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Quantum fields <-> 
Correlation functions 

! Solving a quantum many-body problem is equivalent 
to knowing all its correlation functions. 

! In practice, an observer can only measure a finite 
number of correlations describing the propagation 
and scattering of excitations. 

! To solve a problem one need to find degrees of 
freedom where only few (low order) correlation 
functions are relevant. 

! If one finds the degrees of freedom (basis) where 
the correlation functions factorize, this is 
equivalent to diagonalization of the many body 
Hamiltonian. 

On the Green's functions of quantized fields 
J. Schwinger PNAS (1951) 
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System under investigation 

!?

Weakly interacting 1d Bose gas 

All energies   µ, kBT  << ħω⊥ 

uniform density fluctuating phase 

quasi-condensate 

thermally populated 

The longitudinal phase fluctuations are key for our experiments 

Lieb-Liniger model   
•  Exactly solvable integrable theory 

low energy effective field theory: 
Luttinger-liquid 
 
 

•  excitations are soundwaves (phonons) 
•  linear dispersion relation 

coupled 1d systems:  
Sine-Gordon model 
 
 

Model for interacting many body 
systems which can be described by a 
field theory with long lived excitations. 
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create two independet samples 
classically separated 

interference of phase 
fluctuating 1D condensates 

Study the dynamics of excitations on a quantum field 

ϕ1 ϕn …. ϕ2 

ϕ1 ϕn …. ϕ2 

create a copy by splitting 
quantum connected 

ϕn 

ϕn‘ 

ϕ1 …. ϕ2 

ϕ1‘ …. ϕ2‘ 
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Correlation functions 
–  fields <-> phase <-> excitations 

Characterizing the  
pre-thermalized state  

–  Generalized Gibbs ensemble 

High order correlation functions 
–  Quantifying factorization 
–  Sine-Gordon model 
–  Quench to a free system 

Outlook 
–  entanglement and spin squeezing 
–  quantum state tomography 
–  relaxation in SG model 

 

Outline 

AtomChip 

1000-10000 Rb atoms 
T   = 10-100 nK 
ωR ≈ 2π x 2 - 3 kHz 
ωL  ≈ 2π x 5 - 10 Hz 
 

µ, kBT  << ħωR 
 

φ(z) 
λT 
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Correlation 
functions 

fields <-> phase <-> excitations 

 

      www.AtomChip.org 
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experiments in a trap 
-> non translation invariant correlation functions 
 
 
 
with 

 
neglecting   

 
4th order: 

Correlation functions  
fields <-> phase 
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Correlation functions  
excitations <-> phase 

in experiment we measure the phase ϕ(z) directly  
-> look at phase correlators  

 C(2)(z1, z2)  =  �[ϕ(z1) � ϕ(z2)]2�  =  �[Δϕ(z1,z2)]2� 
with  Δϕ(z1, z2)  =  ϕ(z1) � ϕ(z2) Note: Δϕ  is NOT restricted to 2π  

using 

 
 
-> phase correlators are related to the quasi particles   

4th  order 
 C(4)(z1, z2,z3, z4)  =  �[ϕ(z1) � ϕ(z2)]2 [ϕ(z3) � ϕ(z4)]2�   

 
 

-> quasi particle scattering    
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Probing dynamics 
after quench 

(de) coherence 

      www.AtomChip.org 

Experiment: M. Gring, M. Kuhnert, T. Langen et al. (VCQ, Vienna) 
Theory:        T. Kitagawa, E. Demler  (Harvard) 

    I. Mazets (VCQ, Vienna) 
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Relaxation in a nearly 
integrable quantum system 

Thermal equilibrium  

H0 � H1 
Ψ0 � Ψ0                  Ψ(t) 

Quench:  

time 

Non-equilibrium  
state 

isolated quantum  
many-body system 

new Thermal equilibrium  

relaxation in  
more than one  

timescales 

slow further evolution 
towards equilibrium 

rapid establishement  
of quasi-steady state 

 

Study using a  
model system: 

 

1D Bose gas 
isolated & controllable 
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Experimental Procedure 
Gring et al., Science 337, 1318 (2012) 

J. Schmiedmayer: High order correlation functions probing many body physics      INT 2015     12 

Decay of the mean contrast 

initial rapid evolution 

quasi-steady state 
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slow  further decay 
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Decay of the mean contrast 

light cone like evolution 
 Langen et al., Nature Physics 9, 460 (2013)  

slow  further decay 

prethermalized state   
   Gring et al., Science 337, 1318 (2012) 
   Kuhnert et al., PRL 110, 090405 (2013)  
   Smith et al. NJP 15, 075011 (2013)   
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Decay of the mean contrast 

light cone like evolution 
  

slow  further decay 

prethermalized state   
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Generalized  
Gibbs Ensemble 
pre-thermalized state 

       www.AtomChip.org Langen et al. Sciene 2015  arXiv:1411.7185 
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1D Bose gas is a (nearly) integrable system 
  �  many conserved quantities  

 inhibit thermalization 
 

Conjecture: 
Quantum system to relax to maximum entropy state 
decribed by a Generalized Gibbs Ensemble: 
 
 
 
 
 
 

The generalized Gibbs 
ensemble 

conserved quantities: 

       mode occupations 
Lagrange multiplier partition 

function 

€ 

λm →  βm =1/kBTm
striking feature: a temperature for every mode! 

E. T. Jaynes, Phys. Rev. 106, 620 (1957); Phys. Rev. 108, 171 (1957) 
M. A. Cazalilla, Phys. Rev. Lett. 97, 156403 (2006)  
M. Rigol, et al, Phys. Rev. Lett. 98, 050405 (2007)   

C. Cramer et al. Phys. Rev. Lett. 100, 030602 (2008) 
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Non-Translation Invariant 
Correlation Functions 

T. Langen et al. Science 2015, arXiv:1411.7185 

C(z1, z2 )= i(ϕ (z1)−ϕ (z2 ))e
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2d phase correlation 
function for ‘Light Cone’ 

Choose different starting points to evaluate the  
phase correlation function C(z1, z2)   

 
Observation: the decay of phase correlation function is independent on starting point z1 
 
Data is described by a model with a single temperatures for ponon modes in the anti 
symmetric state. 

C(z1, z2 )= i(ϕ (z1)−ϕ (z2 ))e
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FIG. 2: Two-point phase correlation functions C(z1, z2) for increasing evolution time, showing a characteristic maximum on
the diagonal and a light-cone-like decay of correlations away from the diagonal. The experimental observations are in good
agreement with the theoretical model assuming (A) a single temperature Te↵ or (B) two distinct temperatures Te↵ ±�T , with
�T = 0.6 ⇥ Te↵ . For the latter an additional maximum arises on the anti-diagonal, due to the unequal population of even
and odd modes. The dynamics lead to the establishment of a relaxed state which is well described by a GGE with the same
parameters. The center of the system is located at z = 0, color marks the amount of correlations between 0 and 1. To decrease
the noise in the experimental phase correlation function, we typically average over approximately 150 experimental realizations.

mogeneous gas of 1D bosons with contact interactions,
which is one of the prototypical examples of an integrable
system [15, 16]. In the thermodynamic limit, its exact
Bethe Ansatz solutions imply an infinite number of con-
served quantities, which make it impossible for the gas to
forget an initial non-equilibrium state, forcing it to relax
to a GGE. Recent experiments have shown that also the
trapped 1D Bose gas behaves approximately integrable
for very long time scales, enabling the detailed investi-
gation of integrable dynamics [5, 6, 8, 17, 18]. Changing
the initial state of the non-equilibrium evolution in our
experiment, we demonstrate that the relaxed state of this
system can indeed be identified with a GGE.

Our experiments start with a phase fluctuating 1D
Bose gas of 87Rb atoms which is prepared and trapped
using an atom chip [19]. We initialize the non-equilibrium
dynamics by splitting this single 1D gas coherently into
two halves. Information about the system is extracted
using matter-wave interferometry [5, 17, 18, 20]. This en-

ables the time-resolved measurement of individual two-
point and higher-order N -point phase correlation func-
tions C(z1, z2, . . . , zN ), where z1, z2, . . . , zN are N coor-
dinates along the length of the system (see Fig. 1 and
Supplementary Materials). These correlation functions
reveal detailed information about the dynamics and the
relaxed states of the system.

We first start with the two-point correlation func-
tion C(z1, z2) ⇠ h 1(z1) 

†
2(z1) 

†
1(z2) 2(z2)i ⇠

hei'(z1)�i'(z2)i. Previously, this correlation function was
studied in regions where the system is approximately
translation invariant [18, 21], i.e. C(z1, z2) = C(z1 � z2).
Here, more comprehensive information about generic
many-body states is obtained by mapping the full cor-
relation function C(z1, z2) for any combination of the co-
ordinates z1 and z2 (see Fig. 1). As every point in the
system is perfectly correlated with itself, the correlation
functions exhibit a maximum on the diagonal z1 = z2 for
all times.

T. Langen et al. Science 2015, arXiv:1411.7185 instantaneous Quench 

Light cone evolution: T. Langen et al NatPhys 9, 460 (2013)  



J. Schmiedmayer: High order correlation functions probing many body physics      INT 2015     19 

Light-cone-like decay of correlations in a mesoscopic quantum many-body system

T. Langen,1 R. Geiger,1 M. Kuhnert,1 B. Rauer,1 M. Gring(?),1 V. Kasper,2 J. Berges,2 and J. Schmiedmayer1, ⇤

1Vienna Center for Quantum Science and Technology,
Atominstitut, TU Wien, Stadionallee 2, 1020 Vienna, Austria

2Institute for Theoretical Physics, Heidelberg University, Philosophenweg 16, 69120 Heidelberg, Germany
(Dated: March 24, 2013)

It is one of the crucial features of thermal-
ization that the thermal equilibrium state which
a system reaches has no memory of the initial
non-equilibrium state. Understanding how the
memory of a quantum state is progressively lost
is thus an essential prerequisite for the compre-
hension of non-equilibrium dynamics and has far
reaching consequences for applications of quan-
tum information schemes and the e�cient simu-
lation of quantum many-body systems on classi-
cal computers. In this context it is known that
some microscopic spin models exhibit an intrin-
sic maximum velocity, which limits the propaga-
tion of correlations and entanglement to an ef-
fective light-cone. However, a direct connection
to the relaxation of mesoscopic quantum many-
body systems and the establishment of thermal
properties has so far been elusive. Here, we re-
port the observation of such an e↵ective light-
cone governing the local emergence of thermal-
like features in an isolated quantum many-body
system. In our experiment, we quench a one-
dimensional (1D) Bose gas and directly monitor
how strong correlations introduced through the
quench decay in a light-cone-like evolution to-
wards a prethermalized state. We complement
our experimental observations with simulations
of the full quantum many-body problem, which
justifies the use of e↵ective low-energy theories
to describe the dynamics. Our results shed new
light on Lieb-Robinson bounds and their connec-
tion to the emergence of thermal features in iso-
lated quantum many-body systems.

Over the last years, ultracold atoms have been estab-
lished as ideal systems to study the dynamics of isolated
quantum many-body systems8,11,13–15. The possibility
to tune several parameters of these systems and to probe
them with high accuracy, in combination with a high
isolation from the environment has triggered a strong
interest in non-equilibrium phenomena and thermaliza-
tion8,11,18.

These problems are intimately connected to the ques-
tion of how fast correlations and entanglement can prop-
agate through a non-relativistic quantum system. Tra-
ditionally, this question has been predominately studied
using microscopic spin models3,5–7,16. While current ex-
perimental realizations of these lattice systems typically
contain only tens of particles9, we experimentally estab-
lish the connection to continuous, mesoscopic quantum

FIG. 1: Dynamics of correlations in a coherently split

1D Bose gas. (a) The quench creates two 1D Bose gases with
almost identical longitudinal phase profiles ✓1(z) and ✓2(z).
The relative phase field �(z) = ✓1(z) � ✓2(z) shows long-
range order characterized by a diverging correlation length
��. This strongly phase-correlated state relaxes towards a
prethermalized state with exponentially decaying phase cor-
relations (finite correlation length �e↵ . (b) The evolution of
the system can be probed via the two-point correlation func-
tion C(z̄ ' z � z0, t = 0). It is measured using matterwave
interferometry in time-of-flight.

systems that consist of several thousands of particles.

The principle of the experiment is depicted in Fig. 1.
A phase-fluctuating 1D Bose gas is quenched by splitting
it coherently. The quench creates a non-equilibrium state
consisting of two gases with almost identical phase pro-
files. Interactions in the many-body system drive the re-
laxation of this highly phase-correlated state to a prether-
malized state characterized by thermal-like phase corre-
lations8,25. The dynamics is monitored by time-resolved
measurements of the relative phase field using matter-

Light-Cone dynamics in the 
decay of coherence 

Time evolution of the  
phase correlation function 

 
  C(z = z - ′z ) = i(ϕ (z)−ϕ ( ′z ))e

ODLRO 

‘thermal’ 

T. Langen et al NatPhys 9, 460 (2013) 
LL theory in trap: R. Geiger et al. arXiv:1312.7568   
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Light-Cone dynamics in the 
decay of coherence 

The region with the final form of the phase correlation function expands with sound velocity 
Linear dispersion relation -> Light-Cone dynamics  

2

radio-frequency fields via additional wires on the chip, we
transform the initial harmonic trapping potential into a
double well potential, thereby realizing the matterwave
analogue of a coherent beam splitter17,19 (see Methods).

After a certain evolution time t in the double well,
the gases are released from the trap and interfere af-
ter a time-of-flight of 15.7ms. The resulting interfer-
ence pattern exhibits longitudinally modulated interfer-
ence fringes and allows to extract the relative phase
�(z) = ✓1(z)� ✓2(z) along the length of the system (see
Fig. 1). Repeating this procedure about 150 times for
each value of t, we determine the two-point correlation
function C(z̄ = z � z

0
, t) = h ̂1(z) ̂

†
2(z) ̂

†
1(z

0) ̂2(z0)i '
hei�(z)�i�(z0)i with z and z

0 denoting arbitrary positions
along the length of the system23,24, and  ̂1,2(z, t) the
time-dependent quantum many-body fields of the two
gases. In contrast to the integrated visibility of the in-
terference patterns, which was previously used to iden-
tify the prethermalized state8,25, the phase correlation
function provides a local probe for the dynamics, and is
therefore ideally suited to study the propagation of cor-
relations.

Our experimental results are presented in Fig. 2a. Di-
rectly after the quench, the relative phase �(z) exhibits
long-range order with a correlation function close to unity
along the entire gas. After a given evolution time t, the
phase correlation function decays exponentially up to a
distance z̄c(t), beyond which the initial long-range order
is retained. Over time, the height of the long-range or-
dered plateaus C(z̄ > z̄c, t) decreases and the position
of z̄c shifts to larger distances. This evolution describes
how an arbitrary point in the gas locally looses the mem-
ory of the strongly-correlated initial state and acquires
thermal-like properties, while long-range order still per-
sists outside a characteristic distance. The evolution con-
tinues until the system reaches the prethermalized state
for t > 6ms, where correlations are completely thermal-
like and decay exponentially throughout the entire sys-
tem.

From the experimental data, we can extract the
crossover points z̄c through the level of long-range or-
der correlations. To this end, we consider for each t the
region where the correlation function is constant, extrap-
olate the plateau to smaller z̄ and determine the position
z̄c where the plateau and the prethermalized correlation
function cross. Note that in the experimental data the
sharp crossover points at z̄c are smeared out by the fi-
nite resolution of the imaging system (Methods). Our
method reliably overcomes this problem. The results are
shown in Fig. 2b. We observe a clear linear scaling of the
front characterizing the decay of correlations with time.
The experimental data thus indicates that the decay of
correlations is governed by a light-cone like evolution,
with z̄c = 2ct, where c is a characteristic velocity of the
quantum many-body system. For the data presented in
Fig. 2b a linear fit allows to extract a characteristic ve-
locity of c = XXXmm/s.

To explain this light-cone like decay we describe

FIG. 2: Light-cone-like decay of correlation func-

tions. (a) Experimental two-point correlation functions
C(z̄, t) (filled circles) compared to theoretical calculations
(solid lines). Evolution times t increase from 1.3ms to 9.3ms
in steps of 1ms from top to bottom. (b) For each t, the con-
stant values of C(z̄, t) at large z̄ can be used to determine
the the characteristic crossover points z̄c up to which the sys-
tem forgets the initial long-range order (see text for details).
Position of z̄c as a function of evolution time t revealing the
e↵ective light-cone decay of correlations. Solid lines are a lin-
ear fit with the shaded area denoting the fit error. The slope
of this fit corresponds to twice the characteristic velocity. (c)
Schematic visualization of the dynamics between the initial
and the prethermalized state. The decay of correlations is
characterized by a front moving with a finite velocity: for
a given time t, C(z̄, t) is exponential only up to a distance
z̄c = 2ct, with c denoting the characteristic velocity of corre-
lations. Up to this point, the system looks thermal. Beyond
the front, the initial long-range order is retained.

the time-evolution of the relative phase using a Lut-
tinger Liquid (LL) model (Supplementary Information).
Within this model, the system is described by a large
number of independent momentum modes with a linear
dispersion relation !k = c|k|. After the quench, all modes
are initialized in phase, leading to the initially perfect
correlations. Over time, dephasing is known to result
in the establishment of correlations that decay exponen-
tially in space8,20,25. For any given finite distance z̄, the
dephasing happens on a timescale td = ⇡/!k, given by
half the oscillation period of the principal mode within
that distance, i.e. the mode with momentum k ⇠ 2⇡/z̄.
For a given time, the system will thus only be able

3

izes all modes in phase, leading to perfect phase correla-
tions. Over time, dephasing of these modes results in the
establishment of correlations that decay exponentially in
space20,25. For a given separation z̄ between two points in
the gas, the dephasing happens on a timescale td = ⇡/!k

given by half the oscillation period of the principal mode
k ⇠ 2⇡/z̄ within the length z̄. During the time t, the sys-
tem will thus only be able to dephase and establish ex-
ponentially decaying correlations on a length scale given
by the light-cone condition z̄c = 2ct. Modes with longer
wavelengths than z̄c result in an overall phase shift af-
fecting all points outside the light-cone in the same way.
Therefore, thermal-like correlations cannot establish and
long-range order remains.

Within the LL model, the dynamics can be calcu-
lated analytically and explicitely reveals the light-cone-
like condition for the emergence of thermal-like correla-
tions (see Methods). In Fig. 2a we compare this cal-
culation to our measured data, taking into account the
finite resolution of our imaging system (Methods). We
find very good agreement, using independently measured
experimental parameters as the input for the theory.

In contrast to the previously studied propagation of
a density defect in a single mode gas at the speed of
sound26,27, the phenomenon which we observe here is a
collective, non-mean field e↵ect that does not just hap-
pen at a single spatial location, but simultaneously at
every point in the gas. The observation of the long range
order that persists in the system (plateaus of C(z̄)) for
di↵erent t is remarkable because of the high level of fluc-
tuations characterizing 1D systems. This achievement
requires a stringent stability of the experiment and high
statistics (see Supplementary Information) to reveal the
interference of several momentum modes and the e↵ec-
tive light-cone dynamics.

WHERE TO PUT THIS? In a particle-like picture,
we see that the emergence of the thermal-like correlation
results from the propagation of quasi particles moving
in opposite directions, as the mode with momentum |k|
describes a pair of quasi-particles with opposite momenta
k and �k. This picture shows strong similarities with
microscopic models for the spread of correlations close to
a critical point as theoretically studied in5 and in lattice
systems as experimentally observed in9.

Finally, we studied the quench dynamics for varying
number of particles N in the mesoscopic system. We
found the same light-cone-like emergence of the thermal-
like correlations in the explored range (N ⇠ 4000�12000)
and extracted the corresponding characteristic velocities.
The results are presented in Fig. 3 (filled circles). We
compare our measurements to the speed of sound c

0

for
an homogeneous system (gray line) as well as the speed
c̃ = ⇡c

0

/4 calculated for a trapped gas (red line, see
SI for the derivation of c̃). The latter better describes
the data within the experimental resolution. We thus
conclude that the dynamics of the inhomogeneous Lut-
tinger Liquid with a local speed of sound c(z) e↵ectively
reduces to the light-cone-like evolution characterized by

FIG. 3: Scaling of the characteristic velocity with par-

ticle number. The gray (red) line is the calculated speed
of sound for an homogeneous (trapped) system. Shaded ar-
eas correspond to the uncertainty on the measured densities.
Error bars denote one standard deviation.

the macroscopic parameter, c̃.

We have shown that the emergence of thermal-like cor-
relations after a quench in a quantum many-body sys-
tem takes the form of an e↵ective light-cone. Our re-
sults indicate a possible pathway on how the memory of
a strongly-correlated initial state is lost in a mesoscopic
quantum system, a situation with direct relevance to the
study of thermalization, decoherence and to the emer-
gence of classical features from quantum systems12. To-
gether with other theoretical [REF] and experimental9

studies, our results show that genuine quantum many-
body dynamics can be reduced to a characteristic velocity
describing the evolution of correlations and suggesting an
e↵ective Lorentz-invariant form of the equations of mo-
tion. In analogy with equilibrium statistical mechanics,
great e↵ort is currently undertaken to define universality
classes for dynamical problems [Ref Gazenzer] and to find
the parameters that can e↵ectively describe the accessi-
ble observables. A prime example is the introduction of
the Generalized Gibbs ensemble to describe the transient
states of integrable systems [REF Rigol] In this context,
we conjecture that the observation of light-cone dynamics
may be the sign for e↵ective theories underlying complex
quantum many-body problems.

Methods

Splitting process. The quench is performed by linearly
increasing the amplitude of the RF current in the chip
wires to 24mA within 12ms. This results in an exponen-
tial decay of the tunnel coupling between the two gases.
Simulations of the chip potential and experiments with
quasi-condensates in thermal equilibrium23 (see Supple-
mentary Information) indicate that the decoupling of the
two gases happens within approximatively 200µs, which

LL in a trap 

sound velocity  
in infinite system 

T. Langen et al NatPhys 9, 460 (2013) 
LL theory in trap: R. Geiger et al. NJP 16, 053034 (2014)  

Linear disperison relation of the phonons relates to the questions asked in:  
  CFT:   Calabrese, P. & Cardy, J.   Phys. Rev. Lett. 96, 011368 (2006)  
  Lattice model:  Cramer, M., et al.   Phys. Rev. Lett. 100, 030602 (2008).  

scaling with density 
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FIG. 2: Two-point phase correlation functions C(z1, z2) for increasing evolution time, showing a characteristic maximum on
the diagonal and a light-cone-like decay of correlations away from the diagonal. The experimental observations are in good
agreement with the theoretical model assuming (A) a single temperature Te↵ or (B) two distinct temperatures Te↵ ±�T , with
�T = 0.6 ⇥ Te↵ . For the latter an additional maximum arises on the anti-diagonal, due to the unequal population of even
and odd modes. The dynamics lead to the establishment of a relaxed state which is well described by a GGE with the same
parameters. The center of the system is located at z = 0, color marks the amount of correlations between 0 and 1. To decrease
the noise in the experimental phase correlation function, we typically average over approximately 150 experimental realizations.

mogeneous gas of 1D bosons with contact interactions,
which is one of the prototypical examples of an integrable
system [15, 16]. In the thermodynamic limit, its exact
Bethe Ansatz solutions imply an infinite number of con-
served quantities, which make it impossible for the gas to
forget an initial non-equilibrium state, forcing it to relax
to a GGE. Recent experiments have shown that also the
trapped 1D Bose gas behaves approximately integrable
for very long time scales, enabling the detailed investi-
gation of integrable dynamics [5, 6, 8, 17, 18]. Changing
the initial state of the non-equilibrium evolution in our
experiment, we demonstrate that the relaxed state of this
system can indeed be identified with a GGE.

Our experiments start with a phase fluctuating 1D
Bose gas of 87Rb atoms which is prepared and trapped
using an atom chip [19]. We initialize the non-equilibrium
dynamics by splitting this single 1D gas coherently into
two halves. Information about the system is extracted
using matter-wave interferometry [5, 17, 18, 20]. This en-

ables the time-resolved measurement of individual two-
point and higher-order N -point phase correlation func-
tions C(z1, z2, . . . , zN ), where z1, z2, . . . , zN are N coor-
dinates along the length of the system (see Fig. 1 and
Supplementary Materials). These correlation functions
reveal detailed information about the dynamics and the
relaxed states of the system.

We first start with the two-point correlation func-
tion C(z1, z2) ⇠ h 1(z1) 

†
2(z1) 

†
1(z2) 2(z2)i ⇠

hei'(z1)�i'(z2)i. Previously, this correlation function was
studied in regions where the system is approximately
translation invariant [18, 21], i.e. C(z1, z2) = C(z1 � z2).
Here, more comprehensive information about generic
many-body states is obtained by mapping the full cor-
relation function C(z1, z2) for any combination of the co-
ordinates z1 and z2 (see Fig. 1). As every point in the
system is perfectly correlated with itself, the correlation
functions exhibit a maximum on the diagonal z1 = z2 for
all times.

Observation: For specific splitting procedures  
the decay of phase correlation function depends  
on starting point z1 and shows ‚revivals‘ of coherence 
 
Data is better described by a model with different temperatures for even phonon modes 
and odd phonon modes in the anti symmetric state. 

Generalized Gibbs 
Ensemble 

C(z1, z2 )= i(ϕ (z1)−ϕ (z2 ))e

need at least 2 temperatures 

T. Langen et al. Science 2015, arXiv:1411.7185 slow-fast Quench 
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Generalized Gibbs 
Ensemble 
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Generalized Gibbs 
Ensemble 
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8 temperature model 

•  Correlations outside the ‘Light-cone’, 
imprinted by the quench 

•  8 temperature model describes the 
relaxed state 

•  number of parameters limited by 
experimental resolution + occupation 
numbers 

•  a single temperature model (Gibbs 
ensemble) shows very large deviations 

•  8 temperature model describes 
approximately the evolution to the state 

•  Conjecture: Differences due to the 
initial phase of the excitations (in the 
model we assumed zero phase, as in 
prethermlisation) 

•  -> path to reconstruct the initial state 
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Higher order phase 
correlation functions 
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Higher order phase 
correlation functions 
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Do higher-order correlation 
functions factorize? 

The Luttinger Liquid Hamiltonian is quadratic: 
Correlations factorize into 2-point functions 
 
 
 
 
 
 
 
 

 

collaboration with Berges & Gasenzer groups, Heidelberg  

4th order                          6th order  
 C(z1,z2,z3,z4) C(z1,z2,z3,z4,z5,z6) 
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When do higher 
Correlation Functions 

factorize? 

      www.AtomChip.org 
Exp:      T. Schweiger, et al.  (Vienna) 
Theory: S. Erne, V. Kasper et al.  (HD) 
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Sine-Gordon physics 
 tunable tunnel coupling J in double-well 

 
 
 
 
 
 

Quantum Sine-Gordon model: 

that’s what we have seen so far … 
“uncoupled harmonic oscillators”  

anharmonic, non-gaussian, 
gapped, universality?  

experiment: T. Schweigler et al. 
theory: V. Kasper, S. Erne 

T Gasenzer, J. Berges 
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Characterising the 
factorisation 

experiments probe the phase  
-> look at the ‘connected part’ of the  
    phase correlation function  
 
 

Gaussian  
fluctuations 

 Variance 
= 0 
= 0 
= 0 

Gaussian  
fluctuations 

= 0 

= 0 

= 0 

characterized by ‘Kurtosis’ 
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correlation functions for the fields: 
 
 
 
 
 
 
C(z1,z2) contains all orders of connected parts  
 
 
 
for Gaussian fluctuations 
 
 
 
 

 
 

 

Correlation functions  
fields <-> phase 
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Observable and non-gauss 
measure 

Δϕ(z1, z2)  =  ϕ(z1) � ϕ(z2)  
Δϕ is  NOT restricted to 2π  

to study factorization of correlation functions we look at 
 C(2)(z1, z2)          = �[ϕ(z1) � ϕ(z2)]2�        =  �[Δϕ(z1,z2)]2� 
 C(4)(z1, z2,z3, z4) = �[ϕ(z1) � ϕ(z2)]2 [ϕ(z3) � ϕ(z4)]2�  =  �[Δϕ(z1,z2)]2 [Δϕ(z3,z4)]2�, 

Δϕ > 2π 
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experiment: T. Schweigler et al. 
theory: V. Kasper, S. Erne 
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Characterising non-Gaussian  
phase fluctuations 

Characterising the factorisation by the   
connected part: 
 
 

excess Kurtosis 

Experimental data, thermal state in a double well 

> 220 Hz 160 Hz 70 Hz plasma-freq. = 0 Hz 

experiment: T. Schweigler et al. 
theory: V. Kasper, S. Erne 
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•  the breakdown of factorization is evident 
in the full distribution functions of the 
phase by new peaks at multiples of 2π  

•  caused by the 2π periodic SG Hamiltonian 
-> 2π phase jumps, ‘kinks’,  SG solitons 

 

 

 
•  SG Solitons are topological excitations 

•  Phase fluctuations around topologically 
different Vaccua 

Quantifying factorization 
of correlation functions 

intermediate 
coupling 

2π 

strong 
coupling 

π

full distribution  
function Kurtosis 

experiment: T. Schweigler et al. 
theory: V. Kasper, S. Erne 
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4-point phase correlators 

difference 

full 

Wick factorization 

lower limit 

upper limit 

160 Hz 0 Hz big 70 Hz ωp 
experiment: T. Schweigler et al. 

theory: V. Kasper, S. Erne 
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6-point  Phase correlators 

difference 

full 

Wick factorization 

lower limit 

upper limit 

160 Hz 0 Hz big 70 Hz ωp 
experiment: T. Schweigler et al. 

theory: V. Kasper, S. Erne 
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6-point phase correlators, 
connected part 

160 Hz 0 Hz big 70 Hz 

full 

disconnected part 

connected part 

lower limit 

upper limit 

ωp experiment: T. Schweigler et al. 
theory: V. Kasper, S. Erne 
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Remove Solitons 
Strongly coupled  ωp > 500 Hz 

4-point correlator 
does not factorize: 

without Solitons: 

experiment: T. Schweigler et al. 
theory: V. Kasper, S. Erne 
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Remove Solitons 
intermediate coupling    ωp=160 Hz 

4-point correlator 
does not factorize: 

without Solitons: 

phase distribution: 

different 
sectors: 

without  
solitons: 

experiment: T. Schweigler et al. 
theory: V. Kasper, S. Erne 
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Quench from J>0 to J=0 

Initial state non-Gaussian, dynamics Gaussian 
 

collaboration with Berges & Gasenzer groups, Heidelberg  

very preliminary experiment: T. Schweigler et al. 
theory: V. Kasper, S. Erne 
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Outlook 
Quantum state tomography 

Non trivial (squeezed) initial states 
Relaxation in SG moel 

      www.AtomChip.org 
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Quantum state tomography 

Use 2- and 4-point functions to reconstruct higher-order functions 
via continuous matrix product states with bond length 2 
 
 
 
 
 
 

 
 
State reconstruction with very weak assumptions 

experimental 6-point function reconstructed 6-point function 

A. Steffens et al. arxiv:1406.3632 

Theory:  
A. Steffens, C. Riofrıo, R. Hubener, and J. Eisert, “Quantum field tomography,” NJP 16 (2014) 123010. 
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Quantum state tomography 

Use 2- and 4-point functions to reconstruct higher-order functions 
via continuous matrix product states with bond length 2 
 
 
 
 
 
 

 
 
State reconstruction gets worse with time 
C-MPS with bond length 2 have finite entanglement 
Question: Can one build a measure for entanglement growth  
      after the quench? 
 
 
 
 
 
 
 
 
 
 
 
 

A. Steffens et al. arxiv:1406.3632 
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Δn Δφ  =  2.3 (7) 
when correcting for  
measurement noise:  Δn Δφ  ~  1 

number'and'phase'distribu/on'
(black:(measured,(blue:(binomial,(red:(detec4on(noise)(

Squeezing  

 

RMS fluctuations of the phase 
 
Whereas 
 
 

RMS fluctuations of the number difference 

 
Whereas 

Spin squeezing: 

Implies that ≈ 150 atoms are entangled! 
 

T. Berrada, et al., Nat. Comm 4, 2077 (2013) 
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Evolution of ξ2∼ -8dB 1d gas  
Could this oscillation come instead from the slow axial breathing? The fringe spacing oscillates at f = 18.2 ±
2.6Hz.
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Figure 4.2: Set A: Oscillation of the mean phase A fit with a sine yields: frequency f = 15.6 ± 3.4Hz;
amplitude: 0.5± 0.1 rad; o↵set: �0.3± 0.1 rad.
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Figure 4.3: Set A: Oscillation of the fringe spacing and the axial width Left: fringe spacing (f =
18.2± 2.6Hz); Right: FWHM in the axial direction (f = 23.9± 1.3Hz)

Set B (tilted double well).
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Amp

= 0.65 double well Numerical resolution of the BJJ equations for
⇤ = 2400. Blue: Josephson oscillations, red: MQST (z
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= 0.1, 0.2, ..., 1), black: separatrix. The thick blue line
is the trajectory for the initial conditions �
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Figure 4.7: Simulated Josephson oscillation GPE 1D simulation in the RF
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= 0.65 double well for the
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Figure 4.8: Carpets. Experimental carpets after integration along the longitudinal axis (central mF = 0 cloud
only) and along the transvserse cloud. Each carpet is the result of averaging over ⇠ 50 repetitions. Note that
the proportion of atoms in the three Zeman states is time-dependent.
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Relaxation in coupled 
superfluids 

re-coupling starts SG model with a specific phase 
-> study phase locking 

phase locking as a  
fix-point of the evolution 
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time 

experiment: M. Pigeur 
theory: E. DelaTorre, E. Demler 
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What have we learned 

•  Relaxation in quantum systems does not proceed 
through a simple path:   ‘prethermalization’ 

•  Relaxed state emerges localy and spreads  
throughout the system in a light cone like fashion 

•  Prethermalized state is associated with a  
Generalized Gibbs Ensemble 

•  Higher order correlation functions and the  
question if they factorize (full distribution 
functions) gives insight in the  
effective theories describing the  
many body system  

•  Experiments allow to probe how classical 
statistical properties emerge from microscopic 
quantum evolution through de-phasing of many 
body eigenstates. 

Gring et al., Science 337, 1318 (2012) 
Kuhnert et al., PRL 110, 090405 (2013)  

Smith et al. NJP 15, 075011 (2013)   
Langen et al., Nature Physics 9, 460 (2013) 

R. Geiger et al. NJP 16 053034  (2014) 
Langen et al. Science (2015) arXiv:1411.7185  

 
T. Berrada, et al., Nat. Comm 4, 2077 (2013) 

S. Van Frank, et al., Nat. Comm 5, 4009 (2014)  
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