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Overview
Background and questions
Fermions in synthetic gauge potentials and dimensions

I Interacting fermions in synthetic Rashba (with JPV)
I Feshbach resonances
I Finite momentum pairing
I Kondo effect (with AA)
I Route to novel Hamiltonians (with SG/JPV)
I Few body physics in synthetic dimensions (with SG/UY)

Based on cond-mat:1101.0411, 1104.5633, 1108.4872, 1109.5279,

1201.5332, 1211.1831, 1212.2858, Unpublished (coming soon)

(Related work: Gong et al., 1105.1796, Yu and Zhai 1105.2250, Hu et al., 1105.2408, Subasi and Iskin 1106.0473, Han and

Sá de Melo 1106.3613..and many others; see also, Chaplik and Magrill (2006) )

What is all this good for...

Superfluids with high Tc Topological phases/Quantum computing

...quantum simulation of many body physics. 3 / 58



Fermions in SU(2) Gauge Potentials

Jayantha P. Vyasanakere
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Interacting Spin-1
2 Fermions in 3D ( “Free Vacuum”)

2-BODY

Need critical attraction υ for bound state

v = −1 v = 0

v∗Fv∗R

(RG picture: Sachdev (1999), Sauli and Kopeitz (2006), Nikolić

and Sachdev (2007), Nishida and Son (2007) )
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υ∗F = 0: “free vacuum” fixed point, υ∗R = −1: resonant fixed point
Binding energy Eb = 1/a2

s for scattering length as > 0

FINITE FERMION DENSITY ρ ∼ k3
F: BCS-BEC CROSSOVER

(Eagles (1969), Leggett (1980), Norziéres and Schmitt-Rink (1985), Randeria et al., (1990s), Zwerger (ed.) (2011))
Ground state
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BCS: kF|as| � 1, µ ≈ EF, large
pairs, Tc ∼ exp(−1/kF|as|)
BEC: kFas � 1, µ ≈ −1/2a2

s ,
tight bosonic fermion-pairs,
boson-boson scattering
length ≈ 2as, Tc ≈ 0.218TF
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Spin-1
2 Fermions in Non-Abelian Gauge Potentials

Spin 1
2 particles in a non-Abelian SU(2) gauge potentials

HGF =

∫
d3r Ψ†(r)

[
1
2

(pi1− Aµ
i τ

µ)(pi1− Aν
i τ

ν) + Ωµτµ
]

Ψ(r)

Ψ(r) = {ψσ(r)}, σ =↑, ↓, pi–momentum operator τµ – Pauli spin operators

Uniform gauge fields– Aν
i , spin potentials Ωµ (Zeeman fields)

Aν
i = λiδ

ν
i (experimentally relevant)

Hamiltonian for Aν
i = λiδ

ν
i (Ωµ = 0)

HR =

∫
d3r Ψ†(r)

[
p2

2
1− pλ · τ

]
Ψ(r),

pλ · τ = λxpxτ
x + λypyτ

y + λzpzτ
z

...generalized Rashba spin-orbit coupling

Λx

Λy

Λz

Rashba SOC described by λ = λλ̂,
λ SOC strength ≡ gauge coupling

6 / 58



“High-Symmetry” Rashba Gauge Fields
(Vyasanakere and VBS, arXiv:1101.0411)

Prolate

λx = λy < λz

Λx

Λy

Λz

EP

Extreme Prolate
(Equal Rashba-Dresselhaus)

λx = λy = 0, λz = λ

(XJLiu et al. 0808.4137, Shanxi (2012), MIT

(2012), NIST(2013))

Spherical

λx = λy = λz

Λx

Λy

Λz

S

λx = λy = λz = λ√
3

(Proposal: Anderson et al., 1112.6022)

Oblate
(Rashba)

λx = λy > λz

Λx

Λy

Λz

EO

Extreme Oblate
(Rashba)

λx = λy = λ√
2
, λz = 0

(Proposal: Campbell et al., 1102.3945; An-

derson et al., 1306.2606, Xu et al., 1306.2829)
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Spin-1
2 Fermions in Rashba Gauge Fields

One particle states

|kα〉 = |k〉 ⊗ |αk̂λ〉, εkα =
k2

2
− α|kλ|

kλ = λxkxex + λykyey + λzkzez,

α = ±1 helicity

Interaction between fermions...attraction in the singlet channel

Hυ =
υ

2

∫
d3rψ†↑(r)ψ†↓(r)ψ↓(r)ψ↑(r)

with scattering length as
Natural formulation in terms of singlet amplitudes,
Aαβ(k, q) = 〈q, k, s|q, k, αβ〉, |q, k, αβ〉 = C†q

2 +k,α
C†q

2−k,β
|0〉

Hυ =
υ

2V

∑
q

∑
k,k′

Aαβ(q, k)A∗α′β′(q, k′)︸ ︷︷ ︸
Uαβ,β′α′ (q,k,k′)

C†
(

q
2 +k)α

C†
(

q
2−k)β

C(
q
2−k′)β′C(

q
2 +k′)α′
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The Question

Given: Fermions at density ρ ∼ k3
F with scattering length as

Given: Rashba spin-orbit coupling
λ = λλ̂

Λx

Λy

Λz

Question: What happens to
BCS-BEC in a Rashba gauge
field λλ̂?
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Fermions in Rashba Gauge Fields

Organization

Ground State
I Two-body
I Many body

Excitations
I Two-body
I Many body

Finite temperatures
Phase diagram
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2-Body Ground State
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2-Body Ground State – High Symmetry Gauge Fields
(Vyasanakere and VBS, arXiv:1101.0411)

For EP (λx = λ, λy = λz = 0) binding energy Eb = Θ(as)

a2
s

– same
energetics as in free vacuum

Extreme Oblate: λx = λy = λ√
2
, λz = 0

Critical scattering length asc vanishes:
bound state for any scattering length!
Binding energy

as > 0 1/as = 0 as < 0

1
(λas)2 +

log 2√
2λas

0.22 λ2 4λ2

e2 e
−2
√

2
λ|as|

Λx

Λy

Λz

EO

-10-3

-10-2

-10-1

-100

-101

10-3

10-2

10-1

100

101

-2 -1  0  1  2

-E
b 
/ 
λ
2

-1 / λaS

 
EO

Wavefunction (singlet + triplet)
|Ψ〉 ∝ ψs(r)| ↑↓ − ↓↑〉+ψa(r)| ↑↑〉+ ψ∗a (r)| ↓↓〉
...uniaxial spin nematic (ABM of 3He!)

Spherical: λx = λy = λz = λ√
3

Bound state for any
scattering length
Binding energy

Eb = 1
4

(
1
as

+
√

1
a2

s
+ 4λ2

3

)2

...“algebraic” in the
BCS side: Eb =

(
λas
3

)2

Λx

Λy

Λz

S

-10-3

-10-2

-10-1

-100

-101

10-3

10-2

10-1

100

101

-2 -1  0  1  2

-E
b 
/ 
λ
2

-1 / λaS

 
S
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Generic Rashba SOC
Critical scattering length

λasc = F(λ̂)

Λx

Λy

Λz

Critical scattering length asc < 0; for a generic SOC bound state
appears at a weaker attraction (negative scattering length, do not
need a resonance scattering length)
SOC – attractive interaction amplifier!
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State at Resonance Scattering Length

Λx

Λy

Λz

EP

S

EO

Characteristic triplet content ηt

Size of bound state wavefunction is λ−1

For S-SOC,

|Ψb〉 ∝
e−λr/

√
3

r

(
sin

λr√
3

+ cos
λr√

3

)
| ↑↓ − ↓↑〉

+i
((

λ√
3

+
1
r

)
sin

λr√
3
− λ√

3
cos

λr√
3

)
e−λr/

√
3

λr/
√

3
| ↑↓ + ↓↑〉̂r
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Physics of Enhanced Binding: RG Picture

Relevance-irrelevance of Rashba term

Spin orbit interaction is a relevant operator at υ∗R and υ∗F
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The “Physical” Picture
Singlet density of states of high symmetry SOCs

Λx

Λy

Λz

EP

S

EO  0

 0.1

 0.2

 0.3

 0.4

 0  1  2  3  4

g
(ε

) 
(D

O
S
)

ε (Energy)

 
EP

EO

S

g(ε) ∼


√
ε for EP

λ(constant) for EO
1√
ε

for S

g(ε)→ √ε, ε→∞
SOC induces large infrared degeneracies! DOS determined by the
co-dimension of the one-particle ground state manifold
Simple model (ε0 ∼ λ2)

g(ε) =


√

2ε0
π2

(
ε
ε0

)γ
Θ(ε) if ε < ε0,

√
2ε
π2 if ε ≥ ε0

∣∣∣∣∣∣ =⇒
√

2ε0asc =
πγ

2γ − 1
Θ(γ)

Highly symmetric SOCs strongly modify the infrared density of
states...promotes bound state formation
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Many-Body Ground State

17 / 58



Finite Density of Non-Interacting Fermions with SOC

Density ρ ∼ k3
F

Chemical potential changes with λ...e.g. EP(Rashba)-SOC

µNI(λ)

EF
≈ 1−

(
λ

kF

)2

(λ� kF) and
µNI(λ)

EF
≈ kF

λ
(λ� kF)

Change in the topology of the non-interacting Fermi surface with
increasing gauge coupling λ

λ = 0
λ < λT λ = λT λ > λT

The topology of the fermi surface changes at λ = λT ≈ kF

For λ > λT the occupied states are only of + helicity
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Interacting Fermions in Rashba Gauge Fields
For λ = 0, small negative ve as (kF|as| � 1): BCS superfluid
What happens if λ is increased at fixed as?

For λ� λT, the chemical
potential is close to that of
the non-interacting system
At λ ≈ λT, the chemical
potential “switches over”
to that set by the two body
bound state!
For λ & λT the pair
wavefunction is same as
that of the two body
wavefunction

S-SOC, kFas = −1/4
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MFT

Two Body

NI
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 0  1  2  3

η t

λ/kF

MFT
Two Body

NI

Rashba gauge field (spin-orbit coupling) induces BCS-BEC
crossover for a fixed attraction (as)! (Vyasanakere et al., arXiv:1104.5633)
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What happens if λ is increased at fixed as?

For λ� λT, the chemical
potential is close to that of
the non-interacting system
At λ ≈ λT, the chemical
potential “switches over”
to that set by the two body
bound state!
For λ & λT the pair
wavefunction is same as
that of the two body
wavefunction

S-SOC, kFas = −1/4
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BEC Induced by Rashba Gauge Fields

Crossover to BEC occurs in the regime λ & λT

What is the nature of the BEC for λ� λT?
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-1
infinity
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The BEC for λ� λT is a
condensate of bosons whose
property is solely determined
by the gauge field (and not by
scattering length as)
These bosons are named
rashbons
Rashbon: the bound bosonic
state of two fermions at
resonance scattering length in
the Rashba gauge field

The gauge field induces a crossover from a BCS like state (even for
small negative as) to a Rashbon-BEC (RBEC) state
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Whence Rashbons?
For large λ, the dimensionless gap equation (all energies
measured in units of λ2)

1
4πλas

=
1

2V

∑
kα

(
1

E− 2εkα
+

1
k2

)
As λ→∞, λas →∞, equivalent to fixing λ and as →∞
The binding energy/spin structure becomes independent of as and
depends only on the Rashba gauge field!
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Ground State: Summary

Next Question: Transition temperature Tc?
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Excitations: 2-Body
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2-Body Excited States
Bound state dispersion (q : centre of mass momentum)
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For q� λ, E(q) ≈ −ER +
∑

i
q2

i
2mi

There is no bound state at a finite center-of-mass momentum q ∼ λ!
For large q, a positive scattering length is necessary to obtain a
bound sate! Rashba gauge field inhibits formation of bound state
at centre of mass momenta q & λ!
Physics: Lack of Galilean invariance- in the Galilean boosted (by
q) frame, the kinetic energy operator (for S-SOC)

Hboosted
GF =

(P− q)2

2
− λP · τ + λq · τ︸ ︷︷ ︸

Zeeman field!

...this additional Zeeman field inhibits bound state formation at
finite COM!

24 / 58



2-Body Excited States
Bound state dispersion (q : centre of mass momentum)

-0.7

-0.5

-0.3

 0  0.3  0.6  0.9  1.2  1.5
E

(q
) 

/ 
λ2

q / λ

Eth

λ as / √3
-1/2

-1
-2
-4

rashbon
+4(a)

-15

-10

-5

 0

 5

 10

 15

 0  0.5  1  1.5  2  2.5  3  3.5

λ 
a

sc

q / λ

(b)

For q� λ, E(q) ≈ −ER +
∑

i
q2

i
2mi

There is no bound state at a finite center-of-mass momentum q ∼ λ!
For large q, a positive scattering length is necessary to obtain a
bound sate! Rashba gauge field inhibits formation of bound state
at centre of mass momenta q & λ!
Physics: Lack of Galilean invariance- in the Galilean boosted (by
q) frame, the kinetic energy operator (for S-SOC)

Hboosted
GF =

(P− q)2

2
− λP · τ + λq · τ︸ ︷︷ ︸

Zeeman field!

...this additional Zeeman field inhibits bound state formation at
finite COM! 24 / 58



Properties of Rashbons
Rashbons are anisotropic particles with a nematic spin structure,
anisotropic mass, e. g., for EO gauge field

For λ = (λl, λl, λr)
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Tc of RBEC is determined by properties of rashbons
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Excitations: Many Body
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Bogoliubov Quasipartilces

k

EkΑ

λ = 0

k

EkΑ

0 < λ < λB

k

EkΑ

λ = λB

k

EkΑ

λ > λB

Bogoliubov qasiparticle dispersion also mimick the topology
transition of the bare Fermi surface
For λ & λB, low energy quasiparticle excitations are only of one
helicity
λB depends on scattering length; λB ≈ kF for small negative
scattering length
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Collective Excitations
Gaussian fluctuation theory (c.f. Engelbrecht et al. (1996))

Two modes: Gapless phase mode, gapped amplitude mode
(results for any λ)
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Non-monotonic dependence of Ks on λ
Lack of Galilean invariance (Zhou and Zhang, arXiv:1110.3565)

New result: Emergent Galilean invarance

Ks(λ→∞) =
ρ

2mR (
ρ

2
1

mR
i
δij)

...consistent with Leggett’s theorem

...rashbons must be interacting! 28 / 58



Rashbon-Rashbon Interaction
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For large λ, R-BEC is described by a Bogoliubov theory of
anisotropic bosons interacting via a contact potential

Effective rashbon-rashbon scattering length N(λ̂)
λ ...for S-SOC

aR =
3
√

3(4 +
√

2)

7

1

λ

independent of the scattering length as of fermions!
Remarkable state...the interaction between emergent bosons is
determined by a parameter λ that enters the kinetic energy of the
constituent fermions!
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Physics of Rashbon-Rashbon Interactions

Recall: Size of rashbons (extent of bound state wavefunction at
large λ) is λ−1

Crude argument: Pauli exclusion between like fermions keeps the
rashbons apart over a distance of λ−1
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Transition Temperature and Phase Diagram
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Phase Diagram of Interacting Rashba Fermions
Beyond Gaussian fluctuation effects are crucial! (coming soon on arXiv)
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The Rashba gauge field enhances the exponentially small transition
temperature by orders of magnitude to the order of the Fermi
temperature even for weak attraction!
For λ� kF, 1/as, physics is independent of as (need only
as 6= 0)...transition temperature determined by rashbon mass mR
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Pseudogap Physics

Finite temperature properties determined by rashbon dispersion
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In the regime kF ≈ λ ≈ T, the normal state will be a “dynamical
mixture” of rashbons and helical fermions...strong pseudogap
effects over a large regime (Review of pseudogap physics: Randeria, INT Symposium (2011) )

Need to go beyond Gaussian fluctuations in the pseudogap
regime
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Kondo Effect in a Synthetic Gauge Field
(Coming soon on the arXiv)

Adhip Agarwala
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Kondo Effect: Background

Anderson impurity model - impurity at the origin

H =

∫
ddr c†σ(r)

(
−∇2

2
− EF

)
cσ(r) + εdd†σdσ + Ud†↑d

†
↓d↓d↑

+ V
(

d†σcσ(0)σ + h. c.
)

For appropriate conditions, impurity has no-charge fluctuations
and becomes a “local moment” with an AF exachange with the
fermi gas
Ground state: Kondo singlet with an energy scale TK ∼ EFe−1/JEF ,
J ∼ V2/U
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Kondo Effect with Rashbha Spin Orbit Coupling

Anderson impurity model - impurity at the origin

H =

∫
ddr c†σ(r)

(
Hσσ′(−i∇,λ)− EFδσ,σ′

)
cσ′(r) + εdd†σdσ + Ud†↑d

†
↓d↓d↑

+ V
(

d†σcσ(0)σ + h. c.
)
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For λ & kF, a new kind of Kondo state with 2/3 of the d-moment!
Enhancement of Kondo scale by spin-orbit coupling!
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Fermions in Synthetic Dimensions
Baryon “Squishing”

(1503.02301)

Sudeep K. Ghosh Umesh Yadav
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SU(M) Symmetric Interactions

Atoms with M hyperfine states and SU(M) symmetric interactions
[K,M = 8], [Yb,M = 6], [Dy,M = 22] etc. (eg. Takhashi group, Inguscio group, Bloch

group)

SU(M) (fermions) atoms in a 1D optical lattice with attraction U

H = −t
∑
j,γ

(
C†(j+1)γCjγ + h.c.

)
− U

2

∑
j,γ,γ′

C†jγC†jγ′Cjγ′Cjγ

M-fermion ground state is a SU(M)-singlet – baryon (e.g. Hofsetter group

(2013))

t

tt
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Synthetic Dimension
Idea of synthetic dimensions (Celi et al., 1307.8349)...use the hyperfine label
γ as another “dimension”

tt

hν, k`hν, k`

tt

hν, k`

Ωe−ik`xi

a

t

hν, k`

Ωe−ik`xi

a

Φ = k`a = 2πpq

t

hν, k`

Ωe−ik`xi

a

Φ = k`a = 2πpq

U

Hofstadter model with a 2π p
q flux

H = −t
∑
j,γ

(
C†jγCjγ + h.c.

)
+
∑

jγ

(
Ωγeik`xjC†j(γ+1)Cjγ + h.c.

)
− U

2

∑
j,γ,γ′

C†jγC†jγ′Cjγ′Cjγ

Interactions are nonlocal along synthetic dimension, and local
along real dimension
Experimentally realized! (Fallani et al., Spielman et al. (this meeting))
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Idea of synthetic dimensions (Celi et al., 1307.8349)...use the hyperfine label
γ as another “dimension”

tt
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tt

hν, k`

Ωe−ik`xi

a

t

hν, k`

Ωe−ik`xi

a

Φ = k`a = 2πpq

t

hν, k`

Ωe−ik`xi

a

Φ = k`a = 2πpq

U

Hofstadter model with a 2π p
q flux

H = −t
∑
j,γ

(
C†jγCjγ + h.c.

)
+
∑

jγ

(
Ωγeik`xjC†j(γ+1)Cjγ + h.c.

)
− U

2

∑
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C†jγC†jγ′Cjγ′Cjγ
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Our Perspective

By a gauge transformation, problem can be recast as

H = −t
∑

j

B†j+1U
†
j+1UjBj +

∑
j

B†j ΩBj −HSU(M)
U

B†j =
{

b†jζ
}
, ζ = 1, . . . ,M, Uj–unitary matrix, Ω-diagonal matrix

Fermions in an SU(M) gauge field (≡ U†j+1Uj) +Zeeman field Ω

with SU(M) symmetric interactions on a 1D chain
SU(M) gauge field ≡ “flavour orbit coupling”

t

hν, k`

Ωe−ik`xi

a

Φ = k`a = 2πpq

U

ζ = 3

ζ = 1

ζ = 2

ζ = 4
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Our Perspective

What we learn
Gauge field (FOC) mitigates the effect of the (usually)
baryon-breaking Zeeman field Ω!
Possible to produce non-local interactions in real space
Outcome

I Few Body: Suqished baryon!
I Many Body: Superfluid by application of a magnetic field!
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Few Body Physics

For Ω = 0, ground state of M fermions is a “baryon” (Hofsetter group(2013))

Exact diagonalization studies (with finite size scaling)
Characterize states by

I 〈Ixx〉 – Mean square size in the x direction
I 〈ζ〉 – Mean position along synthetic dimension

Question: Do we see baryon squishing (Ω 6= 0, p/q 6= 0)?
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Bound States with Ω 6= 0, p/q 6= 0
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M = 2

New type of “non-local” (in real space) baryon is
stabilized!...“squished” baryon
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M = 4

Numerical demonstration of “baryon squishing”
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Induced Nonlocal Interactions

t = 0

Ω < Ωc Ω > Ωcp

q
=

1

2

x

ζ = 2

ζ = 1

t > 0

Ωc = U
2

Energy gain when two particles are on neighbouring ζ = 1 state –
t2U
Ω2

Interactions depend on the details of Ωγ – for a given M and Ωγ

there are special p/q that gives best nonlocal interactions
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More on Squished Baryons

Can obtain analytic results in appropriate limits

0

0.1

0.2

0 0.5 1 1.5 2

E
b 

/ 
U

t / U

Pair braking effects of Zeeman fields mitigated!

0

0.25

0.5

0 0.5 1 1.5

E
b 

/ 
U

Ω / U

1

1.25

1.5

0 0.5 1 1.5
0

2

4

<
ζ> I x
x

Ω / U

For a give M there are special fluxes that give rise to strong
squishing
Rich many body phase diagram being constructed
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Realizing Novel Hamiltonians
“Gauge Fields in Momentum Space”
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Gauge Fields from Gauge Fields!

Hamiltonian : H =
p2

2
− pλ · τ −

ω0
2

2
∂2

∂p2 , r = i ∂∂p

For λ2 � ω0, spin degrees of freedom are “fast” – helicity is a
good quantum number to a very good approximation...motivates
the ansatz

|ψ〉 =

∫
dpψ(p) |p〉 ⊗ |χ+(p)〉

Wave function ψ(p) satisfiesHeffψ(p) = εψ(p)

Heff =
ω0

2

2

(
i
∂

∂p
− A

)2

+ ε+(p) + VBO(p), A = −i〈χ+(p)|∂χ+(p)

∂p
〉

VBO(p) =
ω0

2

2

(
〈∂χ+(p)

∂pi
|∂χ+(p)

∂pi
〉 − 〈∂χ+(p)

∂pi
|χ+(p)〉〈χ+(p)|∂χ+(p)

∂pi
〉
)

Gauge field begets gauge field!
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Realization of New Hamiltonians with Non-Abeilian
Gauge Fields and a Potential

Spherical gauge field with harmonic trapping potential

H =
p2

2
− λ√

3
p · τ +

ω2
0

2
r2, r = i

∂

∂p

Adiabatic hamiltonian including Pancharatnam-Berry phase
effects

Heff = −
ω2

0

2

(
1

p2

∂

∂p
p2 ∂

∂p

)
+
ω2

0

2p2

[
−

1

sin θ

∂

∂θ
sin θ

∂

∂θ
+

(
Q cot θ +

i

sin θ

∂

∂φ

)2
]

+
ω2

0

4p2
+

(
p2

2
−

λ
√

3
p

)

Realization of a monopole in momentum space
Opens possibility to generate interesting Hamiltonians by
designing additional potential V(r) (also for bosons!)
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Overall RG Picture
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Non-Gaussian Effects
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Extreme Prolate: λx = λy = 0, λz = λ
(Vyasanakere and VBS, arXiv:1101.0411)

Critical scattering length asc: 1
asc

=∞ – just as in free vacuum

Binding energy Eb = 1
a2

s
, as in free vacuum
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EP

Bound state wavefunction

|Ψb〉 ∝ ψs(r)| ↑↓ − ↓↑〉+ ψa(r)| ↑↓ + ↓↑〉

(ψs–symmetric, ψa–antisymmetric) with biaxial spin nematic
structure (similar to BW state of 3He)
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Extreme Oblate: λx = λy = λ√
2
, λz = 0

(Vyasanakere and VBS, arXiv:1101.0411)

Critical scattering length asc vanishes! asc = 0−...bound state for
any scattering length!
Binding energy

as > 0 1/as = 0 as < 0

1
(λas)2 +

log 2√
2λas

0.22 λ2 4λ2

e2 e
−2
√

2
λ|as|

Λx

Λy

Λz

EO

-10-3

-10-2

-10-1

-100

-101

10-3

10-2

10-1

100

101

-2 -1  0  1  2
-E

b 
/ 
λ
2

-1 / λaS

 
EO

Bound state wavefunction

|Ψb〉 ∝ ψs(r)| ↑↓ − ↓↑〉+ ψa(r)| ↑↑〉+ ψ∗a (r)| ↓↓〉
...uniaxial spin nematic (ABM state of 3He!)
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Spherical SOC: λx = λy = λz = λ√
3

(Vyasanakere and VBS, arXiv:1101.0411)

Bound state for any scattering length: asc = 0−

Binding energy Eb = 1
4
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...“algebraic” in the BCS side: Eb =
(
λas
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Temperature Regimes of the Non-interacting System
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