$

$$h_{0} = h_{at} + \eta(\mathbf{r})(a^{+} + a) + U(\mathbf{r})a^{+}a,$$

$$h_{at} = \frac{\mathbf{P}^{2}}{2m} + \frac{\Omega_{p}^{2}}{\Delta_{a}}\cos^{2}(k_{0}y)$$

$$\eta(\mathbf{r}) = \eta_{0}\cos(k_{0}x)\cos(k_{0}y),$$

$$U(\mathbf{r}) = \frac{g^{2}}{\Delta_{a}}\cos^{2}(k_{0}x)$$
Cavity mode
Pumping laser mode
$$\mathbf{v} = \frac{\varphi^{2}}{2} \exp\left(\frac{1}{2}\right) \exp\left(\frac{1}{2}\right) \exp\left(\frac{1}{2}\right)$$

$$\mathbf{v} = \frac{g^{2}}{2} \exp\left(\frac{1}{2}\right) \exp\left(\frac{1}{2}\right) \exp\left(\frac{1}{2}\right) \exp\left(\frac{1}{2}\right)$$

$$\mathbf{v} = \frac{1}{2} \exp\left(\frac{1}{2}\right) \exp\left(\frac{1}{2}\right) \exp\left(\frac{1}{2}\right) \exp\left(\frac{1}{2}\right) \exp\left(\frac{1}{2}\right)$$

$$\mathbf{v} = \frac{1}{2} \exp\left(\frac{1}{2}\right) \exp\left(\frac{1}{2}\right) \exp\left(\frac{1}{2}\right) \exp\left(\frac{1}{2}\right) \exp\left(\frac{1}{2}\right) \exp\left(\frac{1}{2}\right)$$

$$\mathbf{v} = \frac{1}{2} \exp\left(\frac{1}{2}\right) \exp\left(\frac{1}{2}\right)$$

 η_0 =

 $\underbrace{g \ \Omega_p}_{a}$ Pumping laser Rabi frequency Δ_a Cavity mode coupling Pumping laser Rabi frequency Cavity mode coupling Pumping laser Pumping laser Cavity mode coupling Pumping laser Pumpin

Nature of Superradiance

$$H = \int d\mathbf{r} [\psi^+(\mathbf{r})h_0\psi(\mathbf{r})] - \Delta_c a^+ a$$

$$h_0 = h_{at} + \underline{\eta(\mathbf{r})}(a^+ + a) + U(\mathbf{r})a^+ a, \ \eta(\mathbf{r}) = \eta_0 \cos(k_0 x) \cos(k_0 y)$$

Equation of motion:
$$i \frac{\partial a}{\partial t} = -(\tilde{\Delta}_c + i \kappa) a + \eta_0 \Theta$$

Density order:
$$\Theta = \int d\mathbf{r} n(\mathbf{r}) \eta(\mathbf{r}) / \eta_0$$

Effective cavity detuning $\tilde{\Delta}_c = \Delta_c - \int d\mathbf{r} n(\mathbf{r}) U(\mathbf{r}) < 0$

Mean Field Theory

Order parameter: $\Theta = \int d\mathbf{r} \langle n(\mathbf{r}) \rangle \cos(k_0 x) \cos(k_0 y)$ Steady solution: $0 = i \frac{\partial \langle a \rangle}{\partial t} = -(\tilde{\Delta}_c + i \kappa) \langle a \rangle + \eta_0 \Theta$ $\langle a \rangle = \frac{\eta_0 \Theta}{\tilde{\Delta} + i\kappa} \qquad \kappa \gg k_0^2 / 2m \sim 10 \, KHz$ Free energy: $F = -\frac{1}{\beta} \ln Tr e^{-\beta H} = -\left| \frac{\tilde{\Delta}_c}{\tilde{\Delta}_c^2 + \kappa^2} + \eta_0^2 \chi \frac{4 \tilde{\Delta}_c^2}{(\tilde{\Delta}_c^2 + \kappa^2)^2} \right| (\eta_0 \Theta)^2$ $\chi = -\frac{1}{2\beta n_0^2} Tr[\langle T \hat{n}(\mathbf{r}, t) \hat{n}(\mathbf{r}', t') \rangle \eta(\mathbf{r}) \eta(\mathbf{r}')] > 0$ Density susceptibility to modulation $\eta(\mathbf{r})/\eta_0$

Transition Condition

$$\eta_0^{cr} = \frac{1}{2} \sqrt{\frac{\tilde{\Delta}_c^2 + \kappa^2}{(-\tilde{\Delta}_c)\chi}}$$

In terms of the single particle states ϕ_k

Single particle distribution function $(c_{1}) = n(c_{2})$

$$\chi = \frac{1}{2\eta_0^2} \sum_{k,k'} \left| \int d\mathbf{r} \phi_k^*(\mathbf{r}) \phi_{k'}(\mathbf{r}) \eta(\mathbf{r}) \right|^2 \frac{n(\epsilon_k) - n(\epsilon_{k'})}{\epsilon_k - \epsilon_{k'}}$$

Also applies to BEC

 $f = \frac{k_0}{8k_F} \ln \left| \frac{k_0 + 2k_F}{k_0 - 2k_F} \right|$

Superradiance in free space

Bosons: Ketterle's group Fermions: Zhang Jing's group Science 285, 571 (1999) PRL 106, 210401 (2011)

Phase Diagram for 3d

FIG. 4: (a) and (c): The phase diagram for two-dimension case, in terms of effective detuning $\tilde{\Delta}_{\rm c}/E_{\rm r}$ and pumping lattice depth $V_0/E_{\rm r}$. Different lines in (a) represent phase boundary with different fillings. (b) Critical $V_0/E_{\rm r}$ as a function of filling ν for $\tilde{\Delta}/E_{\rm r}$ fixed at 2×10^3 . $\kappa/E_{\rm r} = 250$ for (a) and (b); $\kappa/E_{\rm r} = 4085$ for (c) and $U_0 N_{\rm at}/E_{\rm r} = 1 \times 10^3$ for (a-c).

Interplay with Interatomic Interactions

Consider a two component Fermi gas across a Feshbach resonance

$H_i = \overline{g} \int d\mathbf{r} \psi_{\uparrow}^+(\mathbf{r}) \psi_{\downarrow}^+(\mathbf{r}) \psi_{\downarrow}(\mathbf{r}) \psi_{\downarrow}(\mathbf{r})$

Superradiance through the BEC-BCS Crossover

$$\chi = \chi_F + \chi_B$$

Susceptibility through the BEC-BCS Crossover

Phase Diagram

Summary

- Landau mean field theory for superradiant transition of quantum gases in a cavity
- Transition point depends on the density susceptibility
- Fermi surface nesting and Pauling blocking for fermions vs bosons
- Interatomic interaction effects

Thank you