A Mixture of Bose and Fermi Superfluids

The ENS Fermi Gas Team

F. Chevy, Y. Castin, F. Werner, C.S.

Lithium Exp.

M. DelehayeS. LaurentM. PierceI. Ferrier-BarbutA. GrierB. Rem

U. Eismann A. Bergschneider T. Langen N. Navon

Lithium-Potassium Exp.

F. Sievers, D. Fernandes N. Kretschmar M. Rabinovic T. Reimann D. Suchet

L. Khaykovich

I. Ferrier-Barbut, M. Delehaye, S. Laurent, A. T. Grier, M. Pierce, B. S. Rem, F. Chevy, and C. Salomon Science, **345**, 1035, 2014

104 years of quantum fluids

100 nK

Bose Einstein condensate

⁴He

T~ 2.2 K

Also BEC of photons and cavity polaritons

Superconductivity

High T_c 77 K

³He 2.5 mK

Superfluid mixtures

Bose-Bose superfluid mixtures first observed long ago:

Two hyperfine states in Rb at JILA (Myatt et al. '97) and vortex production Spinor condensates at MIT, Hamburg, Berkeley, ENS,

Dark-bright soliton production in two Rb BEC, Engels group, PRL 2011

Rb

Bose-Fermi Systems

- Cooper pairing of electrons in superconductors (phonon exchange)
- High-energy physics / Meissner effect P. W. Anderson, P.R. 130, 439 (1963)
- ⁴He ³He mixtures

Strong boson - fermion repulsion prevented double SF so far

Ultracold atom mixtures

⁶Li - ⁷Li (2001) ENS, Rice

²³ Na - ⁶ Li	(2002)
⁴⁰ K - ⁸⁷ Rb	(2002)
⁶ Li - ⁸⁷ Rb	(2005)
³ He [*] - ⁴ He [*]	(2006)
⁶ Li - ⁴⁰ K - ⁸⁷ Rb	(2008)
⁶ Li - ^{85,87} Rb	(2008)
^{84,86,88} Sr - ⁸⁷ Sr	(2010)

⁶ Li - ¹⁷⁴ Yb	(2011)
^{170,174} Yb - ¹⁷³ Yb	(2011)
⁴⁰ K - ⁴¹ K - ⁶ Li	(2011)
¹⁶¹ Dy - ¹⁶² Dy	(2012)
²³ Na - ⁴⁰ K	(2012)
⁶ Li - ¹³³ Cs	(2013)
⁵² Cr - ⁵³ Cr	(2014)

None doubly superfluid!!

*T*_c ~ 50 μK?

⁶A novel system: a double superfluid mixture of ⁶Li and ⁷Li

Outline

- Experiment with ⁶Li-⁷Li isotopes
- Excitation of center of mass modes: first sounds
- Simple model
- Critical velocity for two-superfluid counterflow
- Perspectives

⁷Li and ⁶Li isotopes

Fermi Superfluid in the BEC-BCS Crosover

⁶Li Fermions with two spin states and tunable attractive interaction The hydrogen atom of many-body physics !

Molecular condensate Strongly bound Size: a << n^{-1/3} n^{-1/3}: average distance between particles

On resonance $na^3 >> 1$ $k_Fa \ge 1$ Pairs stabilized by Fermi sea Size of pairs $hv_F/\Delta \sim k_F^{-1}$

BCS regime:

 $k_F|a| << 1$ Cooper pairs k, -k Well localized in Momentum: $k \sim k_F$ Delocalized in position

Equation of State in the crossover

Pressure equation of state $P/P_0 = f(1/k_F a)$

N. Navon, S. Nascimbène, F. Chevy, C. Salomon, *Science* **328**, 729-732 (2010) S. Nascimbène, N. Navon, K. Jiang, F. Chevy, C. Salomon, *Nature* 463 (2010)

Tuning interactions in ⁷Li and ⁶Li

Experimental Setup

Magneto-optical trap of bosonic ⁷Li and fermionic ⁶Li

After evaporation in a magnetic trap we load the atoms in a single beam optical trap (OT) with magnetic axial confinement. T~ 40 μ K

Evaporative cooling of mixture in OT

~ 4 second ramp, T~ 80 nK

Absorption imaging of the *in-situ* density distributions or Time of Flight

Trap frequencies: $v_z=15.6 \text{ Hz}$ for bosons, $v_{rad}=440 \text{ Hz}$ Expected SF fractions: $N_0/N_B > 0.8$ $N_0/N_F \sim 0.8$

Lifetime of mixture : 7s in shallowest trap

Long-lived Oscillations of both Superfluids

Fermi Superfluid

Single Superfluid Ratio = $(7/6)^{1/2} = (m_7/m_6)^{1/2}$

Oscillations of both superfluids

Mean field model

- 1.5% down shift in ⁷Li BEC frequency
- BEC osc. amplitude beat at frequency $(\tilde{\omega}_6 \tilde{\omega}_7)/2\pi$
- Weak interaction regime: $k_F a_{67} <<1$ and $N_7 << N_6$ Boson effective potential $V_{eff} = V(r) + g_{67} n_6(r)$ with $g_{67} = \frac{2\pi \hbar^2 a_{67}}{m_{67}}$ $m_{67} = m_6 m_7 / (m_6 + m_7)$

Where $n_6(\mu)$ is the Eq. of State of the stationary Fermi gas. For the small BEC: $V(r) \ll \mu_6^0$ Expand $n_6(r) \approx n_6^0(\mu_6^0) - V(r) \frac{dn_6^0}{d\mu_6} + \dots$

Effective potential

With TF radius of BEC<< TF radius of Fermi SF, we get:

$$V_{eff} = g_{67} n_6(0) + V(r) \left[1 - g_{67} \left(\frac{d n_6^{(0)}}{d \mu_6} \right)_0 \right]$$

The potential remains harmonic with rescaled frequency

$$\tilde{\omega}_{7} = \omega_{7} \sqrt{1 - g_{67} \left(\frac{dn^{(0)}}{d\mu_{6}}\right)_{0}}$$

The equation of state $n(\mu)$ is known in the BEC-BCS crossover N. Navon et al., Science, 2010

Effective potential

With TF radius of BEC<< TF radius of Fermi SF, we get:

$$V_{eff} = g_{67} n_6(0) + V(r) \left[1 - g_{67} \left(\frac{d n_6^{(0)}}{d \mu_6} \right)_0 \right]$$

The potential remains harmonic with rescaled frequency

$$\tilde{\omega}_{7} = \omega_{7} \sqrt{1 - g_{67} \left(\frac{dn^{(0)}}{d\mu_{6}}\right)_{0}}$$

At unitarity $\mu_6 = \xi \hbar^2 (3\pi^2 n_6)^{2/3} / 2m_6$ with $\xi = 0.37$ Bertsch param.

We simply get
$$\tilde{\omega}_7 = \omega_7 \left(1 - \frac{3g_{67}n_6(0)}{4\mu_6^{(0)}} \right) = \omega_7 \left(1 - \frac{13k_F a_{67}}{7\pi \xi^{5/4}} \right)$$

From Thomas Fermi radius of ⁶Li superfluid, we find $\tilde{\omega}_7 = 2\pi \times 15.43 Hz$ very close to the measured value: $\tilde{\omega}_7 = 2\pi \times 15.40(1) Hz$

Bose-Fermi Coupling in BEC-BCS crossover

What is the critical velocity for superfluid counterflow ?

Landau critical velocity

Impurity of mass M moving with velocity \vec{v} inside a superfluid Emission of an elementary excitation of momentum \vec{p} and energy $\mathcal{E}(\vec{p})$

Energy and momentum conservation:

$$v_{\mathrm{c}} = \operatorname{Min}_{\boldsymbol{p}} \left(rac{rac{p^2}{2M} + arepsilon(\boldsymbol{p})}{p}
ight)$$

$$M \to \infty$$
 $v_{\rm c} = \mathop{\rm Min}_{\boldsymbol{p}} \left(\frac{\varepsilon(\boldsymbol{p})}{p} \right)$

Sound excitations phonons

$$\varepsilon(p) = c p \longrightarrow v_c = c$$

critical velocity

Bose gas MIT: 3D geometry, moving laser beam

 v_c/c_s between 0.1 and 0.2 2D geometry: ENS 2012 Seoul Univ. + Many theory papers !

C. Raman et al. PRL 1999 R. Onofrio et al. PRL 2000 Miller, PRL 2007

Fermi gas in BEC-BCS crossover

MIT: 3D geometry, moving standing wave method

$$v_c/c_s \sim 0.6$$
 $v_c/v_F \sim 0.3$

Hamburg: 3D geometry

$$v_c/c_s \sim 0.68 \quad v_c/v_F \sim 0.3$$

Weimer et al. PRL 2015

BEC: a new probe of Fermi superfluid

The BEC is a mesoscopic probe of the Fermi SF near its center finite mass impurity !

No damping only when the max relative velocity < 2 cm/s

Critical velocity for superfluid counterflow

$$\gamma(v) = \Theta(v - v_{\rm c}) A \left((v - v_{\rm c}) / v_{\rm F} \right)^{\alpha}$$

$$v_{\rm c} = 0.42^{+0.05}_{-0.11} v_{\rm F}$$

 $\alpha = 0.95^{+0.8}_{-0.3}$

 v_c appears higher than the speed of sound of unitary gas in elongated trap !

Critical velocity for two superfluids @ T=0

Bose gas quasi-particles: Bogoliubov dispersion: $\mathcal{E}_B(\vec{k})$ $\omega^2 = c_s^2 k^2 + (k^2 / 2m_7)^2$

$$m_7 c_s^2 = n \frac{\partial \mu}{\partial n} = ng = \mu$$

Fermi gas quasi-particles: $\varepsilon_F(\vec{k})$
Two contributions: phonons, $\varepsilon_{ph}(\vec{k})$ and pair breaking $\varepsilon_f(\vec{k})$

Combescot Kagan Stringari

Bose gas moving with velocity v $\varepsilon_B(\vec{k}) + \hbar \vec{k}.\vec{v}$ Energy and momentum conservation $\varepsilon_B(-\vec{k}) - \hbar \vec{k}.\vec{v} = -\varepsilon_F(\vec{k})$

Landau critical velocity:

$$v_c = \min_k \frac{1}{\hbar |k|} (\varepsilon_B(k) + \varepsilon_F(k))$$

Y. Castin, I. Ferrier-Barbut and C. Salomon Comptes-Rendus Acad. Sciences, Paris, **16**, 241 (2015)

Counter-flow critical velocity

Several excitation branches in the Fermi gas

Combescot, Kagan and Stringari *PRA* **74**, 042717 (2006)

At unitarity, we expect the phonon modes to dominate:

$$v_c = c_B + c_F$$

The critical velocity is the sum

of the speed of sound in Bose gas c_B and speed of sound in Fermi gas c_F

Counter-flow critical velocity in BEC-BCS crossover

Critical velocity in the BEC-BCS crossover

Critical velocity in the BEC-BCS crossover

Comparison with other measurements in pure Fermi gases

Laser excitation: moving standing wave potential (MIT) or laser stirrer (Hamburg)

Summary

- Production of a Bose-Fermi double superfluid
- First sounds in low temperature limit
- Measurement of critical velocity in BEC BCS crossover
- Theory:
 - role of Bose-Fermi interaction: M. Habad, Recati, Stringari, Chevy
 - Lifetime of excitations:
 - Influence of harmonic trap

arXiv:1411.7560v1 W. Zheng, Hui Zhai, PRL 113, 2014

Perspectives

Temperature effects and nature of excitations Flat bottom trap for fermions when $a_{bb}=a_{bf}$ Ozawa et al. 2014 Search for FFLO Phase with spin imbalanced gas Rotations, vortices, second sound, higher modes Bose-Fermi Superfluids in optical lattices and phase diagram