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16 < orders of magnitude 



TALK OUTLINE 

• On the general Nature of HEP, SM models.  

• Fundamental set of Requirements.  

• Local gauge invariance in Lattice Gauge Theory 

• QS:   Compact QED, U(1) symmetry 

• QS:   Non-Abelian, Yang Mills theory. 

 
 

• Several comments 

 



LONG RANGE FORCES?  
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REQUIRE FORCE CARRIER  

‘NEW FIELD’ 



REQUIRE FORCE CARRIER  

‘GAUGE FIELD’ 



THE STANDARD MODEL 

Matter Particles= Fermions 

Quarks and Leptons: 

Mass, Spin, Flavor 

 

Force Carriers = Spin 1 Bosons  
local gauge symmetries: 

Massless, chargeless photon (1): Electromagnetic, U(1)  

Massive, charged Z, W’s (3): Weak interactions, SU(2) 

Massless, charged Gluons (8):  Strong interactions, SU(3) 



GAUGE FIELDS 

Abelian Fields 
Maxwell theory 

Non-Abelian fields 
Yang-Mills theory 

Massless Massless 

Long-range forces Confinement 

Chargeless Carry charge 

Linear dynamics Self interacting & NL 



                𝛼𝑄𝐸𝐷 ≪ 1,      𝑉𝑄𝐸𝐷 𝑟 ∝
1

𝑟
 

 

We (ordinarily) don’t  need QFT quantum field theory to 
understand the structure of atoms:  

 
𝑚𝑒𝑐
2 ≫ 𝐸𝑅𝑦𝑑𝑏𝑒𝑟𝑔 ≃ 𝛼𝑄𝐸𝐷

2  𝑚𝑒𝑐
2 

 

But also higher energies effects are well described using 
perturbation theory - (Feynman diagrams) works well. 

 

                               

QED: THE CONVENIENCE OF BEING ABELIAN 



• Quantum Chromodynamics asymptotic freedom: 

     at high energies, coupling constant ‘goes’ to zero. 

 

• The nucleus, are seen 
as built of ‘free’ point-like 

     particles= quarks. 

      

QCD: AT HIGH ENERGY 
ASYMPTOTIC FREEDOM 

r 

V(r) 

“Strong Coulomb potential” 
 



QCD: AT LOW ENERGIES  
THE DARK SIDE OF ASYMPTOTIC FREEDOM 

 

𝛼𝑄𝐶𝐷 > 1 ,  𝑉𝑄𝐶𝐷 𝑟 ∝ 𝑟  
 

non-perturbative  confinement effect! 

No free quarks!  they construct Hadrons: 

Mesons (two quarks), 

Baryons (three quarks), 

… 
Color Electric flux-tubes:  

“a non-abelian Meissner effect”. 

 
r 

V(r) 
Static pot. 
for a pair 
of heavy 
quarks 

Coulomb 
 

Confinement 
 

Q Q 

Q Q 



Fundamental properties  
of HEP models 

Fields 

 Fermion Matter fields 

 Bosonic  gauge fields 
 

Relativistic invariance 

 Causal structure, in the continuum limit 

 

    

Local gauge invariance 

         Exact, or low energy, effective  

 

 

1. 

3. 

2. 



 REQUIREMENT 1. 

Fermion fields : = Matter 

Bosonic, Gauge fields:= Interaction mediators 

 

One needs both bosons and fermions 
 

 



REQUIREMENT 1. 

Fermion fields : = Matter 

Bosonic, Gauge fields:= Interaction mediators 

 

One needs both bosons and fermions 
 

 
 Trapped ultracold atoms can     
      have both bosons and fermions. 



REQUIREMENT 2. 

The theory has to be relativistic => i.e. have a causal 
structure. 
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REQUIREMENT 2. 

The theory has to be relativistic => have a causal structure. 

 

Atoms are governed by a non-relativistic Hamiltonian.  

Can we use atoms on a lattice? 

 

 



REQUIREMENT 2. 

The theory has to be relativistic => have a causal structure. 

The atomic dynamics (and Hamiltonian) is non-relativistic. 

Can we use atoms trapped on a lattice? 

 

 

      our model on the lattice has 
      the correct  continuum limit ! 
  If  



LATTICE GAUGE THEORY 



Toy Example: U(1) 

𝜓𝑛 𝜓𝑛+1 



Toy Example: U(1) 

H is invariant under global transformations: 



Toy Example: U(1) 

Promote the transformation to be local: 

Add a new field on the links: 

𝜓𝑛 𝜓𝑛+1 



Toy Example: U(1) 

 Invariance under a local gauge transformations: 



Toy Example U(1): ON LINKS  

Gauge field kinetic energy: 

Mechanical Analog  



 

Gauge field potential energy: 

 

 

 

 

 

 
In the continuum limit, this REDUCES to 𝛻 × 𝑨 2 : the magnetic 
energy density. 

 
 

 

Toy Example: U(1): D>1:  PLAQUETTES 



3. 

 Local gauge invariance:  
 IN ATOMIC SYSTEMS??? 



REQUIREMENT 3. 

The theory has to be local gauge invariant. 

local gauge invariance = “charge” conservation 
 

 



 REQUIREMENT 3. 

The atomic Hamiltonian conserves total number – only 
global symmtery! 

 

 



TUNNELING OF FERMIONS 

F F 



LOCAL GAUGE INVARIANCE  =>   MEDIATOR! 



TUNNELING W. BOSONS ON THE LINK 

F F B 



C D 

A,B 

F 

TUNNELING W. BOSONS ON THE LINK 

𝐿  



C D 

A,B 

𝐿 → 𝐿 − 1  

F 

TUNNELING W. BOSONS ON THE LINK 



C D 

A,B 

𝐿 → 𝐿 + 1  

F 

TUNNELING W. BOSONS ON THE LINK 



REALIZING A LINK   

c d a,b 



ANG. MOM. CONSERVATION  LOCAL GAUGE INVARIANCE 

C D 

A,B 

mF (C) 

mF (D) 

mF (A) 

mF (B) 



ANG. MOM. CONSERVATION  LOCAL GAUGE INVARIANCE 

C D 

A,B 

mF (C) 

mF (D) 
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ANG. MOM. CONSERVATION  LOCAL GAUGE INVARIANCE 

C D 

A,B 

mF (C) 

mF (D) 

mF (A) 

mF (B) 



GAUGE BOSONS AND SCHWINGER’S ALGEBRA 



GAUGE BOSONS AND SCHWINGER’S ALGEBRA 

and thus what we have is 



LOCAL GAUGE INVARIANCE: ON LINKS  

Qualitatively similar results can be obtained with just two bosons on the link, 
as the U(1) gauge symmetry is     -independent.  

 

For large       , 



KINETIC TERM   BOSONIC SCATTERING 

𝐸 = 𝑁1 −𝑁2   𝑐𝑜𝑛𝑗𝑢𝑔𝑎𝑡𝑒 𝑡𝑜 𝜃 = 𝜙1 − 𝜙2 
1/2 ( ) 

Mechanical Analog  

 



SCHWINGER MODEL: cQED  D=1 

𝐻 = 𝑀 −1 𝑛𝜓𝑛
†𝜓𝑛

𝑛

+ 𝛼 𝜓𝑛
†𝑈𝑛𝜓𝑛+1 +𝐻. 𝑐.  

+
𝑔2

2
 𝐿𝑛𝑧

2

𝑛

 

         B-B Scattering:  electric energy 

F-B scattering: link interaction 

Quantum Simulation of The Schwinger model (with staggered fermions): 



 

 

 

 

 

 
In the continuum limit, this REDUCES to 𝛻 × 𝑨 2 : the magnetic 
energy density. 

 
 

 

 D>1 REQUIRES  PLAQUETTES 



QS PLAQUETTES 

 

                                       Auxiliary fermions  



QS PLAQUETTES 

   
                                             Virtual process 



QS PLAQUETTES 

   
                                             Virtual process 



   
                    Virtual process =>  

QS PLAQUETTES 

 
discrete groups 
abelian groups  
non-abelian   
               
 



QS:  U(1) KOGUT-SUSKIND   



NON ABELIAN Yang-Mills  



NON ABELIAN Yang-Mills  

 

The STANDARD MODEL is built of particular non-
abelian theories, that are Yang-Mills  QFTs. 
(Celebrating this year  60 since their discovery).    

 

Renormalization (‘t Hooft) , and asymptotic Freedom 

(Wiltczek, Gross, Polizer), have been proved for Yang-Mills 
theories. 



NON-ABELIAN LINKS 

Ur  = element of the gauge group  

Ur  



LEFT AND RIGHT SIDES OF THE LINK 

MECHANICAL ANALOG: 
BODY AND LABORATORY 
REPRESENTATIONS  FOR A  
TOP’S ANGULAR MOMENTUM   

L                                             R 
“NON-ABELIAN 
      CHARGE” 



QS: SU(2)  

Ancillary “constraint” Fermion 

On each link – a1,2 bosons on the left, b1,2 bosons on the right 

 “color” fermions 



QS: SU(2) W. ANGULAR MOMENUM CONSERVATION 



 
SOME COMMENTS: 

 
 
 



THE DARK SIDE OF ASYMPTOTIC FREEDOM 

• QCD becomes highly non-perturbative at low 
energies. 

• EXACT methods have been successful for certain toy 
models. (e.g. 2+1 cQED Polyakov). But not to QCD in 
3+1 dimensions, or with dynamical matter. 

• Proof of confinement (or Mass Gap) in Yang Mills 
theory =  one Clay institute’s Millenium problems. 



CLASSICAL SIMULATION:  MONTE CARLO & TN 

• WILSON’S APPROACH: Monte Carlo methods + discretized 
Euclidean spacetime. Has been very successful.   

   

     PROBLEMS: 

• Many quarks (quark-gluon plasma,  color superconductivity): 
Grassman integration for fermions gives rise to a “sign problem”  

• Cannot be used to calculate real time dynamics.  

     Provides only correlations. 

 

• TENSOR NETWORKS:   CURRENTLY STILL RESTRICTED TO D=1. 

 



“Emerging“  Local Gauge Invariance 
at low enough energies 

Gauss’s law is added as a constraint.  

 Low energy effective gauge invariant  KS Hamiltonian. 
 

E. Zohar & BR,   PRL.  (2011)  
 

Δ ≫ 𝛿𝐸 

…
 

..
 

𝛿𝐸 

Gauge invariant sector 

Not Gauge invariant 



“Emerging“  Local Gauge Invariance 
at low enough energies 

Gauss’s law is added as a constraint.  

 Low energy effective gauge invariant  KS Hamiltonian. 
 

E. Zohar & BR,   PRL.  (2011)  
 

Δ ≫ 𝛿𝐸 

…
 

..
 

𝛿𝐸 

Gauge invariant sector 

Not Gauge invariant 

 ROBUSTNESS w. imprefections   
=>  static Higgs   
Kasamatsu et. al. PRL 2013,  2014. 



TOY MODELS 

• Confinement in  Abelian lattice models 
 

• Toy models with “QCD-like  properties” that 
capture the essential physics of confinement. 



QED IN 1+1d : SCHWINGER’S MODEL 

• No magnetic fields: EM has no dynamics of its own. 
Non trivial dynamics obtained by coupling to  
dynamical charge sources. 

 

• Schwinger:  𝑒+𝑒− form bound states. (analytic and 
lattice  results available.) 

    

• Non-abelian extension: in 1+1: Q𝐶𝐷2  version,  
not completely solved. Only in the large-N limit 
(‘t Hooft). 



CONFINEMENT IN LATTICE CQED MODELS 

• 1+1D:  “Schwinger model” manifests confinement. 
(analytic and lattice results available). 

 

• 2+1D: confinement for all values of the coupling 
constant, a non-perturbative mechanism (Polyakov). 

     (For T > 0: there is a phase transition also in 2+1 D.) 

 

• 3+1D: phase transition between strong coupling  
confinement phase, and weak coupling  coulomb 
phase.  
 

 



Flux loops deforming  and breaking effects 

Electric flux tubes 

E. Zohar & B. R,  
Phys. Rev. Lett. (2011). 

E. Zohar, J. I. Cirac, & B. R,  
Phys. Rev. Lett.  (2013)  
 

DIRECTLY OBSERVE CONFINEMENT 



WILSON LOOPS 

Detecting Wilson’s area law is equivalent 

to Ramsey Spectroscopy in quantum optics!  

E. Zohar &  B. R, New J. Phys. 15 (2013) 043041 

Stationary “quark” 

Two-path interfering “quark” 

“Area law” 
Confining phase  



QS: MODELS 

KS  = Kogut Susskind 
YM = Yang Mills theory 
st. c=  Strong coupling limit  



“…because nature isn’t classical, 
dammit, and if you want to make a 
simulation of nature, you’s better 
make it quantum mechanical, and 

by golly that’s a wonderful 
problem, because it doesn’t look 

so easy… ”” 
Richard Feynman, Simulating 
physics with computers, 1982 



“…nature isn’t classical, dammit, 
and if you want to make a 

simulation of nature, you’d better 
make it quantum mechanical, and 

by golly that’s a wonderful 
problem, because it doesn’t look 

so easy.” 
Richard Feynman, Simulating physics with 

computers, 1982 
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