Probing non-equilibrium many body systems by correlations

Jörg Schmiedmayer

Vienna Center for Quantum Science and Technology, Atominstitut, TU-Wien

J. Schmiedmayer: High order correlation functions probing many body physics INT 2015 1 **www.AtomChip.org**

Quantum fields <-> Correlation functions

On the Green's functions of quantized fields J. Schwinger PNAS (1951)

- \Diamond Solving a quantum many-body problem is equivalent to knowing **all** its correlation functions.
- \Diamond In practice, an observer can only measure a **finite** number of correlations describing the propagation and scattering of excitations.
- \Diamond To solve a problem one need to **find degrees of freedom** where only few (low order) correlation functions are relevant.
- \Diamond If one finds the degrees of freedom (basis) where the **correlation functions factorize**, this is equivalent to **diagonalization of the many body Hamiltonian.**

J. Schmiedmayer: High order correlation functions probing many body physics **INT 2015** 3

J. Schmiedmayer: High order correlation functions probing many body physics INT 2015 4

Correlation functions

– **fields <-> phase <-> excitations**

Characterizing the

pre-thermalized state

– **Generalized Gibbs ensemble**

High order correlation functions

- **Quantifying factorization**
- **Sine-Gordon model**
- **Quench to a free system**

Outlook

- **entanglement and spin squeezing**
- **quantum state tomography**
- **relaxation in SG model**

J. Schmiedmayer: High order correlation functions probing many body physics **INT 2015** 5

Correlation functions

fields <-> phase <-> excitations

experiments in a trap -> non translation invariant correlation functions $C(z_1, z_2) = \frac{\langle \Psi_1(z_1) \Psi_2^{\dagger}(z_1) \Psi_1^{\dagger}(z_2) \Psi_2(z_2) \rangle}{\langle |\Psi_1(z_1)|^2 \rangle \langle |\Psi_2(z_2)|^2 \rangle}$ $\Psi(z) = e^{i\theta(z)} \sqrt{\rho_0(z) + \delta \hat{n}(z)}$ with $\varphi(z) = \theta_1(z) - \theta_2(z)$ neglecting $\delta \hat{n}(z)$ $C(z_1, z_2) \approx \langle \exp[i\varphi(z_1) - i\varphi(z_2)] \rangle$ 4th order:
 $C(z_1, z_2, z_3, z_4) = \frac{\langle \Psi_1(z_1) \Psi_2^{\dagger}(z_1) \Psi_1^{\dagger}(z_2) \Psi_2(z_2) \Psi_1(z_3) \Psi_2^{\dagger}(z_3) \Psi_1^{\dagger}(z_4) \Psi_2(z_4) \rangle}{\langle |\Psi_1(z_1)|^2 \rangle \langle |\Psi_1(z_2)|^2 \rangle \langle |\Psi_2(z_3)|^2 \rangle \langle |\Psi_2(z_4)|^2 \rangle}$ $C(z_1, z_2, z_3, z_4) \approx \langle \exp[i\varphi(z_1) - i\varphi(z_2) + i\varphi(z_3) - i\varphi(z_4)] \rangle$

J. Schmiedmayer: High order correlation functions probing many body physics **INT 2015** 10 INT 2015 7

Correlation functions excitations <-> phase

in experiment we measure the phase $\varphi(z)$ directly -> look at phase correlators

$$
C^{(2)}(z_1, z_2) = \langle [\varphi(z_1) - \varphi(z_2)]^2 \rangle = \langle [\Delta \varphi(z_1, z_2)]^2 \rangle
$$

with
$$
\Delta \varphi(z_1, z_2) = \varphi(z_1) - \varphi(z_2)
$$
 Note: $\Delta \varphi$ is NOT restricted to 2π

using

$$
\varphi(z) = \frac{1}{\sqrt{L}} \sum_{k \neq 0} \left[(-i) \sqrt{\frac{\pi}{|k|K}} (b_k^{\dagger} - b_{-k}) e^{ikz} \right]
$$

$$
\langle [\varphi(z_1) - \varphi(z_2)]^2 \rangle = \sum_{k_1, k_2} \frac{\pi}{K \sqrt{|k_1 k_2|}} b_{k_1}^{\dagger} b_{-k_2} e^{ik_1 z_1 + ik_2 z_2} + \dots
$$

-> phase correlators are related to the **quasi particles**

4th order

$$
C^{(4)}(z_1, z_2, z_3, z_4) = \langle [\varphi(z_1) - \varphi(z_2)]^2 [\varphi(z_3) - \varphi(z_4)]^2 \rangle
$$

$$
\propto b_{k_1}^{\dagger} b_{k_2}^{\dagger} b_{-k_3} b_{-k_4} + \dots
$$

-> quasi particle scattering

J. Schmiedmayer: High order correlation functions probing many body physics INT 2015 8

Gring et al., Science **337**, 1318 (2012)

J. Schmiedmayer: High order correlation functions probing many body physics **INT 2015** 11

100

Evolution Time (ms)

 $\mathbf 0$

50

150

J. Schmiedmayer: High order correlation functions probing many body physics **INT 2015** 13

Evolution Time (ms)

Generalized Gibbs Ensemble

pre-thermalized state

Langen et al. Sciene 2015 arXiv:1411.7185

The generalized Gibbs ensemble

1D Bose gas is a (nearly) integrable system

 \rightarrow many conserved quantities inhibit thermalization

$$
\hat{H}_{\text{eff}} = \sum_{\alpha=1}^{L} \epsilon_{\alpha} \hat{\mathcal{I}}_{\alpha},
$$

Conjecture:

Quantum system to **relax to maximum entropy state** decribed by a **Generalized Gibbs Ensemble**:

function

 $\lambda_m \rightarrow \beta_m = 1/k_B T_m$

partition Lagrange multiplier conserved quantities: mode occupations

striking feature: a temperature for every mode!

E. T. Jaynes, Phys. Rev. **106**, 620 (1957); Phys. Rev. **108**, 171 (1957) M. A. Cazalilla, Phys. Rev. Lett. **97**, 156403 (2006) M. Rigol, et al, Phys. Rev. Lett. **98**, 050405 (2007) C. Cramer et al. Phys. Rev. Lett. **100**, 030602 (2008)

Non-Translation Invariant Correlation Functions

T. Langen et al. Science 2015, arXiv:1411.7185

J. Schmiedmayer: High order correlation functions probing many body physics **INT 2015** 17

2d phase correlation function for 'Light Cone'

instantaneous Quench

T. Langen et al. Science 2015, arXiv:1411.7185

Choose different starting points to evaluate the phase correlation function $C(z_1, z_2)$

 $C(z_1, z_2) = \left\langle e^{i(\varphi(z_1) - \varphi(z_2))} \right\rangle$

Observation: the decay of phase correlation function is independent on starting point *z*¹ Data is described by a model with a single temperatures for ponon modes in the anti

symmetric state.

J. Schmiedmayer: High order correlation functions probing many bod**y Light cone evolution: T. Langen et al NatPhys 9**, 460 (2013)

J. Schmiedmayer: High order correlation functions probing many body physics **INT 2015 19** INT 2015 19

The region with the final form of the phase correlation function expands with sound velocity finite resolution of our imaging system (Methods). We orrelation function expands with **sound velocity** of sound for an homogeneous (trapped) system. Shaded ar-

J. Schmiedmayer: High order correlation functions probing many body physics INT 2015 20 stant values of *C*(¯*z, t*) at large ¯*z* can be used to determine Linear disperison relation of the phonons relates t in steps of 1 ms from top to bottom. (b) For each *t*, the con-Error bars denote one standard deviation. CFT: Calabrese, P. & Cardy, J. Phys. Rev. Lett. **96**, 011368 (2006) J. Schmiedmayer: High order correlation functions probing many body physics experimental parameters as the input for the theory. Lattice model: source the phenomenon which we observe the phenomenon which we observe \mathcal{L}_1 Linear disperison relation of the phonons relates to the questions asked in: Cramer, M., et al. Phys. Rev. Lett. **100**, 030602 (2008).
v hody physics

Generalized Gibbs Ensemble

Slow-fast Quench
Slow-fast Quench
 $\frac{1}{2}$ T. Langen et al. Science 2015, arXiv:1411.7185

Observation: For specific splitting procedures the decay of phase correlation function depends on starting point z_1 and shows , revivals' of coherence

 $C(z_1, z_2) = \left\langle e^{i(\varphi(z_1) - \varphi(z_2))} \right\rangle$

Data is better described by a model with different temperatures for even phonon modes and *odd* phonon modes in the anti symmetric state.

J. Schmiedmayer: High order correlation functions probing many body physics

Generalized Gibbs Ensemble \overline{A} \overline{C} inherities \overline{B} 0

- Correlations outside the 'Light-cone', imprinted by the quench
- 8 temperature model describes the relaxed state
- number of parameters limited by experimental resolution + occupation numbers
- a single temperature model (Gibbs ensemble) shows very large deviations
- 8 temperature model describes approximately the evolution to the state
- Conjecture: Differences due to the initial phase of the excitations (in the model we assumed zero phase, as in prethermlisation)
- J. Schmiedmayer: High order correlation functions probing many body physics INT 2015 24 • -> path to reconstruct the initial state

−20 8 temperature model

Higher order phase correlation functions

T. Langen et al. Science 2015, arXiv:1411.7185

$$
C(z_1, z_2) \approx \langle \exp[i\varphi(z_1) - i\varphi(z_2)] \rangle,
$$

$$
C(z_1, z_2, z_3, z_4) \approx \langle \exp[i\varphi(z_1) - i\varphi(z_2) + i\varphi(z_3) - i\varphi(z_4)] \rangle,
$$

Ì

J. Schmiedmayer: High order correlation functions probing many body physics is a comment of the state of

The Luttinger Liquid Hamiltonian is quadratic: Correlations factorize into 2-point functions

J. Schmiedmayer: High order correlation functions probing many body physics **INT 2015** 27 collaboration with Berges & Gasenzer groups, Heidelberg

Sine-Gordon physics tunable tunnel coupling J in double-well

experiment: T. Schweigler et al. theory: V. Kasper, S. Erne T Gasenzer, J. Berges

Quantum Sine-Gordon model:

$$
\hat{H}_{\text{SG}} = \frac{\hbar c}{2} \int_{-\mathcal{L}/2}^{\mathcal{L}/2} dz \left[\frac{\pi}{K} \hat{n}^2(z) + \frac{K}{\pi} \left(\frac{\partial}{\partial z} \hat{\theta}(z) \right)^2 \right] - 2n_{\text{1D}} J \int_{-\mathcal{L}/2}^{\mathcal{L}/2} dz \cos[\sqrt{2} \hat{\theta}(z)]
$$

that's what we have seen so far … "uncoupled harmonic oscillators"

anharmonic, non-gaussian, gapped, universality?

J. Schmiedmayer: High order correlation functions probing many body physics INT 2015 29

Characterising the factorisation

experiments probe the phase

-> look at the **'connected part'** of the phase correlation function Gaussian

fluctuations

Variance

$$
= 0
$$

$$
= 0
$$

Gaussian fluctuations

 $\langle (\Delta \varphi)^6 \rangle_c = \langle (\Delta \varphi)^6 \rangle - 15 \, \langle (\Delta \varphi)^4 \rangle \, \langle (\Delta \varphi)^2 \rangle^2 + 30 \, \langle (\Delta \varphi)^2 \rangle^3$ $\langle (\Delta \varphi)^8 \rangle_c = \langle (\Delta \varphi)^8 \rangle + 420 \langle (\Delta \varphi)^4 \rangle \langle (\Delta \varphi)^2 \rangle - 630 \langle (\Delta \varphi)^2 \rangle^4 - 35 \langle (\Delta \varphi)^4 \rangle^2 - 28 \langle (\Delta \varphi)^6 \rangle \langle (\Delta \varphi)^2 \rangle = 0$

characterized by **'Kurtosis'**

 $\langle (\Delta \varphi)^4 \rangle_c = \langle (\Delta \varphi)^4 \rangle - 3 \, \langle (\Delta \varphi)^2 \rangle^2$

 $\langle (\Delta \varphi)^2 \rangle_c = \langle (\Delta \varphi)^2 \rangle$

$$
\gamma_2 = \frac{\langle (\Delta \varphi)^4 \rangle}{3 \langle (\Delta \varphi)^2 \rangle^2} - 1 = 0
$$

\n
$$
\gamma_3 = \frac{\langle (\Delta \varphi)^6 \rangle}{15 \langle (\Delta \varphi)^4 \rangle \langle (\Delta \varphi)^2 \rangle^2 - 30 \langle (\Delta \varphi)^2 \rangle^3} - 1 = 0
$$

\n
$$
\gamma_4 = \frac{\langle (\Delta \varphi)^8 \rangle}{630 \langle (\Delta \varphi)^2 \rangle^4 + 35 \langle (\Delta \varphi)^4 \rangle^2 + 28 \langle (\Delta \varphi)^6 \rangle \langle (\Delta \varphi)^2 \rangle - 420 \langle (\Delta \varphi)^4 \rangle \langle (\Delta \varphi)^2 \rangle} - 1 = 0
$$

correlation functions for the fields:

$$
C(z_1, z_2) = \frac{\langle \Psi_1(z_1)\Psi_2^{\dagger}(z_1)\Psi_1^{\dagger}(z_2)\Psi_2(z_2)\rangle}{\langle |\Psi_1(z_1)|^2 \rangle \langle |\Psi_2(z_2)|^2 \rangle}
$$

$$
C(z_1, z_2) \approx \langle \exp[i\varphi(z_1) - i\varphi(z_2)] \rangle
$$

 $C(z_1,z_2)$ contains all orders of connected parts

$$
C(z_1,z_2)=\exp\left[\sum_{k=1}^\infty(-1)^k\frac{\langle(\Delta\varphi)^{2k}\rangle_c}{(2k)!}\right]
$$

for Gaussian fluctuations

$$
C(z_1, z_2) = \exp\left[-\frac{1}{2} \langle (\Delta \varphi) \rangle^2\right]
$$

J. Schmiedmayer: High order correlation functions probing many body physics INT 2015 31

A

 12

 12

bincounts 60

experiment: T. Schweigler et al. theory: V. Kasper, S. Erne

Characterising the factorisation by the connected part: $\langle (\Delta \varphi)^4 \rangle_c = \langle (\Delta \varphi)^4 \rangle - 3 \langle (\Delta \varphi)^2 \rangle^2$

excess Kurtosis

$$
\gamma_2 = \frac{\langle (\Delta \varphi)^4 \rangle}{3 \left\langle (\Delta \varphi)^2 \right\rangle^2} - 1
$$

Experimental data, thermal state in a double well

J. Schmiedmayer: High order correlation functions probing many body physics **INT 2015** 33

Experiment

B

Position z_2 [µm]

- the breakdown of factorization is evident in the **full distribution functions** of the phase by new peaks at multiples of *2*^π
- caused by the *2*^π **periodic** SG Hamiltonian -> *2*^π phase jumps, 'kinks', SG solitons

- **SG Solitons** are topological excitations
- Phase fluctuations around topologically different Vaccua

J. Schmiedmayer: High order correlation functions probing many body physics INT 2015 34

Position z_1 [µm]

 $\Delta \phi$ $[\pi]$

Quench from J>0 to J=0

Initial state non-Gaussian, dynamics Gaussian

collaboration with Berges & Gasenzer groups, Heidelberg

J. Schmiedmayer: High order correlation functions probing many body physics INT 2015 40

A. Steffens et al. arxiv:1406.3632

Use 2- and 4-point functions to reconstruct higher-order functions via continuous matrix product states with bond length 2

State reconstruction with very weak assumptions

Theory: A. Steffens, C. Riofrıo, R. Hubener, and J. Eisert, "Quantum field tomography," NJP **16** (2014) 123010.

A. Steffens et al. arxiv:1406.3632

Use 2- and 4-point functions to reconstruct higher-order functions via continuous matrix product states with bond length 2

State reconstruction gets worse with time C-MPS with bond length 2 have finite entanglement Question: Can one build a measure for entanglement growth after the quench?

J. Schmiedmayer: High order correlation functions probing many body physics **INT 2015** 43

Squeezing $N = 1200$ atoms, $\mu \simeq 0.5$ kHz, $T \simeq 25$ nK $(0.5$ kHz)

number and phase distribution

(black: measured, blue: binomial, red: detection noise)

RMS fluctuations of the **number difference**
 $n = N_r - N_p$

T. Berrada, et al., Nat. Comm **4**, 2077 (2013)

$$
\Delta n = 14(3) \text{ atoms}
$$

Whereas $\sqrt{N} = 35$ Spin squeezing: $\xi_S^2 \equiv \frac{\varsigma_N}{\langle \cos \phi \rangle}$ $7.7\,{\rm dB}$

Implies that \approx 150 atoms are entangled!

RMS fluctuations of the **phase** $\Delta\phi = 0.168(8)$ rad Whereas $1/\sqrt{N} = 0.03$ $\Delta n \Delta \phi = 2.3$ (7) when correcting for when correcting for $\Delta n \Delta \phi \sim 1$ $\frac{1}{\text{sech}}$ and the correlative phase $\phi/\Delta\phi_{\text{coh}}$ and $\frac{1}{\text{sech}}$ and $\frac{1}{\text{sech}}$ physics INT 2015 44

J. Schmiedmayer: High order correlation functions probing many body physics INT 2015 46

What have we learned

- Relaxation in quantum systems does not proceed through a simple path: '**prethermalization**'
- Relaxed state emerges localy and spreads throughout the system in a **light cone** like fashion
- Prethermalized state is associated with a **Generalized Gibbs Ensemble**
- **Higher order correlation functions** and the question if they factorize (**full distribution functions**) gives insight in the effective theories describing the many body system
- Experiments allow to probe how classical statistical properties emerge from microscopic quantum evolution through de-phasing of many body eigenstates.

J. Schmiedmayer: High order correlation functions probing many body physics **INT 2016** 47 17 17 2015

Gring et al., Science **337**, 1318 (2012) Kuhnert et al., PRL **110**, 090405 (2013) Smith et al. NJP **15**, 075011 (2013) Langen et al., Nature Physics **9**, 460 (2013) R. Geiger et al. NJP **16** 053034 (2014) Langen et al. Science (2015) arXiv:1411.7185

VCO

.
Jienna Center for Quantum
Science and Technology

T. Berrada, et al., Nat. Comm **4**, 2077 (2013) S. Van Frank, et al., Nat. Comm **5**, 4009 (2014)

