

Han Pu

Rice University Houston, Texas, USA

INT Program on Frontiers in Quantum Simulation with Cold Atoms, Seattle, May, 2015

Strongly Interacting Quantum Gases in 1D Traps

Li Yang, Liming Guan, HP, PRA **91**, 043634 (2015)

Strongly Interacting Quantum Gases in 1D Traps

$$
H = \sum_{i=1}^{N} \left[-\frac{1}{2} \frac{\partial^2}{\partial x_i^2} + V(x_i) \right] + g \sum_{i < j} \delta(x_i - x_j)
$$
\n
$$
H_f
$$

For large $g \rightarrow \infty$:

 H_{int} : unperturbed Hamiltonian

 H_f : perturbation

Unperturbed system

$$
H = \frac{g \sum_{i < j} \delta(x_i - x_j)}{H_{\text{int}}}
$$

Ground state manifold: $\{\mathcal{P}_0 : \forall i, j \ \Psi(x_i = x_j) = 0\}$

An anti-symmetric wavefunction can be constructed
\n
$$
\Psi(x_1 \cdots x_N) = \sum_P (-1)^P P(\varphi(x_1 \cdots x_N) \chi(\sigma_1 \cdots \sigma_N))
$$

F. Deuretzbacher et.al. Phys. Rev. Lett. 100,16040 (2008). Liming Guan et.al. Phys. Rev. Lett. 102, 160402 (2009).

First-order perturbation

$$
H = \sum_{i=1}^{N} \left[-\frac{1}{2} \frac{\partial^2}{\partial x_i^2} + V(x_i) \right] + g \sum_{i < j} \delta(x_i - x_j)
$$
\n
$$
\Psi(x_1 \cdots x_N) = \sum_{P} (-1)^P P(\varphi(x_1 \cdots x_N) \chi(\sigma_1 \cdots \sigma_N))
$$
\n
$$
\text{ground state of } H_f
$$
\n(slater determinant)

Second-order perturbation

$$
\chi(\sigma_1 \cdots \sigma_N)
$$
 are eigenstates of $H_{eff} = -\frac{1}{g} \sum_{i=1}^{N-1} C_i (1 - \mathcal{E}_{i,i+1})$

Effective spin-chain model

$$
H = \sum_{i=1}^{N} \left[-\frac{1}{2} \frac{\partial^2}{\partial x_i^2} + V(x_i) \right] + g \sum_{i < j} \delta(x_i - x_j)
$$
\n
$$
H_f
$$

$$
H_{eff} = -\frac{1}{g} \sum_{i=1}^{N-1} C_i (1 - \mathcal{E}_{i,i+1})
$$

$$
C_i = 2 \cdot S \int dx_1 \cdots dx_N |\partial_i \varphi|^2 \delta(x_{i+1} - x_i)
$$

$$
\mathcal{E}_{i,i+1}
$$
 are exchange operators

$$
\mathcal{E}_{i,i+1} | \cdots \sigma_i \sigma_{i+1} \cdots \rangle = | \cdots \sigma_{i+1} \sigma_i \cdots \rangle
$$

 C_i only depends on $V(x)$ and N

Effective spin-chain model

$$
H_{eff} = -\frac{1}{g} \sum_{i=1}^{N-1} C_i (1 - \mathcal{E}_{i,i+1})
$$

$$
E = E^* - \frac{K}{g} + O(\frac{1}{g^2})
$$
 tan contact

A. G. Volosniev et.al. Nature Communications 5, 5300 (2014) F. Deuretzbacher, et.al. Phys. Rev. A 90, 013611 (2014)

Spin-1/2 fermions

$$
H_{eff} = -\frac{1}{g} \sum_{i=1}^{N-1} C_i (1 - \mathcal{E}_{i,i+1})
$$

For spin 1/2 fermions, the spin chain models are

Heisenberg models
$$
H_{\text{eff}} = -\frac{1}{g} \sum_{i=1}^{N-1} C_i (1 - \vec{\sigma}_i \cdot \vec{\sigma}_{i+1})/2
$$

Q,

Spin-1/2 fermions: simulating dynamics

X. Cui, and T.-L. Ho, Phys. Rev. A 89, 023611(2014)

Cold atoms in cavity

Kimble, Nature **453**, 1023 (2008)

Purcell effect: the birth of CQED

Phys. Rev. 69, 681 (1946)

B10. Spontaneous Emission Probabilities at Radio Frequencies. E. M. PURCELL, Harvard University.-For

Spontaneous emission of an excited atom can be controlled.

 $^{2}\,\rho\bigl(\varpi_{\!0}\bigr)$ $\rho\big(\mathbf{\omega}_0\big)$: density of photon modes at $\mathbf{\omega}_0$ 0 $\Omega_{_{eg}}=d_{_{eg}}E_{_{vac}}$ / $\hbar,\hspace{0.5cm}E_{_{vac}}=\surd\hbar\omega_{_{0}}$ / $(2\varepsilon_{_{0}}\!V)$ 2 3 *eg* π $\Gamma = \frac{2\pi}{\sigma} |\Omega_{ee}| \rho(\omega_0)$

Modifying spontaneous emission rate

Enhancement of spontaneous emission.

Goy, Raimond, Gross, Haroche, PRL **50**, 1903 (1983)

$$
\Gamma_{cav} = \eta \Gamma_0
$$

$$
\eta = \frac{3}{4\pi^2} \frac{Q\lambda^3}{V} : \text{Purcell factor}
$$

 $|\Psi(t)\rangle = \cos(gt) |e,0\rangle + \sin(gt) |g,1\rangle$

Jaynes-Cummings model:

$$
H = \frac{\hbar \omega_0}{2} \sigma_z + \hbar \omega_c \hat{a}^\dagger \hat{a} + \hbar g \left(\hat{a} \sigma_+ + \sigma_- \hat{a}^\dagger \right), \quad \sigma_+ = \sigma_-^{\dagger} = |e\rangle \langle g|
$$

$$
g \Box \gamma, \kappa
$$

From 1 atom to *N* **atoms**

One-atom Jaynes-Cummings model:

$$
H = \frac{\hbar \omega_0}{2} \sigma_z + \hbar \omega_c \hat{a}^\dagger \hat{a} + \hbar g \left(\hat{a} \sigma_+ + \sigma_- \hat{a}^\dagger \right)
$$

$$
H = \frac{n\omega_0}{2} \sigma_z + \hbar \omega_c \hat{a}^\dagger \hat{a} + \hbar g \left(\hat{a} \sigma_+ + \sigma_- \hat{a}^\dagger \right)
$$

N-atom Tavis-Cummings model:

$$
H = \hbar \omega_0 J_z + \hbar \omega_c \hat{a}^\dagger \hat{a} + \hbar g \left(\hat{a} J_+ + J_- \hat{a}^\dagger \right), \quad J_z = \frac{1}{2} \sum_{i=1}^N \sigma_{z,i}, \quad J_\pm = \sum_{i=1}^N \sigma_{\pm,i}
$$

Effective atom-cavity coupling strength: $g' \approx \sqrt{N} g$

Brennecke *et al*., Nature **450**, 268 (2007) Colombe *et al*., Nature **450**, 272 (2007)

From 1 atom to *N* **atoms**

One-atom Rabi model:

One-aion Rabi mode:
\n
$$
H = \frac{\hbar \omega_0}{2} \sigma_z + \hbar \omega_c \hat{a}^\dagger \hat{a} + \hbar g \left(\hat{a} + \hat{a}^\dagger \right) \left(\sigma_+ + \sigma_- \right)
$$

N-atom Dicke model:

$$
H = \hbar \omega_0 J_z + \hbar \omega_c \hat{a}^\dagger \hat{a} + \frac{\hbar \lambda}{\sqrt{N}} \left(\hat{a} + \hat{a}^\dagger \right) \left(J_+ + J_- \right), \quad J_z = \frac{1}{2} \sum_{i=1}^N \sigma_{z,i}, \ J_\pm = \sum_{i=1}^N \sigma_{\pm,i}
$$

Dicke phase transition: $\lambda_c = \sqrt{\omega_c \omega_0/2}$ ($N \Box$ 1, κ negligible)

N-atom Dicke model:

$$
H = \hbar \omega_0 J_z + \hbar \omega_c \hat{a}^\dagger \hat{a} + \frac{\hbar \lambda}{\sqrt{N}} \left(\hat{a} + \hat{a}^\dagger \right) \left(J_+ + J_- \right), \quad J_z = \frac{1}{2} \sum_{i=1}^N \sigma_{z,i}, \ J_\pm = \sum_{i=1}^N \sigma_{\pm,i}
$$

Dicke phase transition: $\lambda_c = \sqrt{\omega_c \omega_0/2}$ ($N \Box$ 1, κ negligible)

Baden *et al*., PRL **113**, 020408 (2014)

Spinor BEC in ring cavity: cavity optomechanics

Spinor BEC in ring cavity : cavity optomechanics

BEC as a mechanical oscillator Bistability in matter wave and cavity field

Q,

Cavity photon number Atomic population in spin-0

Effects of atomic center-of-mass motion

Effects of atomic motion: atom-cavity microscope

position-dependent atom-cavity coupling inhomogeneous cavity mode profile position-dependent atomic back-action

Hood *et al*., Science **287**, 1447 (2000)

Dicke model revisited

Two-level system formed by motional states

Baumann, Guerlin, Brennecke, Esslinger, Nature **464**, 1301 (2010)

Superradiance with spinless fermions

PRL 112, 143002 (2014)

PHYSICAL REVIEW LETTERS

week ending 11 APRIL 2014

Fermionic Superradiance in a Transversely Pumped Optical Cavity

J. Keeling, ¹ M. J. Bhaseen, 2 and B. D. Simons³

¹SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews KY16 9SS, United Kingdom 2 Department of Physics, King's College London, Strand, London WC2R 2LS, United Kingdom ³University of Cambridge, Cavendish Laboratory, Cambridge CB3 0HE, United Kingdom (Received 10 September 2013; published 8 April 2014)

PRL 112, 143003 (2014)

PHYSICAL REVIEW LETTERS

week ending 11 APRIL 2014

Umklapp Superradiance with a Collisionless Quantum Degenerate Fermi Gas

Francesco Piazza^{1,*} and Philipp Strack² ¹Physik Department, Technische Universität München, 85747 Garching, Germany ²Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA (Received 11 September 2013; published 8 April 2014)

PRL 112, 143004 (2014)

PHYSICAL REVIEW LETTERS

week ending 11 APRIL 2014

Superradiance of Degenerate Fermi Gases in a Cavity

Yu Chen, Zhenhua Yu,^{*} and Hui Zhai[†] Institute for Advanced Study, Tsinghua University, Beijing 100084, China (Received 25 September 2013; published 8 April 2014)

Cavity optomechanics with motional states

BEC as a mechanical oscillator

Brennecke, Ritter, Donner, Esslinger, Science **322**, 235 (2008)

Similar work by Gupta *et al*., PRL **99**, 213601 (2007)

$$
\hat{H} = \int \hat{\Psi}^{\dagger}(x) \left(\frac{-\hbar^2}{2m} \frac{d^2}{dx^2} + \hbar U_0 \cos^2(kx) \hat{a}^{\dagger} \hat{a} \right) \hat{\Psi}(x) dx - \hbar \Delta_c \hat{a}^{\dagger} \hat{a} - i \hbar \eta (\hat{a} - \hat{a}^{\dagger})
$$

Mean field description

$$
i\dot{\psi}(x,t) = \left(\frac{-\hbar}{2m}\frac{d^2}{dx^2} + |\alpha(t)|^2 U_0 \cos^2(kx)\right)\psi(x,t)
$$

$$
\alpha(t) = \frac{\eta}{\kappa - i(\Delta_c - NU_0 \langle \cos^2(kx) \rangle)}.
$$

Dynamic optical lattice: effect on many-body physics

"Cold atoms in cavity-generated dynamical optical potentials" Ritsch *et al*., RMP **85**, 553 (2013)

$$
\hat{H}_0 = \frac{\hat{p}^2}{2m} + \hbar [U_0 \cos^2(k\hat{x}) - \Delta_c] \hat{n}_{\text{ph}} - i\hbar \eta (\hat{a} - \hat{a}^\dagger)
$$

Mott-SF boundary for a spinless boson gas

Larson, Damski, Morigi, Lewenstein, PRL **100**, 050401 (2008)

Effects of atomic center-of-mass motion

The advent of cold atoms makes the atomic COM motion no longer negligible.

cavity photon \leq atomic external states

Cavity field couples directly to both internal and external atomic states.

cavity photon

atomic internal states atomic external states

Cavity-induced spin-orbit coupling

Dong, Zhou, Wu, Ramachandhran, Pu, PRA **89**, 011602(R) (2014) Related work: Mivehvar, Feder, PRA **89**, 013803 (2014)

Atomic back-action to cavity photon \rightarrow "dynamic" spin-orbit coupling

$$
\mathcal{H}_{\text{eff}} = \sum_{\sigma=\uparrow,\downarrow} \int dz \left[\hat{\psi}_{\sigma}^{\dagger}(z) \left(\frac{k^2 + 2\alpha_{\sigma} q_r k}{2m} + \alpha_{\sigma} \delta \right) \hat{\psi}_{\sigma}(z) \right] + \frac{\Omega}{2} \int dz \left[\hat{\psi}_{\uparrow}^{\dagger}(z) \hat{\psi}_{\downarrow}(z) \hat{c} + h.c. \right] \n+ i\varepsilon_p (\hat{c}^{\dagger} - \hat{c}) - \delta_c \hat{c}^{\dagger} \hat{c}, \qquad \alpha_{\uparrow,\downarrow} = \pm 1
$$

If $q_r = 0$, this model reduces to the JC/TC model

Mean-field approach: nonlinear SOC

$$
\hat{c} \rightarrow c \equiv \langle \hat{c} \rangle = \frac{\varepsilon_p - i \frac{\Omega}{2} \varphi_{\downarrow}^* \varphi_{\uparrow}}{\kappa - i \delta_c}
$$

$$
i\dot{\varphi}_{\uparrow} = \left(\frac{k^2}{2m} + q_r k + \delta\right) \varphi_{\uparrow} + \frac{\Omega_{\text{eff}}}{2} \varphi_{\downarrow}
$$

$$
i\dot{\varphi}_{\downarrow} = \left(\frac{k^2}{2m} - q_r k - \delta\right) \varphi_{\downarrow} + \frac{\Omega_{\text{eff}}^*}{2} \varphi_{\uparrow}
$$

$$
\Omega_{\text{eff}} \equiv \Omega c = \Omega^{\frac{\varepsilon_p - i\frac{\Omega}{2}\varphi^*_{\downarrow}\varphi_{\uparrow}}{\kappa - i\delta_c}
$$

energy dispersion $\varepsilon(k)$ satisfies a quartic equaion:

$$
4\epsilon^4 + B\epsilon^3 + C\epsilon^2 + D\epsilon + E = 0
$$

Validity of MF approach: Negligible atom-photon correlation Cavity field: coherent state

Dispersion without cavity

Dispersion with cavity

Stability analysis

Beyond mean-field

Quantum vs. Mean-field

Quantum vs. Mean-field

At large |*k*|,

quantum and MF results agree w/ each other photon distribution becomes Poissonian atom-cavity entanglement is negligible

At given *k*, the kinetic energy mismatch between the two states is $2q_r k/m$

At large |*k*|, the Raman transition becomes far off-resonant.

Dong, Zhu, Pu, arXiv:1504.01729

Adding a harmonic trap

 $\mathcal{L}^{\mathcal{L}}(2) = \sum_{i=1}^n \mathcal{L}^{\mathcal{L}}(2)$ $\mathcal{L}^{\mathcal{L}}(2) = \sum_{i=1}^n \mathcal{L}^{\mathcal{L}}(2)$ $\mathcal{L}^{\mathcal{L}}(2) = \sum_{i=1}^n \mathcal{L}^{\mathcal{L}}(2)$

a a iq m a a c c c c

Cavity-assisted SOC in many-body systems

BEC in cavity

Spin-1/2 Fermi gas in cavity

Pan, Liu, Zhang, Yi, Guo, arXiv:1410.8431

Quantum optics meets few/many-body physics